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Abstract. We call a module M almost perfect if every M-generated flat module
is M-projective. Any perfect module is almost perfect. We characterize almost-perfect
modules and investigate some of their properties. It is proved that a ring R is a left
almost-perfect ring if and only if every finitely generated left R-module is almost
perfect. R is left perfect if and only if every (projective) left R-module is almost perfect.
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1. Introduction. Throughout this paper, R denotes an associative ring with unit
and all modules are unitary left R-modules. The notation � will be used for small
submodules of modules. We refer the reader to [3, 7, 11] for the definitions used but
not defined in the paper.

Amini et al. [2] call a ring R left almost perfect (A-perfect) if every flat left R-
module is R-projective. In this paper, we are motivated to study a module theoretic
version of almost-perfect rings. We see that any perfect module is almost perfect, and
any projective almost-perfect module satisfying (∗) is semi-perfect (the definitions are
given in the text). We notice that the class of non-zero almost-perfect abelian groups
coincide with the class of non-zero torsion abelian groups. Some basic properties of the
class of almost-perfect modules are also investigated. We obtain some necessary and
sufficient conditions for a module to be almost perfect, and a ring to be left almost-
perfect or left perfect in terms of almost-perfect modules. In the final part of this paper,
we consider the endomorphism ring of almost-perfect modules.

2. Results. DEFINITION 1. A module M is called almost perfect (A-perfect)1 if
every M-generated flat module is M-projective.

By definitions, R is a left A-perfect ring if and only if RR is an A-perfect module.

EXAMPLE 2. It is obvious that if M is a semi-simple module, then it is A-perfect.
Moreover, an A-perfect module over a (von Neumann) regular ring is semi-simple.
Indeed, let M be an A-perfect module over a regular ring and N a submodule of M.
Since the factor module M/N is M-generated flat, it is M-projective. It follows that N
is a direct direct summand of M. Thus, M is semi-simple.

EXAMPLE 3. Torsion modules over an integral domain are A-perfect.

Dedicated to Professor Patrick F. Smith on his 65th birthday
1See Remark 26
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Proof. Let R be an integral domain, M a torsion R-module and K an M-generated
flat R-module. Then K is torsion-free and there exists an epimorphism g : M(�) → K
for an index set �. Since M(�) is torsion, we have that Img ⊆ T(K) = 0, where T(K) is
the torsion submodule of K . Hence, K = 0 and so K is M-projective. �

The set of rational numbers � is not A-perfect as a �-module because �� is flat
�-generated but not �-projective.

Note that A-perfect flat modules are quasi-projective.

Recall some definitions: An epimorphism f : P → M is called a projective cover of
the module M in case P is a projective module and kernel of f is a small submodule. An
epimorphism f : F → M with F flat is called a flat cover of the module M if, for each
homomorphism g : H → M with H flat, there exists a homomorphism h : H → F
such that f h = g and every endomorphism k of F with f k = f is an automorphism of
F . Due to [4], every module has a flat cover.

Semi-perfect and perfect modules are defined by Mares [8] as a generalization of
Bass’ notion of semi-perfect and perfect rings. Perfect modules are studied by a few
authors, for example, Cunningham-Rutter [5], Varadarajan [9] and Wisbauer [11]. A
module M is called semi-perfect if every factor module of M has a projective cover.
It is known that M is semi-perfect if and only if every finitely M-generated module
has a projective cover. It is also obvious that if M is semi-perfect, then every finitely
M-generated flat module is projective. A module M is called perfect if any direct sum
of copies of M are semi-perfect.

It can be easily seen that projective covers of M-generated modules are M-
generated for a projective module M. But flat covers of M-generated modules need
not be M-generated for any module M (see Example 7). We donot know whether flat
covers of M-generated modules are M-generated or not for a projective module M.

In this paper, a module M is said to satisfy (∗) if flat covers of M-generated modules
are M-generated. Note that any free module, in particular, any ring satisfies (∗).

The following well-known lemma will be used in this paper (see [2, Lemma 3.6]).

LEMMA 4. Let f : F → M be a flat cover of the module M. If F is projective, then
f : F → M is a projective cover of M.

The following result may be known but we donot have a reference. We give a proof
for completeness’ sake.

PROPOSITION 5. Let M be a module. Consider the following statements:
(1) M is perfect.
(2) Every M-generated module has a projective cover.
(3) Every M-generated flat module is projective.
(4) Flat covers of M-generated modules are projective.
Then (4) ⇒ (1) ⇔ (2) ⇒ (3); (3) ⇒ (4) if M satisfies (∗).

Proof. The implication (4) ⇒ (1) follows from the fact that if a flat cover of a
module is projective, then it is a projective cover of the module by Lemma 4. The
equivalency (1) ⇔ (2) is obvious. The implication (2) ⇒ (3) follows from the fact that
any flat module which has a projective cover is projective. For (3) ⇒ (4), suppose
that M satisfies (∗). Then the flat cover of any M-generated module is projective by
hypothesis. �
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We conclude from Proposition 5 that the following implication holds for modules.

perfect ⇒ A-perfect.

The following theorem characterizes A-perfect modules.

THEOREM 6. Let M be a module. Consider the following statements:
(1) M is semi-perfect and flat covers of finitely M-generated modules are finitely

M-generated.
(2) Finitely M-generated flat modules are projective and flat covers of finitely M-

generated modules are finitely M-generated.
(3) Flat covers of finitely M-generated modules are projective.
(4) Flat covers of M-cyclic modules are projective.
(5) Finitely M-generated flat modules are M-projective and flat covers of finitely

M-generated modules are finitely M-generated.
(6) Flat covers of finitely M-generated modules are M-projective.
(7) Flat covers of M-cyclic modules are M-projective.
(8) Every flat module is M-projective.
(9) M is A-perfect.
Then (1) ⇔ (2) ⇒ (3) ⇔ (4) ⇒ (6) ⇔ (7) ⇔ (8) ⇒ (9); (5) ⇒ (6); (3) ⇒ (2) and

(4) ⇒ (5) if M is flat; (9) ⇒ (8) if M satisfies (∗); (6) ⇒ (4) if M is projective.

Proof. (1) ⇒ (2) Let N be a finitely M-generated flat module. Then there exists an
epimorphism Mn → N for some positive integer n. Since M is semi-perfect, Mn is
semi-perfect ([7, 11.3.4]) and so N has a projective cover. Let the projective module
be P and the epimorphism f : P → N with Ker f � P. Since P/Ker f ∼= N is flat,
Ker f = 0 [7, 10.5.3]. Hence, P ∼= N is projective.

(2) ⇒ (1) and (2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (3) Let X be a finitely M-generated module. Then flat covers of X-cyclic

modules are projective by [1, Corollary 3.4 and Proposition 3.2]. Hence, flat cover of
X is projective.

(4) ⇒ (6) ⇒ (7) are obvious.
(7) ⇒ (8) Let N be a flat module, g : N → M/K a homomorphism and f : F →

M/K a flat cover of M/K . Since N is flat and f is a flat cover, there exists a
homomorphism h : N → F such that f h = g. By assumption, F is M-projective. So
there exists a homomorphism k : F → M such that πk = f , where π : M → M/K is
the canonical epimorphism. Define α = kh. Then πα = g, and so N is M-projective.
So (8) holds.

(8) ⇒ (6) and (8) ⇒ (9) are obvious.
(9) ⇒ (8) Assume that M satisfies (∗). Let F be a flat cover of an M-cyclic module.

By (∗), F is M-generated. By hypothesis, F is M-projective. Hence (7), and so (8) holds.
(3) ⇒ (1) Assume that M is flat. By hypothesis and Lemma 4, every finitely M-

generated module has a projective cover which is equivalent to the fact that M is semi-
perfect. Now, let X be a finitely M-generated module. Then there exists an epimorphism
f : Mn → X for some positive integer n. Let g : F → X be a flat cover of X . By
assumption, F is projective and so g is also a projective cover of X . Mn being flat
implies that there exists a homomorphism h : Mn → F such that gh = f . Then F =
Imh + Ker g. Since Ker g � F , we have F = Imh. Hence, F is finitely M-generated.

(6) ⇒ (4) By [1, Proposition 3.2].
Consequently, the statements above are all equivalent if M is projective and satisfies

(∗). �
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We obtain the following implication for modules by Theorem 6:

projective A-perfect with (∗) ⇒ semi-perfect.

The following example shows that (∗) does not hold in general.

EXAMPLE 7. Let R = � and the �-module M = �/(p) for a prime p. The flat cover
of M is the ring of p-adic integers which is not (finitely) M-generated. Hence M does
not satisfy (∗). Moreover, since M is simple, it is A-perfect but not semi-perfect.

The projectivity condition on M in Theorem 6 (9 ⇒ 4) can not be removed and
even replaced by flatness:

EXAMPLE 8. Let R be a regular ring and M a semi-simple left R-module which is
not projective. We claim that M satisfies (∗) and is A-perfect flat but is not semi-perfect.

Since R is regular, every left R-module is flat and so M satisfies (∗). Since M is
semi-simple, it is A-perfect. If M has a projective cover, f : P → M, then P/ker f ∼= M
is flat. Since ker f � P, ker f = 0 (see [7, 10.5.3]). This gives that P ∼= M is projective,
which is a contradiction. It follows that M is not semi-perfect.

To be specific, we can take the ring R = {(x1, . . . , xn, x, x, . . .) | xi, x ∈ �2, i =
1, . . . , n}. Then R is regular and M := R/ ⊕∞

i=1 Fi is simple singular (so it is not
projective) R-module, where Fi = �2, i = 1, 2, . . ..

PROPOSITION 9. Let M be a flat module. If flat covers of M-generated modules are
projective, then M satisfies (∗).

Proof. Let X be an M-generated module and f : F → X be a flat cover of X . By
hypothesis, F is projective and then by Lemma 4, f is a projective cover of X . Let g
be the epimorphism M(�) → X for some index set �. Since M(�) is flat, there exists a
homomorphism h : M(�) → F such that f h = g. Since ker f � F , h is an epimorphism.
So F is M-generated. �

Recall that an ideal I of a ring R is called left t-nilpotent if, for any sequence
a1, a2, . . . in I , there exists an n such that a1a2 . . . an = 0. A module M is called a
progenerator if M is a finitely generated projective generator.

Mares [8, Theorem 7.6] prove that if M is a progenerator, then M is perfect if
and only if M is semi-perfect and the Jacobson radical J(R) is left t-nilpotent. After
Mares, in [5, Theorem 1], it is proved that a projective module M is perfect if and only
if M is semi-perfect and J(Tr(M)) is left t-nilpotent, where Tr(M) is the trace ideal∑{f (M) | f ∈ HomR(M, R)} of M. This gives the following result via Theorem 6.

THEOREM 10. If M is a projective module which satisfies (∗), then the following are
equivalent.

(1) M is perfect.
(2) M is A-perfect and J(Tr(M)) is left t-nilpotent.

If M is a generator, then the trace ideal of M is R.

COROLLARY 11. If M is a projective generator, then the following are equivalent.
(1) M is perfect.
(2) M is A-perfect and J(R) is left t-nilpotent.
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PROPOSITION 12. The class of A-perfect modules is closed under factor modules.

Proof. Let N be a submodule of an A-perfect module M and K an M/N-generated
flat module. Then K is M-generated flat and by assumption, it is M-projective. Hence,
K is M/N-projective. Thus, M/N is A-perfect. �

We know from [6] that an abelian group is quasi-projective if and only if it is free
or a torsion group such that every p-component Ap is a direct sum of cyclic groups of
the same order pn. If G is a non-zero A-perfect flat(= torsion-free) abelian group, then
it is quasi-projective and hence it is free. But this leads to a contradiction because � is
not an A-perfect �-module. As a consequence we obtain the result below:

PROPOSITION 13. A non-zero abelian group G is torsion if and only if it is A-perfect.

Proof. The necessity follows from Example 3. For the sufficiency, let G be A-perfect
and consider the torsion subgroup T(G) of G. If T(G) = G, then G/T(G) is a non-zero
torsion-free A-perfect abelian group by Proposition 12, but this is impossible. Thus,
G = T(G). �

It can be easily seen that a principal ideal domain R is A-perfect if and only if
there exists a finitely generated torsion-free A-perfect R-module.

The class of A-perfect modules need not be closed under direct sums.

EXAMPLE 14. If R is a left A-perfect ring which is not left perfect (see [2] for such
a ring), then R(�) is not A-perfect as a left R-module.

Proof. Since RR(�) is free, it is a generator for left R-modules, and so it satisfies (∗). If
RR(�) was A-perfect, then it would be semi-perfect by Theorem 6. Thus, R would be
left perfect by [11, 43.9], which is a contradiction. �

PROPOSITION 15. Let M = ⊕n
i=1Mi be a module. Suppose that ⊕i−1

k=1Mk is Mi-
generated and Mi is ⊕i−1

k=1Mk-generated for each i = 2, . . . , n. Then each Mi is A-perfect
if and only if M is A-perfect.

Proof. The sufficiency is clear by Proposition 12. For the necessity it is enough to
prove the statement for n = 2. The rest of the proof follows from induction. Let M1

and M2 be A-perfect and suppose that M1 is M2-generated and M2 is M1-generated.
If K is an M1 ⊕ M2-generated flat module, then K is both M1- and M2-generated by
hypothesis. Hence, K is both M1- and M2-projective which implies that K is M1 ⊕ M2-
projective. �

COROLLARY 16. A module M is A-perfect if and only if Mn is A-perfect for any
positive integer n.

PROPOSITION 17. If M1 is an A-perfect generator and M2 is semi-simple, then M1 ⊕
M2 is A-perfect.

Proof. Let X be an M1 ⊕ M2-generated flat module. Since M1 is a generator, X is
M1-generated. By hypothesis, it is M1-projective. X is also M2-projective because M2

is semi-simple. Hence, X is M1 ⊕ M2-projective and thus M1 ⊕ M2 is A-perfect. �
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The next two theorems characterize left A-perfect and left perfect rings in terms
of A-perfect modules, respectively.

THEOREM 18. The following are equivalent for a ring R.
(1) R is a left A-perfect ring.
(2) Every finitely generated left R-module is A-perfect.
(3) Every finitely generated projective left R-module is A-perfect.

Proof. The implications (2) ⇒ (3) ⇒ (1) are obvious. For (1) ⇒ (2), let M be a
finitely generated R-module and F an M-generated flat R-module. Then consider the
epimorphism g : Rn → M for some n and the canonical epimorphism π : M → M/N
for any submodule N of M. Since F is R-projective, there exists h : F → Rn such that
πgh = f , for any homomorphism f : F → M/N. Define h′ = gh. Then we obtain that
πh′ = f which means that F is M-projective. �

Note that a ring R is left perfect if and only if every left R-module is semi-perfect,
if and only if every projective left R-module is semi-perfect (see [11, 42.3; 43.9]).

THEOREM 19. The following are equivalent for a ring R.
(1) R is left perfect.
(2) Every left R-module is A-perfect.
(3) Every projective left R-module is A-perfect.
(4) Every free left R-module is A-perfect.
(5) RR(�) is A-perfect.

Proof. (1) ⇒ (2) is obvious because every flat left module is projective over a left
perfect ring. The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are obvious. For (5) ⇒ (1), RR(�)

is semi-perfect by Theorem 6 and hence R is left perfect by [11, 43.9]. �

In [2], it is proved that the polynomial ring R[x], in one indeterminate x, is not an
(left or right) A-perfect ring for any ring R. However, by Theorem 19, we see that R[x]
is A-perfect as a left R-module if R is left perfect.

THEOREM 20. Let RM be a progenerator and S = EndR(M). The following are
equivalent.

(1) RM is A-perfect.
(2) S is left A-perfect.
(3) R is left A-perfect.

Proof. (1) ⇒ (2) We will use the notation ⊗ instead of ⊗S in this proof. Let X be a flat
left S-module. We claim that X is S-projective, that is,

HomS(X, S) −→ HomS(X, S/I) −→ 0

is exact for any exact sequence S −→ S/I −→ 0, where I is a left ideal of S. Since M
is an R-S-bimodule and RM is flat, M ⊗ X is a flat left R-module, so it is M-projective
by hypothesis. Note that M ∼= M ⊗ S as an R-module. So M ⊗ X is M ⊗ S-projective.
This gives the following exact sequences, where vertical maps are isomorphisms by
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[3, Propositions 20.6 and 20.10] and this completes the proof.

HomR(M ⊗ X, M ⊗ S)

��

�� HomR(M ⊗ X, M ⊗ S/I)

��

�� 0

HomS(X, HomR(M, M ⊗ S))

��

�� HomS(X, HomR(M, M ⊗ S/I)

��

�� 0

HomS(X, S) �� HomS(X, S/I) �� 0

(2) ⇒ (3) Since RM is a progenerator, R is Morita equivalent to S (see [3, Corollary
22.5]). By [2, Proposition 3.4], R is left A-perfect.

(3) ⇒ (1) Since RM is finitely generated, RM is A-perfect by Theorem 18. �

COROLLARY 21. Let e2 = e ∈ R such that ReR = R. Then Re is an A-perfect left
R-module if and only if EndR(Re) ∼= eRe is a left A-perfect ring, if and only if R is a left
A-perfect ring.

Proof. Tr(Re) = ReR = R and so RRe is a progenerator. So the proof follows from
Theorem 20. �

If RM is a progenerator, then MS is a progenerator, where S = EndR(M) and
R ∼= EndS(MS) (see [11, 18.8]). Then by Theorem 20, MS is A-perfect if and only if S
is right A-perfect, if and only if R is right A-perfect. Note that the notion of A-perfect
rings is not left–right symmetric [2, Example 3.3].

In Theorem 20, (1) � (2) and (3) if M is not a generator:

EXAMPLE 22. Let K be a field and I an infinite index set. Let R = ∏

i∈I
Ki such that for

each i ∈ I , Ki = K . Then M := ⊕
i∈I

Ki is a non-finitely generated projective R-module

which is not a generator. EndR(M) ∼= R is not A-perfect since R is not semi-perfect.
But M is A-perfect since it is semi-simple.

In Theorem 20, (3) � (1) and (2) if M is not finitely generated:

EXAMPLE 23. Consider an A-perfect ring R that is not left perfect. Let RM = R(�).
Then M is a non-finitely generated projective generator. RM and End(RM) are not
A-perfect by Example 14 and [11, 43.9].

In Theorem 20, (2) � (1):

EXAMPLE 24. As we mentioned before, the abelian group � is not A-perfect. On
the other hand, since End(��) ∼= ��, End(��) is an A-perfect ring.

In Theorem 20, (2) � (3) if M is not a generator:

EXAMPLE 25. Let R be a ring with a simple projective module M and not right
A-perfect (e.g. any ring with non-zero projective socle which is not semi-perfect). Then
End(M) is a division ring and so a right A-perfect ring. But M is not a generator.

REMARK 26. After the submission of our paper, the paper [1] is appeared and
Amini–Amini–Ershad call any module M almost-perfect if flat covers of M-cyclic
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modules are projective. This is the condition (4) in Theorem 6 and so almost-perfect in
the sense of [1] implies almost-perfect in our sense. But the converse need not be true.
For example, any semi-simple module is almost-perfect in our sense but need not be
almost-perfect in the sense of [1]. We should also note that eRe is left A-perfect if and
only if R is left A-perfect for any non-zero idempotent e in R by [1, Proposition 2.24]
(cf. Corollary 21).
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