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Abstract

Let M be a right R-module. Define Z∗M (N) (δ∗M (N)) to be the set of
elements n ∈ N for any R-module N in σ[M ] such that nR is an M -small
(respectively δ-M -small) module. In this note it is proved that M is a
GCO-module if and only if every M -small module in σ[M ] is M -projective
if and only if every δ-M -small module in σ[M ] is M -projective. Also, if
M/δ∗M (M) is semisimple then M is a GCO-module if and only if M is an
SI-module.
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For a right R-module M , the submodule Z∗(M) is defined to be the set of

elements m ∈ M such that mR is a small module (see [4]). Some further proper-

ties of Z∗(.) were studied in [4, 8, 9, 10]. In this paper we think this submodule

in the category σ[M ], and therefore the corresponding definition of Z∗(.) in σ[M ]

is defined by Z∗M(N) to be the set of elements n ∈ N for a module N ∈ σ[M ]

such that nR is M -small. In Section 1 we prove that M is a GCO-module if

and only if every M -small module in σ[M ] is M -projective (Theorem 1.5). Also

if M/Z∗M(M) is semisimple, then M is a GCO-module if and only if M is an

SI-module if and only if Z∗M(M) is semisimple M -projective (Theorem 1.12). In

Section 2, we define δ-M -small modules and δ∗M(N) as a generalization of M -

small modules and Z∗M(N) in σ[M ] being inspired from [14]. Most of the results
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in Section 1 hold for δ-M -small modules and δ∗M(N) but the characterization of

V-modules (Example 2.6).

Throughout this paper, R will be an associative ring with unit and all modules

be unitary right R-modules.

Let M be an R-module. For a direct summand N of M we write N ≤d M

and for essential submodule N of M , N ≤e M .

An R-module N is subgenerated by M if N is isomorphic to a submodule of an

M -generated module. σ[M ] is denoted by the full subcategory of Mod-R whose

objects are all R-modules subgenerated by M [12].

Let N̂ be the M -injective hull of N in σ[M ] and let E(M) be an R-injective

hull of M .

A module N in σ[M ] is called M-singular (or singular in σ[M ]) if N ∼= L/K

for an L ∈ σ[M ] and K ≤e L (see [3]). In case M = R, instead of R-singular,

we just say singular. Every module N ∈ σ[M ] contains a largest M -singular

submodule which is denoted by ZM(N).

Let G(M) be the singular torsion theory in σ[M ], that is, G(M) is the smallest

torsion class in σ[M ] which contains all M -singular modules (see [11]). G(M) is

closed under M -injective hulls by [11, 2.4(3)], and hence G(M) = {N ∈ σ[M ] :

ZM(N) ≤e N}.
Following Hirano a module M is called a V-module (or co-semisimple) if

every simple module (in σ[M ]) is M -injective. A module M is called a GV-

module if every singular simple module is M -injective. M is a GV-module if and

only if every simple module is projective or M -injective [5]. As a generalization

of GV-modules a module M is called a GCO-module if every singular simple

module is M -projective or M -injective [3]. M is a GCO-module if and only

if every M -singular simple module is M -injective [3, 16.4]. Obviously any V-

module is a GV-module and any GV-module is a GCO-module. M is called an

SI-module if every M -singular module is M -injective [3]. Clearly SI-modules are

GCO-modules. Note that a right GCO-ring coincides with a right GV-ring.

1 M-small Modules

Let K be a submodule of a module M . K is called small in M if K + L 6= M

holds for every proper submodule L of M and denoted by K ¿ M . We write

RadM , which is the sum of all small submodules in M , for the radical of M (see

[1]).

An R-module N is called M-small (or small in σ[M ]) if N ∼= K ¿ L for

K, L ∈ σ[M ]. Note that M -small modules are dual notion to that of M -singular

modules. In case M = R, instead of R-small, we just say small. M -small modules

are small, since the class of small modules is closed under isomorphism. An R-
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module N is M -small if and only if N ¿ N̂ . Every simple R-module is M -

injective or M -small. The class of M -small modules is closed under submodules,

homomorphic images and finite direct sums. (see [6])

Let M be an R-module. Denote

Z∗M(N) = {n ∈ N : nR is M -small}
for an R-module N ∈ σ[M ]. In case M = R, we write Z∗(N) instead of Z∗R(N).

Let N ∈ σ[M ]. Then it can be easily seen that

RadN ≤ Z∗M(N) ≤ Z∗(N).

If N is M -small, then Z∗M(N) = N . Since σ[N ] ⊆ σ[M ], we also have Z∗N(X) ≤
Z∗M(X) for any module X ∈ σ[M ].

Lemma 1.1 Let M be a module. Then

a) Z∗M(N) =RadN̂ ∩N for any N ∈ σ[M ].

b) Let N ∈ σ[M ]. For any submodule K of N , Z∗M(K) = K ∩ Z∗M(N).

c) Let f : N → K be a homomorphism of modules N,K where N, K ∈ σ[M ].

Then f(Z∗M(N)) ≤ Z∗M(K).

d) Let Ni (i ∈ I) be any collection of modules in σ[M ] and let N = ⊕i∈INi. Then

Z∗M(N) = ⊕i∈IZ
∗
M(Ni).

Proof (a) and (b) are clear. (c) and (d) can be obtained by the similar techniques

of [10, Lemma 2.1 and 2.3]. 2

Now we give a lemma showing some properties of Z∗M(.) in case it is zero.

Lemma 1.2 Let N ∈ σ[M ]. Then

a) Z∗M(N) = 0 if and only if RadN̂ = 0.

b) Z∗M(N) = 0 if and only if Z∗K(N) = 0 for every K ∈ σ[M ] with N ∈ σ[K].

Proof a) By Lemma 1.1 and, since N ≤e N̂ .

b) Suppose that Z∗M(N) = 0, and let K ∈ σ[M ] with N ∈ σ[K] and x ∈ Z∗
K(N).

Then xR is K-small, i.e. xR ∼= L ¿ T for some L, T ∈ σ[K]. Since K ∈ σ[M ],

L, T ∈ σ[M ]. This implies that xR is M -small. Thus x ∈ Z∗
M(N) = 0. Converse

is open. 2

Since Z∗M(.) is related with the radical of a module then one may think whether

the results hold for radicals of modules are true for Z∗M(.). Therefore here we

consider V-modules and GCO-modules by being encouraged from [12, 23.1] and

[3, 16.4].

Theorem 1.3 The following are equivalent for a module M .

a) M is a V-module,

b) Z∗M(N) = 0 for every module N ∈ σ[M ],

c) Z∗M(N) = 0 for every factor module N of M .
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Proof Since Z∗M(N) =RadN̂ ∩N for N ∈ σ[M ], it is clear from [12, 23.1]. 2

Let N ∈ σ[M ]. N is called cogenerator in σ[M ] if there exists a monomor-

phism N → ∏
Λ Mλ with modules Mλ ∈ σ[M ] [12]. A module M is called locally

noetherian if every finitely generated submodule of M is noetherian.

Theorem 1.4 Let M be a locally noetherian module. The following are equiva-

lent.

a) M is a V-module,

b) σ[M ] has a semisimple M-injective cogenerator,

c) σ[M ] has a cogenerator Q with Z∗M(Q) = 0.

Proof It is clear from [12, 23.1]. 2

Theorem 1.5 The following are equivalent for a module M .

a) M is a GCO-module,

b) For every module N ∈ σ[M ], Z∗M(N) is M-projective,

c) Every M-small module in σ[M ] is M-projective,

d) For every module N ∈ σ[M ], ZM(N) ∩ Z∗M(N) = 0,

e) For every simple module E ∈ σ[M ], ZM(Ê) ∩ Z∗M(Ê) = 0,

f) M/Soc(M) is a V-module and ZM(M) ∩ Z∗M(M) = 0,

g) Z∗M(M/K) = 0 for every K ≤e M and ZM(M) ∩ Z∗M(M) = 0,

h) Every non-zero module N with Z∗M(N) = N contains a non-zero M-projective

submodule,

i) For every module N ∈ σ[M ] with ZM(N) ≤e N (i.e. N ∈ G(M)), Z∗M(N) = 0.

Proof (a) ⇒ (b) Since simple modules in σ[M ] splits into four disjoint classes

by combining the exclusive choices [M -projective or M -singular] and [M -injective

or M -small], one deduces that M is a GCO-module if and only if every M -small

simple module is M -projective. So, let n ∈ Z∗M(N) for N ∈ σ[M ] and K be a

maximal submodule of nR. Then nR/K is simple and M -projective. This implies

that K ≤d nR. Hence nR and then Z∗M(N) is semisimple. By [7, Proposition

4.32], Z∗M(N) is M -projective.

(b) ⇒ (c) ⇒ (d) ⇒ (e) It is clear.

(e) ⇒ (a) It follows from [3, 16.4 (d)⇒ (a)].

(d) ⇒ (g) Let K ≤e M . Then M/K is M -singular. This implies that ZM(M/K) =

M/K. By hypothesis, Z∗M(M/K) = 0.

(g) ⇔ (f) It follows from [3, 16.1 (a)⇔ (d)].

(f) ⇒ (a) It follows from [3, 16.4 (e)⇒ (a)].

(b) ⇒ (h) It is clear.

(h) ⇒ (a) Let N be an M -singular simple module in σ[M ]. If N is M -small then
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N contains a non-zero M -projective module P in σ[M ]. Since N is simple N = P

and then N is projective and M -singular in σ[M ], a contradiction. Hence N is

M -injective.

(d) ⇒ (i) It is clear.

(i) ⇒ (d) Let 0 6= n ∈ZM(N) ∩ Z∗M(N). Then nR is M -singular and M -small.

Since nR =ZM(nR) ≤e nR, Z∗M(nR) = 0 by hypothesis, a contradiction. 2

If we consider the GCO-modules with ascending (descending) chain condi-

tion on essential submodules we have the following corollaries. First one is a

generalization of [3, 16.13 (1)].

Corollary 1.6 The following are equivalent for a module M .

a) M is a GCO-module with ascending chain condition on essential submodules,

b) M/SocM is a V-module and Noetherian, ZM(M) ∩ Z∗M(M) = 0.

Proof By Theorem 1.5 and [3, 5.15]. 2

Corollary 1.7 For a module M with M/SocM finitely generated, the following

are equivalent.

a) M is a GCO-module with descending chain condition on essential submodules,

b) M/SocM is semisimple, ZM(M) ∩ Z∗M(M) = 0.

Proof By Theorem 1.5, [3, 5.15] and [1, Proposition 10.15]. 2

GV-modules can be characterized by replacing ZM(N) by the singular sub-

module Z(N) and M -projectivity by projectivity in Theorem 1.5.

Theorem 1.8 The following are equivalent for a module M .

a) M is a GV-module,

b) For every module N ∈ σ[M ], Z∗M(N) is projective,

c) Every M-small module in σ[M ] is projective,

d) For every module N ∈ σ[M ], Z(N) ∩ Z∗M(N) = 0,

e) For every simple module E ∈ σ[M ], Z(Ê) ∩ Z∗M(Ê) = 0,

f) M/Soc(M) is a V-module and Z(M) ∩ Z∗M(M) = 0,

g) Z∗M(M/K) = 0 for every K ≤e M and Z(M) ∩ Z∗M(M) = 0,

h) Every non-zero module N with Z∗M(N) = N contains a non-zero projective

submodule,

i) For every module N ∈ σ[M ] with Z(N) ≤e N , Z∗M(N) = 0.

Example 1.9 If M is a GV-module, Z(M)∩RadM = 0 but Z(M)∩Z∗(M) need

not be zero in general.
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Proof Let M = Z/2Z. M is simple and hence a GV-module. Also Z(M) ∩
RadM = 0. But Z(M)∩Z∗(M) = M since M is singular and small Z-module. 2

Applying Theorem 1.8 to M = R, we immediately have the following corollary

which is a generalization of [8, Theorem 10].

Corollary 1.10 The following are equivalent for a ring R.

a) R is a right GV-ring,

b) For every R-module M , Z∗(M) is projective,

c) Every small module is projective,

d) For every R-module M , Z(M) ∩ Z∗(M) = 0,

e) For every simple module S, Z(E(S)) ∩ Z∗(E(S)) = 0.

f) R/Soc(R) is a V-module and Z(RR) ∩ Z∗(RR) = 0,

g) Z∗(R/K) = 0 for every essential right ideal K of R and Z(RR) ∩ Z∗(RR) = 0,

h) Every non-zero R-module M with Z∗(M) = M contains a non-zero projective

submodule,

i) For every R-module M with Z(M) ≤e M , Z∗(M) = 0.

Theorem 1.11 Let M be a module with M/Z∗M(M) a V-module. Then the fol-

lowing are equivalent.

a) M is a GCO-module,

b) Z∗M(M) is semisimple M-projective.

Proof (a) ⇒ (b) By Theorem 1.5.

(b) ⇒ (a) Since Z∗M(M) is semisimple, Z∗M(M) ≤ Soc(M). Then by hypothesis,

M/Soc(M) is a V-module. ZM(M) ∩ RadM is a direct summand of Z∗M(M).

Since Z∗M(M) is M -projective, we have ZM(M) ∩ RadM = 0. By [3, 16.4], M is

a GCO-module. 2

In [3, 17.5], we do not need the condition that M is self-projective.

Theorem 1.12 Let M be a module with M/Z∗M(M) semisimple. Then the fol-

lowing are equivalent.

a) M is a GCO-module,

b) M is an SI-module,

c) Z∗M(M) is semisimple M-projective.

Proof (a) ⇔ (c) By Theorem 1.11.

(b) ⇒ (a) Clear.

(c) ⇒ (b) Since Z∗M(M) ≤ Soc(M), M/SocM is semisimple. Let K ≤e M .

Then SocM ≤ K. This implies that M/K is semisimple. On the other hand,

since finitely generated M -singular modules can not be M -projective, we have

ZM(M) ∩ Rad(M) = 0. Thus M is an SI-module by [3, 17.2]. 2
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2 δ-M-small Modules

In this section, we define δ-M -small modules and use them to characterize GCO-

modules.

Zhou [14] introduced the concept ”δ-small submodule” as a generalization of

small submodule. Let N be a submodule of a module M . N is called δ-small

in M if whenever M = N + K and M/K is singular for any K ≤ M we have

M = K, denoted by N ¿δ M . Here we consider this definition in the category

σ[M ] for a module M .

Definition 2.1 Let N ≤ K ∈ σ[M ]. N is called a δ-M-small submodule of K

in σ[M ] if whenever K = N + X and K/X is M -singular for X ≤ K we have

K = X, we denoted by N ¿δM
K.

For modules N, K ∈ σ[M ], N ¿δ K ⇒ N ¿δM
K. The properties of δ-small

submodules that are listed in Lemma 1.3 in [14] also hold in σ[M ]. We write

them for convenience. Note that the class of M -singular modules is closed under

submodules, homomorphic images and direct sums [3].

Lemma 2.2 Let N ∈ σ[M ].

a) For modules K,L ∈ σ[M ] with K ≤ L ≤ N we have

L ¿δM
N if and only if K ¿δM

N and L/K ¿δM
N/K.

b) For K, L ∈ σ[M ],

K + L ¿δM
N if and only if K ¿δM

N and L ¿δM
N .

c) If K ¿δM
N and f : N → L is a homomorphism, then f(K) ¿δM

L.

In particular, if K ¿δM
N ≤ L then K ¿δM

L.

d) If K ≤ L ≤d N ∈ σ[M ] and K ¿δM
N then K ¿δM

L.

As a generalization of M -small module we define δ-M -small module.

Definition 2.3 Let N ∈ σ[M ]. N is called a δ-M-small module in σ[M ] if

N ∼= K ¿δM
L ∈ σ[M ].

The following equivalence can be seen similarly as it is for M -small modules.

For M -small modules it is proved in [6].

Lemma 2.4 N is a δ-M-small module in σ[M ] if and only if N ¿δM
N̂ .

Proof It is enough to show that if N is δ-M -small then N ¿δM
N̂ . Let

K, L ∈ σ[M ] be such that N ∼= K ¿δM
L. Since K̂ is injective in σ[M ], there

exists a homomorphism f : L → K̂ such that fi = g where i : K → L and

g : K → K̂ are inclusion maps. Since K ¿δM
L, K = f(K) ¿δM

K̂. This

implies that N ¿δM
N̂ . 2

If N is an M -small module then it is δ-M -small. The class of δ-M -small

modules is closed under submodules, homomorphic images and finite direct sums.
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Definition 2.5 Let N ∈ σ[M ]. We define

δM(N) := {n ∈ N : nR ¿δM
N}

δ∗M(N) := {n ∈ N : nR ¿δM
n̂R} = {n ∈ N : nR ¿δM

N̂} = δM(N̂) ∩N .

In case M = R, we write δR(N) = δ(N) and δ∗R(N) = δ∗(N). Then

Rad(N) ≤ δM(N) ≤ δ∗M(N)

Rad(N) ≤ Z∗M(N) ≤ δ∗M(N).

If N is a δ-M -small module then δ∗M(N) = N . Also by definition for N ≤ K ∈
σ[M ] δ∗M(N) = N ∩ δ∗M(K). In particular, δ∗M(δ∗M(N)) = δ∗M(N). δ(N) is defined

by Zhou [14]. Note that for any ring R, Soc(RR) ≤ δ(RR) by [14, Theorem 1.6].

If for every N ∈ σ[M ], δ∗M(N) = 0, then M is a V-module. But the converse

is not true in general:

Example 2.6 Let F be any field and R be the direct product of any infinite

number of copies of F . Then R is a commutative V-ring and Soc(R) is the ideal

of R consisting of all elements which have at most a finite number of non-zero

components. Then by [14, Theorem 1.6], Soc(R) ≤ δ(R) ≤ δ∗(R) implies that

δ∗(R) 6= 0. Hence R is a V-ring but δ∗(R) 6= 0. Actually, by Corollary 2.9

Soc(R) = δ∗(R).

But Theorem 1.5 still holds when Z∗M(.) is replaced by δ∗M(.).

Theorem 2.7 The following are equivalent for a module M .

a) M is a GCO-module,

b) For every module N ∈ σ[M ], δ∗M(N) is M-projective,

c) Every δ-M-small module in σ[M ] is M-projective,

d) For every module N ∈ σ[M ], ZM(N) ∩ δ∗M(N) = 0,

e) For every simple module E ∈ σ[M ], ZM(Ê) ∩ δ∗M(Ê) = 0,

f) M/Soc(M) is a V-module and ZM(M) ∩ δ∗M(M) = 0,

g) δ∗M(M/K) = 0 for every K ≤e M and ZM(M) ∩ δ∗M(M) = 0,

h) Every non-zero module N with δ∗M(N) = N contains a non-zero M-projective

submodule,

i) For every module N ∈ σ[M ] with ZM(N) ≤e N , δ∗M(N) = 0.

Proof (a) implies (b), since M -singular M -injective and δ-M -small modules are

zero. Then δ∗M(N) is semisimple and then M -projective. The others can be seen

by definitions and Theorem 1.5. 2

Replacing ZM(N) by the singular submodule Z(N) and M -projectivity by

projectivity in Theorem 2.7 we have the following.
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Theorem 2.8 The following are equivalent for a module M .

a) M is a GV-module,

b) For every module N ∈ σ[M ], δ∗(N) is projective,

c) Every δ-M-small module in σ[M ] is projective,

d) For every module N ∈ σ[M ], Z(N) ∩ δ∗(N) = 0,

e) For every simple module E ∈ σ[M ], Z(Ê) ∩ δ∗(Ê) = 0,

f) M/Soc(M) is a V-module and Z(M) ∩ δ∗(M) = 0,

g) δ∗(M/K) = 0 for every K ≤e M and Z(M) ∩ δ∗(M) = 0,

h) Every non-zero module N with δ∗(N) = N contains a non-zero projective

submodule,

i) For every module N ∈ σ[M ] with Z(N) ≤e N , δ∗(N) = 0.

Applying the above theorem to a ring we have the following corollary.

Corollary 2.9 The following are equivalent for a ring R.

a) R is a right GV-ring,

b) For every R-module M , δ∗(M) is projective,

c) Every δ-small module is projective,

d) For every R-module M , Z(M) ∩ δ∗(M) = 0,

e) For every simple module S, Z(E(S)) ∩ δ∗(E(S)) = 0.

f) R/Soc(R) is a V-module and Z(RR) ∩ δ∗(RR) = 0,

g) δ∗(R/K) = 0 for every essential right ideal K of R and Z(RR) ∩ δ∗(RR) = 0,

h) Every non-zero R-module M with δ∗(M) = M contains a non-zero projective

submodule,

i) For every R-module M with Z(M) ≤e M , δ∗(M) = 0.

In this case Soc(RR) = δ(RR) = δ∗(RR).

Proof The last part is because of that δ∗(RR) is semisimple. 2

If M/Z∗M(M) is a V-module (semisimple) then M/δ∗M(M) is a V-module (re-

spectively semisimple). Then Theorem 1.11 and 1.12 still hold for δ∗M(.).

Theorem 2.10 Let M be a module with M/δ∗M(M) a V-module. Then the fol-

lowing are equivalent.

a) M is a GCO-module,

b) δ∗M(M) is semisimple M-projective.

Theorem 2.11 Let M be a module with M/δ∗M(M) semisimple. Then the fol-

lowing are equivalent.

a) M is a GCO-module,

b) M is an SI-module,

c) δ∗M(M) is semisimple M-projective.
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Also under the assumption ”M/Z∗M(M) is V-module (semisimple)” the condi-

tions of Theorem 1.11 (respectively 1.12) are equivalent to ”δ∗M(M) is semisimple

M -projective”.

Consider some examples.

Examples 2.12 1) Let R be the 2× 2 upper triangular matrix

[
F F

0 F

]
where

F is a field. R is a right GV-ring but not a right V-ring by [2]. Then Soc(RR) =

δ(RR) = δ∗(RR) = Z∗(RR) =

[
0 F

0 F

]
([8, Example 11]), J(R) =

[
0 F

0 0

]
.

2) Let R = Z/4Z. Then Soc(R) =Z(R) = 2R. Since R/Soc(R) ∼= Z/2Z,

Soc(R) = δ(R). Z is a small module. This implies that for every R-module M ,

Z∗(M) = M [8, Lemma 8] and hence for every R-module M , δ∗(M) = M . On

the other hand R is not an SI-ring but every singular R-module is semisimple by

[13, Example 8].

If R is a right SI-ring, then Soc(RR) = δ∗(RR) is projective. But the sec-

ond example above says that if every singular right R-module is semisimple and

δ∗(RR) is projective then R need not be a right SI-ring, compare with [3, 17.4

(a)⇔(c)].
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[10] Özcan, A.Ç. Modules with small cyclic submodules in their injective hulls,

Comm. Alg., 30(4) (2002) 1575-1589.

[11] Wisbauer, R. Localization of modules and central closure of rings, Comm.

Alg., 9 (1981) 1455-1493.

[12] Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach,

Reading, 1991.

[13] Zhou, Y. Modules arising from some relative injectives, Bull. Aus-

tral.Math.Soc., 53 (1996) 249-260.

[14] Zhou, Y. Generalizations of perfect, semiperfect and semiregular rings, Alg.

Coll., 7 (3) (2000), 305-318.


