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As a generalization of essential submodules Zhou defines a µ-essential submodule pro-
vided it has a non-zero intersection with any non-zero submodule in µ for any class µ. Let
M be a module. In this article we study δ–essential submodules as a dual of δ-small sub-
modules of Zhou where δ = {N ∈ σ[M ] : Rej(N,M) = 0} and M = {N ∈ σ[M ] : N ¿
bN}, and also define µ-M–singular modules as modules N ∈ σ[M ] such that N ∼= K/L
for some K ∈ σ[M ] and L is µ–essential in K. By M–M–singular modules and δ–M–
singular modules a characterization of GCO–modules, and by FC–M–singular modules
where FC is the class of finitely cogenerated modules, a characterization of semisimple
Artinian rings are given.
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1. Preliminaries

Let M be a module, N ∈ σ[M ] and µ a class of modules in σ[M ] which is closed
under isomorphisms and submodules. Following Zhou16 we call a submodule N a µ–
essential submodule of K ∈ σ[M ] if for any nonzero µ-submodule X in K, N∩X 6= 0,
denoted by N ≤µe K. In this article after studying some properties of µ–essential
submodules we consider δ–essential submodules as a dual of δ-small submodules of
Zhou by denoting the class δ = {N ∈ σ[M ] : Rej(N,M) := ZM (N) = 0} where
M = {N ∈ σ[M ] : N ¿ N̂} and ZM (.) is defined by Talebi and Vanaja as a dual
of the singular submodule ZM (.). If F = {F ∈ σ[M ] : ∀ 0 6= K ⊆ F, ZM (K) 6= K},
then it is known that M ⊆ δ ⊆ F . We prove a result on when an F–essential
submodule is δ–essential and a δ–essential submodule is M–essential. Also we prove
that Tr(S ∩M, N) = Tr(S ∩ δ, N) = Tr(S ∩ F , N) where S is the class of simple
modules in σ[M ] and Tr is used for the trace.

In the last section we define µ-M–singular modules N ∈ σ[M ] for a module M .
N is called µ-M–singular module if N ∼= K/L for some K ∈ σ[M ] and L ≤µe K. It
is proved that M is a GCO–module (i.e. every simple M–singular module is injective
in σ[M ]) if and only if for every M–M–singular module N in σ[M ], ZM (N) = N

if and only if for every δ–M–singular module N in σ[M ], ZM (N) = N . When
we consider the class of all finitely cogenerated modules FC we prove that every
finitely cogenerated R–module is projective if and only if for every FC–R–singular
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R–module N , Rej(N,FC) = N if and only if R is semisimple Artinian.
Let R be a ring with identity. All modules we consider are unitary right R-

modules and we denote the category of all such modules by Mod–R. Let M be an
R-module. The R–injective hull of M is denoted by E(M), and the M–injective hull
of N in the category of σ[M ] is denoted by N̂ . For the definition of σ[M ] and N̂

see.15

Let µ be a class of modules. For any module N , the trace of µ in N is denoted
by Tr(µ,N) = Σ{Imf : f ∈ Hom(C,N), C ∈ µ}. Dually the reject of µ in N is
denoted by Rej(N, µ) =

⋂{kerg : g ∈ Hom(N,C), C ∈ µ}.
Let N be a submodule of M (N ≤ M). The notations N ¿ M , N ≤e M

and N ≤d M is used for a small submodule, an essential submodule and a direct
summand of M , respectively. Soc(M) will denote the socle of M . A module N ∈
σ[M ] is said to be M–small (or small in σ[M ]) if N ∼= K ¿ L for K,L ∈ σ[M ].
Then an R–module N ∈ σ[M ] is M–small if and only if N ¿ N̂ .

Dually, a module N ∈ σ[M ] is called M–singular (or singular in σ[M ]) if N ∼=
L/K for an L ∈ σ[M ] and K ≤e L. Every module N ∈ σ[M ] contains a largest M–
singular submodule which is denoted by ZM (N). Then ZM (N) =Tr(U , N) where U
denotes the class of all M–singular modules (see15).

Simple modules in σ[M ] split into four disjoint classes by combining the exclusive
choices [M–injective or M–small] and [M–projective or M–singular]. Also note that
if a module N in σ[M ] is M–singular and projective in σ[M ], then it is zero.

Let N ⊆ K ∈ σ[M ]. N is called δ–M–small in K if, whenever N + X = K with
K/X is M–singular, we have X = K (see7). Zhou17 studies δ–R–small submodules
in Mod–R. By [17, Lemma 1.2], in the definition of δ–R–small submodule, K/X

can be taken Goldie torsion, i.e. K/X can be a member of the torsion class of the
Goldie torsion theory in Mod–R.

In this paper µ will be a class in σ[M ] which is closed under isomor-
phisms and submodules, unless otherwise stated. Any member of µ we shall call
a µ–module. In this article we denote the following classes:

S = {N ∈ σ[M ] : N is simple},
M = {N ∈ σ[M ] : N is M -small}
δ = {N ∈ σ[M ] : ZM (N) = 0},
F = {F ∈ σ[M ] : ∀ 0 6= K ⊆ F, ZM (K) 6= K}
µM − Sing = {N ∈ σ[M ] : N is µ-M -singular}
FC = {N ∈ σ[M ] : N is finitely cogenerated}

Definition 1.1. Let N ∈ σ[M ]. Following Zhou16 N is called a µ–essential sub-
module of K ∈ σ[M ] if for any nonzero µ–module X in K, N ∩X 6= 0. It is denoted
by N ≤µe K.

Clearly every essential submodule is µ–essential. But the converse is not true in
general.
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Example 1.1. Let µ be the class of simple modules and zero modules in Mod–R.
Then a submodule N of a module M is µ–essential if and only if N contained the
socle of M but this is not enough to make N essential. For example in the Z–module
Z⊕ Zp, where p is a prime, 0⊕ Zp is µ–essential but not essential.

Example 1.2. Consider the class of M–small modules M in σ[M ]. Let N be an
injective module in σ[M ] with 0 6= Rad(N) 6≤e N (for example let N = U ⊕ V

where U is injective with essential radical and V is injective simple module.) Let X

be a non-zero M–small submodule of N . Then X ¿ N so X = X ∩ Rad(N) 6= 0.
Thus Rad(N) is M–essential but not essential in N .

The following lemma is clear from definitions.

Lemma 1.1. Let K ∈ σ[M ]. If every nonzero submodule of K contains a nonzero
µ–module, then for any submodule N of K, N ≤e K if and only if N ≤µe K.

Corollary 1.1. Let N ≤ K ∈ σ[M ]. If N ≤µe K and K is a µ–module, then
N ≤e K.

Now we list the properties of µ–essential submodules. We omit the proofs because
they are similar to those for essential submodules (see, for example2).

Lemma 1.2. Let M be a module.
a) Let N ≤ L ≤ K ∈ σ[M ]. Then N ≤µe K if and only if N ≤µe L ≤µe K.
b) If K1 ≤µe L1, K2 ≤µe L2, then K1 ∩K2 ≤µe L1 ∩ L2 for L1, L2 ∈ σ[M ].
c) Let N, L ∈ σ[M ]. If f : N → L is a homomorphism and K ≤µe L, then

f−1(K) ≤µe N .
d) If N/L ≤µe K/L, then N ≤µe K.
e) Let N ∈ σ[M ], {Ki} an independent family of submodules of N and if Ki ≤µe

Li ≤ N for all i ∈ I, then ⊕i∈IKi ≤µe ⊕i∈ILi.

Example 1.3. In Lemma 1.2(e), {Li} need not be an independent family. For
example, let µ be the class of simple modules and zero modules and put K1 =
0 ⊕ Zp ≤ Z ⊕ Zp = L1 and K2 = L2 = Z ⊕ 0 ≤ L1. Then K1 ≤µe L1, K2 ≤µe L2

and K1 ∩K2 = 0 but L1 ∩ L2 6= 0.

2. δ–essential Submodules Where δ = {N ∈ σ[M ] | ZM(N) = 0}
Talebi and Vanaja14 define ZM (N) as a dual of ZM (N) as follows:

ZM (N) =Rej(N,M) = ∩{kerg | g ∈Hom(N, L), L ∈M}
where N ∈ σ[M ]. They call N an M–cosingular (non–M–cosingular) module if
ZM (N) = 0 (ZM (N) = N). If N is M–small, then N is M–cosingular. The class
of all M–cosingular modules is closed under submodules, direct sums and direct
products [14, Corollary 2.2]. Note that Z

2

M (N) = ZM (ZM (N)). Talebi and Vanaja
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study the torsion theory cogenerated by M–small modules, τ = (T ,F) where

T = {T ∈ σ[M ] | ZM (T ) = T},
F = {F ∈ σ[M ] | ∀0 6= K ≤ F, ZM (K) 6= K}.

This torsion theory is also studied by Özcan and Harmancı.9 This is a dual of
the Goldie torsion theory and not necessarily hereditary. Also M⊆ δ ⊆ F . Now we
investigate the relationship between M–essential, δ–essential and F–essential sub-
modules by inspired [17, Lemma 1.2]. First we note that the following two theorems
which are characterize the torsion free class F .

Theorem 2.1. [9, Theorem 15] Let M be a module and assume that M has a
projective cover in σ[M ]. If ZM (M) = M , then M = δ = F .

Let N and L be submodules of a module M . N is called a supplement of L (in
M) if N + L = M and N ∩ L ¿ N . M is called amply supplemented if, for all
submodules N and L of M with N + L = M , N contains a supplement of L in M .

Theorem 2.2. [14, Theorem 3.6] Let M be a module such that every injective
module in σ[M ] is amply supplemented. Then F is closed under factor modules and
F = {N ∈ σ[M ] | Z

2

M (N) = 0} .

For shortness we denote
(A) M has a projective cover and ZM (M) = M .
(B) Every injective module in σ[M ] is amply supplemented.

Proposition 2.1. Consider the following conditions for K ≤ N ∈ σ[M ].
a) K ≤Fe N .
b) K ≤δe N .
c) K ≤Me N .
Then (a) ⇒ (b) ⇒ (c). If M has (B), then (b) ⇒ (a). If M has (A), then

(c) ⇒ (a).

Proof. (a) ⇒ (b) ⇒ (c) They are clear.
(b) ⇒ (a) Let X ≤ N with X∩K = 0 and X ∈ F . Then Z

2

M (X) = ZM (ZM (X)) = 0
by Theorem 2.2. Since ZM (X) ∩K = 0, ZM (X) = 0 by (b). Again by (b), X = 0.
(c) ⇒ (a) It is clear by Theorem 2.1.

Let M be a module. Define

SocM (N) = Tr(S ∩M, N)

for any module N ∈ σ[M ]. Then SocM (N) ≤ Soc(N). Clearly if SocM (N) ≤e N ,
then SocM (N) = Soc(N). The following lemma shows that in the definition of
SocM (N) we can take F–modules or δ–modules instead of M–modules. That is

SocM (N) = Tr(S ∩ δ, N) = Tr(S ∩ F , N).
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Lemma 2.1. Let M be a module. Any simple F–module in σ[M ] is M–small.

Proof. Let X be a simple F–module in σ[M ]. If ZM (X) = X, then X ∈ T ∩F = 0,
a contradiction.Then ZM (X) = 0. If X is M–injective, then ZM (X) = X. For, let
L be a submodule of X such that X/L is M–small. If L = 0, then X is M–small, a
contradiction. Hence L = X, that is ZM (X) = X. This contradiction implies that
X is M–small.

The following proposition can be seen by [16, Proposition 3], but we give the
proof for completeness.

Proposition 2.2. Let N ∈ σ[M ]. SocM (N) is the intersection of all its F–essential
submodules of N .

Proof. Let S be a simple M–small submodule of N and K be an F–essential
submodule of N , then S ∩K 6= 0. Therefore S ≤ K. It follows that the intersection
of all F–essential submodules contains all simple M–small submodules and hence it
contains their sum. Thus SocM (N) is contained in the intersection of all F–essential
submodules of N .

If N = SocM (N), then the proof is completed. Suppose that N 6= SocM (N).
Let n ∈ N − SocM (N). Then there exists a submodule K maximal with respect
to K ⊇ SocM (N) and n 6∈ K. If we can show that K ≤Fe N , then n lies outside
an F–essential submodule, and so SocM (N) is the intersection of all F–essential
submodules of N .

Suppose that L ∩ K = 0 for some nonzero submodule L of N with L ∈ F .
Consider the natural epimorphism π : N → N/K. Then L ∼= π(L) ≤ N/K. Since
K is maximal with respect to K ⊇ SocM (N) and n 6∈ K, N/K has a minimal
submodule contained in every nonzero submodule. Also since L ∈ F , then L ∩
SocM (N) 6= 0 by Lemma 2.1. But L ∩ SocM (N) ≤ L ∩K = 0, a contradiction.

Hence intersections of M–essential, δ–essential and F–essential submodules are
equal.

Tr(M, N) is investigated in7 and denoted by Z∗M (N). Then it can be seen that

Soc(Z∗M (N)) = SocM (N).

There are some examples of modules M such that SocM (N) 6= 0, SocM (N) 6=
Soc(N) and SocM (N) = Soc(N).

Example 2.1. 1) If M is a cosemisimple module (i.e. every simple module is M–
injective) and N ∈ σ[M ], then SocM (N) = 0, because Soc(N) = SocM (N) ⊕ T

where T is a direct sum of simple M–injective submodules of N .

2) If R is a small ring (for example a commutative integral domain) then every
finitely generated R–module is small.12 This implies that SocR(N) = Soc(N) for
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every R–module N .

3) Let R be the ring
[

F F

0 F

]
where F is a field. Then Z∗(RR) = Soc(RR)

by [6, Example 11]. This imples that Soc(Z∗(RR)) = SocR(RR) = Soc(RR). Since
Soc(RR) ≤e RR, every δ–essential right ideal is essential.

4)4 Let Q be a local quasi-Frobenius ring and J = J(Q) (the Jacobson radical

of Q), S = Soc(QQ) = Soc(QQ). Then W =
[

Q Q/S

J Q/S

]
is a well–defined ring by

the usual matrix addition, equality and the following multiplication
[

u v + S

j w + S

] [
x y + S

k z + S

]
=

[
ux + vk uy + vz + S

jx + wk jy + wz + S

]

where u, v, w, x, y, z ∈ Q and j, k ∈ J . W is a right and left Artinian ring. J(W ) =[
J Q/S

J J/S

]
and Soc(W W ) =

[
S Soc(Q/S)
0 0

]
, Soc(WW ) =

[
S 0
S 0

]
. By [12, Theo-

rem 3] or [8, Proposition 2.8], it can be shown that Z∗(WW ) = lW (Soc(W W )) =[
J Q/S

J Q/S

]
where lW (.) is the left annihilator over W . Since S ≤ J , then Soc(WW ) ≤

Z∗(WW ). This implies that SocW (WW ) = Soc(WW ).

5)5 Let R = F [x; σ] be the twisted polynomial rings where F is a field of char-
acteristic p > 0 and σ : F → F is the endomorphism given by σ(a) = ap(a ∈ F ).
The ring R consists of all polynomials a0 + xa1 + x2a2 + . . . + xnan where n is
a non–negative integer, ai ∈ F (0 ≤ i ≤ n), multiplication is given by the rela-
tion ax = xσ(a)(a ∈ F ) Note that R is a principal right ideal domain [5, p.597].
Let A denote the ideal xR of R. Clearly A is a maximal right ideal of R and
the R–module R/A is not injective because R/A 6= (R/A)x (see [13, Proposi-
tion 2.6]). In [5, Proposition 9], it is given an example of a field F such that the
R–module R/sR is injective for all s ∈ R − xR. Thus some simple R–modules
are injective and some are not. In particular, for the principal right ideal do-
main R, Z∗(M1) = M1 and Z∗(M2) = 0 for some simple R–modules M1 and
M2. In this case, Z∗(M1 ⊕ M2) = M1 ⊕ 0 6= 0,M1 ⊕ M2 (see [8, p.4918]). Hence
SocR(M1 ⊕M2) = Soc(Z∗(M1 ⊕M2)) = M1 ⊕ 0 6= Soc(M1 ⊕M2).

3. µ–M–Singular Modules

Definition 3.1. Let M be a module and N ∈ σ[M ]. N is called µ–M–singular if
N ∼= K/L for some K ∈ σ[M ] and L ≤µe K. In case M = R, we use µ–singular.

The class of µ–M–singular modules is closed under submodules, homomorphic
images, direct sums and isomorphisms.
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Hence every module N ∈ σ[M ] contains a largest µ–M–singular submodule
which we denote by ZµM (N) =Tr(µM -Sing, N) where µM -Sing is the class of all
µ–M–singular modules. Then ZM (N) ≤ ZµM (N). If N ∈ σ[M ] is µ–M–singular
(i.e. ZµM (N) = N) and a µ–module, then N is M–singular. For, let N ∈ µ and
N ∼= K/L where K ∈ σ[M ], L ≤µe K. We claim that L ≤e K. Let 0 6= X ≤ K

and assume that L ∩ X = 0. Then X ∼= (L ⊕ X)/L ≤ K/L and so X ∈ µ. Since
L ≤µe K we have a contradiction. This proves that N is M -singular.

If ZµM (N) = 0, then N is called non–µ–singular in σ[M ] or non–µ–M–singular.

Proposition 3.1. Let N be a µ–M–singular module and f ∈ HomR(M, N).
(1) If M is quasi–projective and f(M) is finitely generated, then kerf ≤µe M .
(2) If M is projective in σ[M ], then kerf ≤µe M .

Proof. (1) We may assume f(M) ∼= L/K where L ∈ σ[M ] is finitely generated
and K ≤µe L. Since L ∈ σ[M ] and L is finitely generated, then M is L–projective.
Hence there exists a homomorphism g : M → L such that πg = f where π is the
natural epimorphism L → L/K. Then kerf = g−1(K) ≤µe M by Lemma 1.2.
(2) By the proof of (1).

Proposition 3.2. Let P be a projective R–module and X ≤ P . Then P/X is
µ–singular if and only if X ≤µe P .

Proof. If I ≤ RR and R/I is µ–singular, then I ≤µe R by Proposition 3.1. Now
let P/X be µ–singular and assume X 6≤µe P . Let F be a free module such that
F = P ⊕ P ′, P ′ ≤ F . Then F/(X ⊕ P ′) ∼= P/X is µ–singular and X ⊕ P ′ 6≤µe F .
So we may assume without loss of generality P is free, i.e. P = ⊕Rλ, each Rλ is a
copy of R. Take Rλ. Then Rλ/(Rλ ∩X) ∼= (Rλ + X)/X ↪→ P/X is µ–singular. So
Rλ ∩X ≤µe Rλ. This implies that ⊕Rλ ∩X ≤µe ⊕Rλ = P , i.e. X ≤µe P .

From the properties of µ–singular modules and the above propositions the fol-
lowing can be seen easily.

Proposition 3.3. For an R–module N the following are equivalent.
a) N is µ–singular (in Mod–R).
b) N ∼= F/K with F a projective (free) R–module and K ≤µe F .
c) For every n ∈ N , the right annihilator r(n) is µ–essential in R.

Recall that a submodule N of a module M is said to be closed in M if N has
no proper essential extension in M , denote N ≤c M .

Lemma 3.1. Let M be a module and N ∈ σ[M ]. If ZµM (N) = 0 and K ≤c N ,
then ZµM (N/K)=0.

Proof. Clear by definitions.
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From now on we consider the condition that for every M–singular module N ,
Rej(N, µ) = N and give a characterization of GCO-modules and semisimple Ar-
tinian rings by considering the classes M, δ and FC.
Theorem 3.1. Let M be a module. Consider the following conditions.

a) Every µ–module is projective in σ[M ].
b) For every M–singular module N , Rej(N,µ) = N .
c) For every µ–M–singular module N , Rej(N,µ) = N .
d) For every simple M–singular module N , Rej(N,µ) = N .
Then (a) ⇒ (b) ⇔ (c) ⇒ (d) . If µ is closed under factor modules, then (a)-(d)

are equivalent.

Proof. (a)⇒ (b) Let N be an M–singular module. Let g : N → L where L ∈ µ.
Then N/kerg ∈ µ. By (a), N/kerg is projective in σ[M ]. Since N is M–singular,
we have that N = kerg. Hence Rej(N, µ) = N .
(b)⇒ (c) Let N be a µ–M–singular module and g : N → L a homomorphism where
L ∈ µ. Then N/kerg ∈ µ. This implies that Rej(N/kerg, µ) = 0. Since N/kerg is
µ–M–singular and a µ–module, it is M–singular. Then by (b), N = kerg. Hence
Rej(N, µ) = N .
(c)⇒ (b) and (b)⇒ (d) are clear.
(d)⇒ (a) Assume that µ is closed under factor modules. Let N ∈ σ[M ] be a µ–
module. We claim that N is semisimple. Let x ∈ N and K be a maximal submodule
of xR. Then xR/K is a simple µ–module. By (d) it cannot be M–singular. Hence
xR/K is projective in σ[M ]. This implies that K is a direct summand of xR.
Hence N is semisimple. Because of the above process, any simple submodule of N

is projective in σ[M ]. It follows that N is projective in σ[M ].

If we consider the class M of all M–small modules we have a characterization
of GCO–modules: A module M is called a GCO–module if every simple M–singular
module is injective in σ[M ]. (see1).

Corollary 3.1. Let M be a module. Then the following are equivalent.
a) Every M–small module is projective in σ[M ].
b) Every M–singular module is non–M–cosingular.
c) Every M–M–singular module is non–M–cosingular.
d) M is a GCO–module.
e) Every δ–M–singular module is non–M–cosingular.

Proof. (d) ⇔ (a) is by7 and (b) ⇔ (d) is by.10

Simple modules are either M–injective or M–small. Hence (a)-(d) are equivalent
by Theorem 3.1. (e) ⇒ (b) is clear. Since M ⊆ δ, every δ–M–singular module is
M–M–singular. Hence (c) ⇒ (e) is clear.

For the class δ of all M–cosingular modules, we immediately have the following
corollary. The equivalencies of (a), (b) and (d) are given in.10
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Corollary 3.2. Let M be a module. Consider the following conditions.
a) Every M–cosingular module is projective in σ[M ].
b) For every M–singular module N , Rej(N, δ) = N .
c) For every δ–M–singular module N , Rej(N, δ) = N .
d) M is a GCO–module.
Then (a) ⇒ (b) ⇔ (c) ⇒ (d). If δ is closed under factor modules (see Theo-

rem 2.1), then (a)-(d) are all equivalent.

Talebi and Vanaja14 are also studied the modules M such that every M–
cosingular module is projective in σ[M ].

A module M is called finitely cogenerated if Soc(M) is finitely generated and
essential submodule of M . Let FC be the class of all finitely cogenerated R–modules.
Note that FC is closed under submodules.

Corollary 3.3. The following are equivalent for a ring R.
a) Every finitely cogenerated R–module is projective.
b) For every singular R–module N , Rej(N,FC) = N .
c) For every FC–singular R–module N , Rej(N,FC) = N .
d) R is semisimple Artinian.

Proof. (a) ⇒ (b) ⇔ (c) By Theorem 3.1.
(d) ⇒ (a) is clear.
(b) ⇒ (d) Let E be an essential right ideal of R. Suppose that a is an element of R

but a does not belong to E. Let F be a right ideal of R maximal with respect to the
properties that E is contained in F and a does not belong to F . Then (aR + F )/F

is simple singular. By (b), we have a contradiction. Hence R is semisimple Artinian.

A ring R is a quasi-Frobenius ring (briefly QF–ring) if and only if every right
R–module is a direct sum of an injective module and a singular module.11 In this
result we may take µ–singular modules instead of singular as the following result
shows.

Theorem 3.2. The following are equivalent for a ring R.
a) R is a QF–ring.
b) Every right R–module is a direct sum of an injective module and a µ–singular

module.

Proof. (a)⇒ (b) It is clear.
(b)⇒ (a) Let M be a projective R–module. Then M is a direct sum of an injective
module and a µ–singular module. Since projective µ–singular modules are zero, M

is injective. Then R is a QF–ring (see for example1).
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7. A.Ç. Özcan, On GCO-modules and M -small modules, Comm. Fac. Sci. Univ. Ank.

Series A1, 51(2) (2002), 25-36.
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