ON GCO-MODULES AND M-SMALL MODULES

A. Çiğdem ÖZCAN Hacettepe University, Department of Mathematics 06532 Beytepe, Ankara TURKEY e-mail: ozcan@hacettepe.edu.tr

June 9, 2005

Abstract

Let M be a right R-module. Define $Z_M^*(N)$ $(\delta_M^*(N))$ to be the set of elements $n \in N$ for any R-module N in $\sigma[M]$ such that nR is an M-small (respectively δ -M-small) module. In this note it is proved that M is a GCO-module if and only if every M-small module in $\sigma[M]$ is M-projective if and only if every δ -M-small module in $\sigma[M]$ is M-projective. Also, if $M/\delta_M^*(M)$ is semisimple then M is a GCO-module if and only if M is an SI-module.

1991 Mathematics Subject Classification: 16D50, 16D60 Key words: V-module, SI-module, GCO-module, M-small module.

For a right *R*-module M, the submodule $Z^*(M)$ is defined to be the set of elements $m \in M$ such that mR is a small module (see [4]). Some further properties of $Z^*(.)$ were studied in [4, 8, 9, 10]. In this paper we think this submodule in the category $\sigma[M]$, and therefore the corresponding definition of $Z^*(.)$ in $\sigma[M]$ is defined by $Z_M^*(N)$ to be the set of elements $n \in N$ for a module $N \in \sigma[M]$ such that nR is M-small. In Section 1 we prove that M is a GCO-module if and only if every M-small module in $\sigma[M]$ is M-projective (Theorem 1.5). Also if $M/Z_M^*(M)$ is semisimple, then M is a GCO-module if and only if M is an SI-module if and only if $Z_M^*(M)$ is semisimple M-projective (Theorem 1.12). In Section 2, we define δ -M-small modules and $\delta_M^*(N)$ as a generalization of Msmall modules and $Z_M^*(N)$ in $\sigma[M]$ being inspired from [14]. Most of the results in Section 1 hold for δ -M-small modules and $\delta_M^*(N)$ but the characterization of V-modules (Example 2.6).

Throughout this paper, R will be an associative ring with unit and all modules be unitary right R-modules.

Let M be an R-module. For a direct summand N of M we write $N \leq_d M$ and for essential submodule N of M, $N \leq_e M$.

An *R*-module *N* is *subgenerated* by *M* if *N* is isomorphic to a submodule of an *M*-generated module. $\sigma[M]$ is denoted by the full subcategory of Mod-*R* whose objects are all *R*-modules subgenerated by *M* [12].

Let N be the *M*-injective hull of N in $\sigma[M]$ and let E(M) be an *R*-injective hull of M.

A module N in $\sigma[M]$ is called *M*-singular (or singular in $\sigma[M]$) if $N \cong L/K$ for an $L \in \sigma[M]$ and $K \leq_e L$ (see [3]). In case M = R, instead of R-singular, we just say singular. Every module $N \in \sigma[M]$ contains a largest *M*-singular submodule which is denoted by $Z_M(N)$.

Let $\mathcal{G}(M)$ be the singular torsion theory in $\sigma[M]$, that is, $\mathcal{G}(M)$ is the smallest torsion class in $\sigma[M]$ which contains all *M*-singular modules (see [11]). $\mathcal{G}(M)$ is closed under *M*-injective hulls by [11, 2.4(3)], and hence $\mathcal{G}(M) = \{N \in \sigma[M] : Z_M(N) \leq_e N\}$.

Following Hirano a module M is called a V-module (or co-semisimple) if every simple module (in $\sigma[M]$) is M-injective. A module M is called a GVmodule if every singular simple module is M-injective. M is a GV-module if and only if every simple module is projective or M-injective [5]. As a generalization of GV-modules a module M is called a GCO-module if every singular simple module is M-projective or M-injective [3]. M is a GCO-module if and only if every M-singular simple module is M-injective [3, 16.4]. Obviously any Vmodule is a GV-module and any GV-module is a GCO-module. M is called an SI-module if every M-singular module is M-injective [3]. Clearly SI-modules are GCO-modules. Note that a right GCO-ring coincides with a right GV-ring.

1 M-small Modules

Let K be a submodule of a module M. K is called *small* in M if $K + L \neq M$ holds for every proper submodule L of M and denoted by $K \ll M$. We write RadM, which is the sum of all small submodules in M, for the radical of M (see [1]).

An *R*-module *N* is called *M*-small (or small in $\sigma[M]$) if $N \cong K \ll L$ for $K, L \in \sigma[M]$. Note that *M*-small modules are dual notion to that of *M*-singular modules. In case M = R, instead of *R*-small, we just say small. *M*-small modules are small, since the class of small modules is closed under isomorphism. An *R*-

module N is M-small if and only if $N \ll \widehat{N}$. Every simple R-module is M-injective or M-small. The class of M-small modules is closed under submodules, homomorphic images and finite direct sums. (see [6])

Let M be an R-module. Denote

$$\mathbf{Z}_M^*(N) = \{ n \in N : nR \text{ is } M\text{-small} \}$$

for an *R*-module $N \in \sigma[M]$. In case M = R, we write $Z^*(N)$ instead of $Z^*_R(N)$.

Let $N \in \sigma[M]$. Then it can be easily seen that

$$\operatorname{Rad} N \le \operatorname{Z}_M^*(N) \le \operatorname{Z}^*(N).$$

If N is M-small, then $Z_M^*(N) = N$. Since $\sigma[N] \subseteq \sigma[M]$, we also have $Z_N^*(X) \leq Z_M^*(X)$ for any module $X \in \sigma[M]$.

Lemma 1.1 Let M be a module. Then

a) $Z_M^*(N) = Rad\widehat{N} \cap N$ for any $N \in \sigma[M]$.

b) Let $N \in \sigma[M]$. For any submodule K of N, $Z_M^*(K) = K \cap Z_M^*(N)$.

c) Let $f : N \to K$ be a homomorphism of modules N, K where $N, K \in \sigma[M]$. Then $f(Z_M^*(N)) \leq Z_M^*(K)$.

d) Let N_i $(i \in I)$ be any collection of modules in $\sigma[M]$ and let $N = \bigoplus_{i \in I} N_i$. Then $Z_M^*(N) = \bigoplus_{i \in I} Z_M^*(N_i)$.

Proof (a) and (b) are clear. (c) and (d) can be obtained by the similar techniques of [10, Lemma 2.1 and 2.3]. \Box

Now we give a lemma showing some properties of $Z_M^*(.)$ in case it is zero.

Lemma 1.2 Let $N \in \sigma[M]$. Then a) $Z_M^*(N) = 0$ if and only if $Rad\widehat{N} = 0$. b) $Z_M^*(N) = 0$ if and only if $Z_K^*(N) = 0$ for every $K \in \sigma[M]$ with $N \in \sigma[K]$.

Proof a) By Lemma 1.1 and, since $N \leq_e \widehat{N}$.

b) Suppose that $Z_M^*(N) = 0$, and let $K \in \sigma[M]$ with $N \in \sigma[K]$ and $x \in Z_K^*(N)$. Then xR is K-small, i.e. $xR \cong L \ll T$ for some $L, T \in \sigma[K]$. Since $K \in \sigma[M]$, $L, T \in \sigma[M]$. This implies that xR is M-small. Thus $x \in Z_M^*(N) = 0$. Converse is open.

Since $Z_M^*(.)$ is related with the radical of a module then one may think whether the results hold for radicals of modules are true for $Z_M^*(.)$. Therefore here we consider V-modules and GCO-modules by being encouraged from [12, 23.1] and [3, 16.4].

Theorem 1.3 The following are equivalent for a module M.

- a) M is a V-module, b) $Z_M^*(N) = 0$ for every module $N \in \sigma[M]$,
- c) $Z_M^*(N) = 0$ for every factor module N of M.

Proof Since $Z_M^*(N) = \operatorname{Rad} \widehat{N} \cap N$ for $N \in \sigma[M]$, it is clear from [12, 23.1]. \Box

Let $N \in \sigma[M]$. N is called *cogenerator in* $\sigma[M]$ if there exists a monomorphism $N \to \prod_{\Lambda} M_{\lambda}$ with modules $M_{\lambda} \in \sigma[M]$ [12]. A module M is called *locally noetherian* if every finitely generated submodule of M is noetherian.

Theorem 1.4 Let M be a locally noetherian module. The following are equivalent.

a) M is a V-module,

b) $\sigma[M]$ has a semisimple M-injective cogenerator,

c) $\sigma[M]$ has a cogenerator Q with $Z_M^*(Q) = 0$.

Proof It is clear from [12, 23.1].

Theorem 1.5 The following are equivalent for a module M.

- a) M is a GCO-module,
- b) For every module $N \in \sigma[M]$, $Z_M^*(N)$ is M-projective,
- c) Every M-small module in $\sigma[M]$ is M-projective,
- d) For every module $N \in \sigma[M]$, $Z_M(N) \cap Z_M^*(N) = 0$,

e) For every simple module $E \in \sigma[M], Z_M(\widehat{E}) \cap Z_M^*(\widehat{E}) = 0$,

f) M/Soc(M) is a V-module and $Z_M(M) \cap Z_M^*(M) = 0$,

g) $Z_M^*(M/K) = 0$ for every $K \leq_e M$ and $Z_M(M) \cap Z_M^*(M) = 0$,

h) Every non-zero module N with $Z_M^*(N) = N$ contains a non-zero M-projective submodule,

i) For every module $N \in \sigma[M]$ with $Z_M(N) \leq_e N$ (i.e. $N \in \mathcal{G}(M)$), $Z_M^*(N) = 0$.

Proof $(a) \Rightarrow (b)$ Since simple modules in $\sigma[M]$ splits into four disjoint classes by combining the exclusive choices [*M*-projective or *M*-singular] and [*M*-injective or *M*-small], one deduces that *M* is a GCO-module if and only if every *M*-small simple module is *M*-projective. So, let $n \in \mathbb{Z}_M^*(N)$ for $N \in \sigma[M]$ and *K* be a maximal submodule of nR. Then nR/K is simple and *M*-projective. This implies that $K \leq_d nR$. Hence nR and then $\mathbb{Z}_M^*(N)$ is semisimple. By [7, Proposition 4.32], $\mathbb{Z}_M^*(N)$ is *M*-projective.

 $(b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e)$ It is clear.

 $(e) \Rightarrow (a)$ It follows from [3, 16.4 (d) \Rightarrow (a)].

 $(d) \Rightarrow (g)$ Let $K \leq_e M$. Then M/K is M-singular. This implies that $Z_M(M/K) = M/K$. By hypothesis, $Z_M^*(M/K) = 0$.

 $(g) \Leftrightarrow (f)$ It follows from [3, 16.1 (a) \Leftrightarrow (d)].

- $(f) \Rightarrow (a)$ It follows from [3, 16.4 (e) \Rightarrow (a)].
- $(b) \Rightarrow (h)$ It is clear.

 $(h) \Rightarrow (a)$ Let N be an M-singular simple module in $\sigma[M]$. If N is M-small then

N contains a non-zero M-projective module P in $\sigma[M]$. Since N is simple N = P and then N is projective and M-singular in $\sigma[M]$, a contradiction. Hence N is M-injective.

 $(d) \Rightarrow (i)$ It is clear. $(i) \Rightarrow (d)$ Let $0 \neq n \in \mathbb{Z}_M(N) \cap \mathbb{Z}_M^*(N)$. Then nR is *M*-singular and *M*-small. Since $nR = \mathbb{Z}_M(nR) \leq_e nR$, $\mathbb{Z}_M^*(nR) = 0$ by hypothesis, a contradiction. \Box

If we consider the GCO-modules with ascending (descending) chain condition on essential submodules we have the following corollaries. First one is a generalization of [3, 16.13 (1)].

Corollary 1.6 The following are equivalent for a module M. a) M is a GCO-module with ascending chain condition on essential submodules, b) M/SocM is a V-module and Noetherian, $Z_M(M) \cap Z_M^*(M) = 0$.

Proof By Theorem 1.5 and [3, 5.15].

Corollary 1.7 For a module M with M/SocM finitely generated, the following are equivalent.

a) M is a GCO-module with descending chain condition on essential submodules, b) M/SocM is semisimple, $Z_M(M) \cap Z_M^*(M) = 0$.

Proof By Theorem 1.5, [3, 5.15] and [1, Proposition 10.15].

GV-modules can be characterized by replacing $Z_M(N)$ by the singular submodule Z(N) and *M*-projectivity by projectivity in Theorem 1.5.

Theorem 1.8 The following are equivalent for a module M.

- a) M is a GV-module,
- b) For every module $N \in \sigma[M]$, $Z_M^*(N)$ is projective,
- c) Every M-small module in $\sigma[M]$ is projective,
- d) For every module $N \in \sigma[M]$, $Z(N) \cap Z_M^*(N) = 0$,
- e) For every simple module $E \in \sigma[M], Z(\widehat{E}) \cap Z_M^*(\widehat{E}) = 0$,
- f) M/Soc(M) is a V-module and $Z(M) \cap Z_M^*(M) = 0$,

g) $Z_M^*(M/K) = 0$ for every $K \leq_e M$ and $Z(M) \cap Z_M^*(M) = 0$,

h) Every non-zero module N with $Z_M^*(N) = N$ contains a non-zero projective submodule,

i) For every module $N \in \sigma[M]$ with $Z(N) \leq_e N$, $Z_M^*(N) = 0$.

Example 1.9 If M is a GV-module, $Z(M) \cap RadM = 0$ but $Z(M) \cap Z^*(M)$ need not be zero in general.

Proof Let $M = \mathbb{Z}/2\mathbb{Z}$. M is simple and hence a GV-module. Also $\mathbb{Z}(M) \cap \mathbb{R}$ adM = 0. But $\mathbb{Z}(M) \cap \mathbb{Z}^*(M) = M$ since M is singular and small Z-module. \Box

Applying Theorem 1.8 to M = R, we immediately have the following corollary which is a generalization of [8, Theorem 10].

Corollary 1.10 The following are equivalent for a ring R.

a) R is a right GV-ring,

b) For every R-module M, $Z^*(M)$ is projective,

c) Every small module is projective,

d) For every R-module $M, Z(M) \cap Z^*(M) = 0$,

e) For every simple module $S, Z(E(S)) \cap Z^*(E(S)) = 0.$

f) R/Soc(R) is a V-module and $Z(R_R) \cap Z^*(R_R) = 0$,

g) $Z^*(R/K) = 0$ for every essential right ideal K of R and $Z(R_R) \cap Z^*(R_R) = 0$,

h) Every non-zero R-module M with $Z^*(M) = M$ contains a non-zero projective submodule,

i) For every R-module M with $Z(M) \leq_e M$, $Z^*(M) = 0$.

Theorem 1.11 Let M be a module with $M/Z_M^*(M)$ a V-module. Then the following are equivalent.

a) M is a GCO-module,

b) $Z_M^*(M)$ is semisimple M-projective.

Proof $(a) \Rightarrow (b)$ By Theorem 1.5.

 $(b) \Rightarrow (a)$ Since $Z_M^*(M)$ is semisimple, $Z_M^*(M) \leq \text{Soc}(M)$. Then by hypothesis, M/Soc(M) is a V-module. $Z_M(M) \cap \text{Rad}M$ is a direct summand of $Z_M^*(M)$. Since $Z_M^*(M)$ is M-projective, we have $Z_M(M) \cap \text{Rad}M = 0$. By [3, 16.4], M is a GCO-module. \Box

In [3, 17.5], we do not need the condition that M is self-projective.

Theorem 1.12 Let M be a module with $M/Z_M^*(M)$ semisimple. Then the following are equivalent.

- a) M is a GCO-module,
- b) M is an SI-module,
- c) $Z_M^*(M)$ is semisimple M-projective.

Proof $(a) \Leftrightarrow (c)$ By Theorem 1.11.

 $(b) \Rightarrow (a)$ Clear.

 $(c) \Rightarrow (b)$ Since $\mathbb{Z}_{M}^{*}(M) \leq \operatorname{Soc}(M)$, $M/\operatorname{Soc}M$ is semisimple. Let $K \leq_{e} M$. Then $\operatorname{Soc}M \leq K$. This implies that M/K is semisimple. On the other hand, since finitely generated M-singular modules can not be M-projective, we have $\mathbb{Z}_{M}(M) \cap \operatorname{Rad}(M) = 0$. Thus M is an SI-module by [3, 17.2]. \Box

2 δ -M-small Modules

In this section, we define δ -M-small modules and use them to characterize GCOmodules.

Zhou [14] introduced the concept " δ -small submodule" as a generalization of small submodule. Let N be a submodule of a module M. N is called δ -small in M if whenever M = N + K and M/K is singular for any $K \leq M$ we have M = K, denoted by $N \ll_{\delta} M$. Here we consider this definition in the category $\sigma[M]$ for a module M.

Definition 2.1 Let $N \leq K \in \sigma[M]$. N is called a δ -M-small submodule of K in $\sigma[M]$ if whenever K = N + X and K/X is M-singular for $X \leq K$ we have K = X, we denoted by $N \ll_{\delta_M} K$.

For modules $N, K \in \sigma[M], N \ll_{\delta} K \Rightarrow N \ll_{\delta_M} K$. The properties of δ -small submodules that are listed in Lemma 1.3 in [14] also hold in $\sigma[M]$. We write them for convenience. Note that the class of *M*-singular modules is closed under submodules, homomorphic images and direct sums [3].

Lemma 2.2 Let $N \in \sigma[M]$.

- a) For modules $K, L \in \sigma[M]$ with $K \leq L \leq N$ we have $L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L/K \ll_{\delta_M} N/K$.
- b) For $K, L \in \sigma[M]$, $K + L \ll_{\delta_M} N$ if and only if $K \ll_{\delta_M} N$ and $L \ll_{\delta_M} N$.
- c) If $K \ll_{\delta_M} N$ and $f: N \to L$ is a homomorphism, then $f(K) \ll_{\delta_M} L$. In particular, if $K \ll_{\delta_M} N \leq L$ then $K \ll_{\delta_M} L$.
- d) If $K \leq L \leq_d N \in \sigma[M]$ and $K \ll_{\delta_M} N$ then $K \ll_{\delta_M} L$.

As a generalization of *M*-small module we define δ -*M*-small module.

Definition 2.3 Let $N \in \sigma[M]$. N is called a δ -M-small module in $\sigma[M]$ if $N \cong K \ll_{\delta_M} L \in \sigma[M]$.

The following equivalence can be seen similarly as it is for M-small modules. For M-small modules it is proved in [6].

Lemma 2.4 N is a δ -M-small module in $\sigma[M]$ if and only if $N \ll_{\delta_M} \widehat{N}$.

Proof It is enough to show that if N is δ -M-small then $N \ll_{\delta_M} \widehat{N}$. Let $K, L \in \sigma[M]$ be such that $N \cong K \ll_{\delta_M} L$. Since \widehat{K} is injective in $\sigma[M]$, there exists a homomorphism $f: L \to \widehat{K}$ such that fi = g where $i: K \to L$ and $g: K \to \widehat{K}$ are inclusion maps. Since $K \ll_{\delta_M} L$, $K = f(K) \ll_{\delta_M} \widehat{K}$. This implies that $N \ll_{\delta_M} \widehat{N}$.

If N is an M-small module then it is δ -M-small. The class of δ -M-small modules is closed under submodules, homomorphic images and finite direct sums.

Definition 2.5 Let $N \in \sigma[M]$. We define $\delta_M(N) := \{n \in N : nR \ll_{\delta_M} N\}$ $\delta^*_M(N) := \{n \in N : nR \ll_{\delta_M} \widehat{nR}\} = \{n \in N : nR \ll_{\delta_M} \widehat{N}\} = \delta_M(\widehat{N}) \cap N.$

In case M = R, we write $\delta_R(N) = \delta(N)$ and $\delta_R^*(N) = \delta^*(N)$. Then

$$\operatorname{Rad}(N) \le \delta_M(N) \le \delta_M^*(N)$$

$$\operatorname{Rad}(N) \le \operatorname{Z}_M^*(N) \le \delta_M^*(N).$$

If N is a δ -M-small module then $\delta_M^*(N) = N$. Also by definition for $N \leq K \in \sigma[M]$ $\delta_M^*(N) = N \cap \delta_M^*(K)$. In particular, $\delta_M^*(\delta_M^*(N)) = \delta_M^*(N)$. $\delta(N)$ is defined by Zhou [14]. Note that for any ring R, $\operatorname{Soc}(R_R) \leq \delta(R_R)$ by [14, Theorem 1.6].

If for every $N \in \sigma[M]$, $\delta_M^*(N) = 0$, then M is a V-module. But the converse is not true in general:

Example 2.6 Let F be any field and R be the direct product of any infinite number of copies of F. Then R is a commutative V-ring and $\operatorname{Soc}(R)$ is the ideal of R consisting of all elements which have at most a finite number of non-zero components. Then by [14, Theorem 1.6], $\operatorname{Soc}(R) \leq \delta(R) \leq \delta^*(R)$ implies that $\delta^*(R) \neq 0$. Hence R is a V-ring but $\delta^*(R) \neq 0$. Actually, by Corollary 2.9 $\operatorname{Soc}(R) = \delta^*(R)$.

But Theorem 1.5 still holds when $Z_M^*(.)$ is replaced by $\delta_M^*(.)$.

Theorem 2.7 The following are equivalent for a module M.

- a) M is a GCO-module,
- b) For every module $N \in \sigma[M]$, $\delta_M^*(N)$ is M-projective,
- c) Every δ -M-small module in $\sigma[M]$ is M-projective,

d) For every module $N \in \sigma[M]$, $Z_M(N) \cap \delta_M^*(N) = 0$,

- e) For every simple module $E \in \sigma[M]$, $Z_M(\widehat{E}) \cap \delta^*_M(\widehat{E}) = 0$,
- f) M/Soc(M) is a V-module and $Z_M(M) \cap \delta^*_M(M) = 0$,

g) $\delta_M^*(M/K) = 0$ for every $K \leq_e M$ and $Z_M(M) \cap \delta_M^*(M) = 0$,

h) Every non-zero module N with $\delta_M^*(N) = N$ contains a non-zero M-projective submodule,

i) For every module $N \in \sigma[M]$ with $Z_M(N) \leq_e N$, $\delta_M^*(N) = 0$.

Proof (a) implies (b), since *M*-singular *M*-injective and δ -*M*-small modules are zero. Then $\delta_M^*(N)$ is semisimple and then *M*-projective. The others can be seen by definitions and Theorem 1.5.

Replacing $Z_M(N)$ by the singular submodule Z(N) and *M*-projectivity by projectivity in Theorem 2.7 we have the following.

Theorem 2.8 The following are equivalent for a module M.

a) M is a GV-module,

b) For every module $N \in \sigma[M]$, $\delta^*(N)$ is projective,

c) Every δ -M-small module in $\sigma[M]$ is projective,

d) For every module $N \in \sigma[M]$, $Z(N) \cap \delta^*(N) = 0$,

e) For every simple module $E \in \sigma[M], Z(E) \cap \delta^*(E) = 0$,

f) M/Soc(M) is a V-module and $Z(M) \cap \delta^*(M) = 0$,

g) $\delta^*(M/K) = 0$ for every $K \leq_e M$ and $Z(M) \cap \delta^*(M) = 0$,

h) Every non-zero module N with $\delta^*(N) = N$ contains a non-zero projective submodule,

i) For every module $N \in \sigma[M]$ with $Z(N) \leq_e N$, $\delta^*(N) = 0$.

Applying the above theorem to a ring we have the following corollary.

Corollary 2.9 The following are equivalent for a ring R.

- a) R is a right GV-ring,
- b) For every R-module M, $\delta^*(M)$ is projective,
- c) Every δ -small module is projective,
- d) For every R-module $M, Z(M) \cap \delta^*(M) = 0$,
- e) For every simple module S, $Z(E(S)) \cap \delta^*(E(S)) = 0$.
- f) R/Soc(R) is a V-module and $Z(R_R) \cap \delta^*(R_R) = 0$,
- g) $\delta^*(R/K) = 0$ for every essential right ideal K of R and $Z(R_R) \cap \delta^*(R_R) = 0$,

h) Every non-zero R-module M with $\delta^*(M) = M$ contains a non-zero projective submodule,

i) For every R-module M with $Z(M) \leq_e M$, $\delta^*(M) = 0$. In this case $Soc(R_R) = \delta(R_R) = \delta^*(R_R)$.

Proof The last part is because of that $\delta^*(R_R)$ is semisimple.

If $M/\mathbb{Z}_M^*(M)$ is a V-module (semisimple) then $M/\delta_M^*(M)$ is a V-module (respectively semisimple). Then Theorem 1.11 and 1.12 still hold for $\delta_M^*(.)$.

Theorem 2.10 Let M be a module with $M/\delta^*_M(M)$ a V-module. Then the following are equivalent.

- a) M is a GCO-module,
- b) $\delta_M^*(M)$ is semisimple *M*-projective.

Theorem 2.11 Let M be a module with $M/\delta^*_M(M)$ semisimple. Then the following are equivalent.

- a) M is a GCO-module,
- b) M is an SI-module,
- c) $\delta^*_M(M)$ is semisimple *M*-projective.

Also under the assumption " $M/\mathbb{Z}_{M}^{*}(M)$ is V-module (semisimple)" the conditions of Theorem 1.11 (respectively 1.12) are equivalent to " $\delta_{M}^{*}(M)$ is semisimple M-projective".

Consider some examples.

Examples 2.12 1) Let R be the 2 × 2 upper triangular matrix $\begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ where F is a field. R is a right GV-ring but not a right V-ring by [2]. Then $\operatorname{Soc}(R_R) = \delta(R_R) = \delta^*(R_R) = \operatorname{Z}^*(R_R) = \begin{bmatrix} 0 & F \\ 0 & F \end{bmatrix}$ ([8, Example 11]), $\operatorname{J}(R) = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$.

2) Let $R = \mathbb{Z}/4\mathbb{Z}$. Then $\operatorname{Soc}(R) = \mathbb{Z}(R) = 2R$. Since $R/\operatorname{Soc}(R) \cong \mathbb{Z}/2\mathbb{Z}$, $\operatorname{Soc}(R) = \delta(R)$. Z is a small module. This implies that for every *R*-module *M*, $\mathbb{Z}^*(M) = M$ [8, Lemma 8] and hence for every *R*-module *M*, $\delta^*(M) = M$. On the other hand *R* is not an SI-ring but every singular *R*-module is semisimple by [13, Example 8].

If R is a right SI-ring, then $Soc(R_R) = \delta^*(R_R)$ is projective. But the second example above says that if every singular right R-module is semisimple and $\delta^*(R_R)$ is projective then R need not be a right SI-ring, compare with [3, 17.4 (a) \Leftrightarrow (c)].

References

- Anderson, F.W. and K.R. Fuller, Ring and Categories of Modules, Springer-Verlag, NewYork, 1974.
- Bacella, G. Generalized V-rings and von Neumann regular rings, Rend.Sem.Mat. Padova, 72 (1984) 117-133.
- [3] Dung, N.V., D.V., Huynh, P.F., Smith, R., Wisbauer, Extending Modules, Pitman RN Mathematics 313, Longman, Harlow, 1994.
- [4] Harada, M., Non-small modules and non-cosmall modules, In Ring Theory: Proc. of the 1978 Antwerp Conf., F.Van Oystaeyen, ed.NewYork: Marcel Dekker, 669-690.
- [5] Hirano, Y. Regular modules and V-modules, Hiroshima Math.J., 11 (1981) 125-142.
- [6] Lomp, C. On Dual Goldie Dimensions, MS. Thesis, Glasgow Univ., 1996.
- [7] Mohamed S.H. and B.J., Müller, Continuous and Discrete Modules, London Math.Soc. LN.147, Cambridge University Press, NewYork Sydney, 1990.

- [8] Ozcan, A.Ç. Some characterizations of V-modules and rings, Vietnam J.Math., 26(3) (1998) 253-258.
- [9] Ozcan, A.Ç. Modules with a zero radical of their injective hull, Hacettepe Bull. of Natural Sci. and Eng., Series B, 27 (1998) 45-49.
- [10] Ozcan, A.Ç. Modules with small cyclic submodules in their injective hulls, Comm. Alg., 30(4) (2002) 1575-1589.
- [11] Wisbauer, R. Localization of modules and central closure of rings, Comm. Alg., 9 (1981) 1455-1493.
- [12] Wisbauer, R. Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- [13] Zhou, Y. Modules arising from some relative injectives, Bull. Austral.Math.Soc., 53 (1996) 249-260.
- [14] Zhou, Y. Generalizations of perfect, semiperfect and semiregular rings, Alg. Coll., 7 (3) (2000), 305-318.