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Abstract

In this paper, primitive submodules are defined and various properties of them are inves-

tigated. Some characterizations of co-semisimple modules are given and several conditions

under which co-semisimple and regular modules coincide are discussed.
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1 Introduction

Let M be a module. Any module that is isomorphic to a submodule of some homomorphic image

of a direct sum of copies of M is called an M -subgenerated module. The full subcategory of the

category of all modules whose objects are all M -subgenerated modules is denoted by σ[M ]. For

a ring R, σ[M ] consists of all R-modules if and only if R ∈ σ[M ]. Let M and N be modules.

M is called N -projective if for every epimorphism g : N → X and homomorphism f : M → X,

there exists a homomorphism h : M → N such that g ◦ h = f . A module M is called projective

in σ[M ] if M is N -projective for every N ∈ σ[M ]. A module M is called quasi-projective if M

is M -projective. In [29, 18.3] it is proved that a finitely generated quasi-projective module is

projective in σ[M ].

A module N ∈ σ[M ] is called M -singular [28] if there exists a short exact sequence 0 →
K → L→ N → 0 in σ[M ] such that K is essential in L. The largest M -singular submodule of

N is denoted by Z(N). If Z(N) = 0, then N is called non-M -singular.

Let M be a module and N and K be submodules of M . The product of N with K in M is

defined as follows [5]:

NMK =
∑
{f(N) | f ∈ HomR(M,K)}.
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The product NMN will be denoted by N2 and N will be called an idempotent in M if N2 = N .

If every submodule of M is an idempotent, then M is called fully idempotent. It is obvious that,

for any left ideal I of a ring R, RI is an idempotent in RR iff I is an idempotent left ideal. If

every left ideal (resp., two-sided ideal) of the ring R is an idempotent, then R is called a fully

left idempotent (resp., fully idempotent) ring.

Beachy proved in [4, Proposition 5.6] that if M is projective in σ[M ], then the product of

submodules is associative, i.e. (NMK)ML = NM (KML) for any submodules N,K and L of M .

Definition 1.1. Let M be a nonzero module.

1) A proper fully invariant submodule N of M is called prime in M [19] if KML ⊆ N , then

K ⊆ N or L ⊆ N for any fully invariant submodules K,L of M . The module M is called a

prime module if 0 is a prime submodule in M . Note that if M has no nonzero proper fully

invariant submodules, then M is prime [19, Remark 20].

2) A proper fully invariant submodule N of M is called semiprime in M [20] if KMK ⊆ N ,

then K ⊆ N for any fully invariant submodule K of M . The module M is called a semiprime

module if 0 is a semiprime submodule in M . More information on semiprime submodules can

be found in [9].

By a fully invariant (resp., prime, semiprime) factor module of M , we mean a factor module

M/N for a fully invariant (resp., prime, semiprime) submodule N of M .

A module M is called regular if every cyclic submodule of M is a direct summand of M

(see [25] for more information). We should note that, Zelmanowitz in [32] defined a regular

module provided that for any m ∈M there exists f ∈ HomR(M,R) such that m = f(m)m, and

he proved that every cyclic submodule of such a module is a direct summand [32, Proposition

1.6]. But the converse is not true in general, e.g. consider the abelian group Zp. In the ring

case, they are the same notions (see [13, Theorem 1.1]) and called a von Neumann regular ring.

In this paper, we use the aforementioned definition of regular modules.

The paper is organized as follows. In Section 2, we characterize regular modules in terms

of semiprime modules (Theorem 2.3). In Section 3, using the annihilator of a module defined

by Beachy in [4], we introduce primitive submodules inspired by left primitive ideals. Various

basic properties of primitive submodules are investigated. If M is a projective module in σ[M ],

then any proper primitive submodule of M is prime; and maximal and primitive submodules

coincide if, in addition, M is quasi-duo (Proposition 3.9). Section 4 is devoted to modules whose

primitive factors are artinian. We prove that every primitive factor module of a projective fully-

bounded Noetherian module is artinian and FI-simple, i.e. it has no fully invariant submodules

except 0 and M (Theorem 4.13).

In the final section, Section 5, we consider co-semisimple and regular modules and determine

some relations between them. A well-known theorem of Kaplansky states that the concepts of

von Neumann regular rings and V-rings coincide for commutative rings. As a generalization of

this result, Baccella proved in [3, Theorem] that if R is a ring whose right primitive factor rings

are artinian, then R is von Neumann regular iff R is a right V-ring (i.e. RR is co-semisimple). But
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his proof is not correct, because in the proof he used the fact that “a prime fully idempotent ring

is right and left nonsingular” (see [2, Lemma 4.3]). We see that this fact is not true making use

of an example due to Bergman, see Remark 5.17. In this respect, we investigate some conditions

under which any co-semisimple module with every primitive factor module artinian is regular.

We prove that if M is finitely generated, quasi-projective, co-semisimple, fully bounded, and

every primitive factor module of M is artinian, then M is regular (Corollary 5.12). Also, if M

is finitely generated, quasi-projective, co-semisimple, and every essential submodule of M is a

finite intersection of maximal submodules and every primitive factor module of M is artinian,

then M is regular (Theorem 5.15). On the other hand, if HomR(M,S) 6= 0 for every simple

module in σ[M ], every primitive factor module of M is co-semisimple, and M is regular, then

M is cosemisimple (Theorem 5.7). Furthermore, Kaplansky’s result was also extended to left

quasi-duo rings by Yu [31]. In this section, we also provide the module-theoretic version of Yu’s

theorem (Proposition 5.13).

Throughout this paper, rings are associative with identity, and modules are left modules.

Let R be a ring. We write RM for a left R-module M . The notation N ≤ M (N ≤e M)

means that N is an (essential) submodule of a module M . The Jacobson radical and the socle

of M are denoted by Rad(M) and Soc(M), respectively. We denote by HomR(M,K) the R-

homomorphisms from the module M to the module K, and by EndR(M) the endomorphism

ring of a module M over a ring R. We refer to [1,29] for all undefined terminology in this paper.

2 Regular modules

Recall that a module M is called regular if every cyclic submodule of M is a direct summand

of M (see [25] for more information). In this section, we characterize regular modules in terms

of semiprime modules.

Note that any regular module is semiprime. For, let M be a regular module, N a submodule

of M and n ∈ N . Since Rn is a direct summand of M , n = π(n) ∈ NMN where π : M → Rn is

the canonical projection. Hence NMN = N . But semiprime modules need not be regular, for

example, consider the Z-module Z. We need the following two results.

Lemma 2.1. Let M be an R-module and x ∈M . If there exists a morphism f : M → Rx such

that f(x) = x, then Rx is a direct summand of M .

Proof. Let x ∈ M and f : M → Rx be a morphism such that f(x) = x. Notice that Rx ∩
Ker(f) = 0. If m ∈M , then f(m) = rx = f(rx), so m−rx ∈ Ker(f). Thus m = rx+(m−rx) ∈
Rx⊕Ker(f).

Proposition 2.2. An R-module M is regular if and only if for all x ∈ M , there exists a

morphism f : M → Rx such that f(x) = x.

Proof. ⇒. Let x ∈M . Since M is regular, M = Rx⊕K for some submodule K. Then π(x) = x

where π : M → Rx is the canonical projection of M .

⇐. It is by Lemma 2.1.
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According to Proposition 2.2, every submodule and every fully invariant factor module of a

regular module is regular. Also any regular module is fully idempotent.

Theorem 2.3. Let M be a nonzero projective module in σ[M ]. Consider the following:

1) M is semiprime, the union of every chain of semiprime submodules in M is semiprime,

and every prime factor module of M is regular.

2) M is regular.

Then (1) ⇒ (2). If M is finitely generated, then (2) ⇒ (1).

Proof. (2) ⇒ (1) We just note that the union of semiprime submodules is a proper submodule

of M since M is finitely generated.

(1) ⇒ (2). Let 0 6= x ∈M . Suppose Rx has no direct complements in M . Consider

Γ = {A ≤M |A is semiprime in M and (Rx+A)/A has no direct complements in M/A}

Γ 6= ∅ because 0 ∈ Γ. Let {Ai}I be a chain in Γ. By hypothesis A :=
⋃
I Ai is semiprime in M .

Now, suppose that
M

A
=
Rx+A

A
⊕ N

A
.

Consider the canonical projections ρ : M/A → (Rx + A)/A and π : M → M/A. Since M is

projective in σ[M ], there exists f : M → Rx such that the following diagram commutes:

M
f //

π
��

Rx

π|Rx

��
M/A

ρ // Rx+A/A.

So, f(x)+A = π(f(x)) = ρ(π(x)) = x+A, hence f(x)−x ∈ A. Let j ∈ I such that f(x)−x ∈ Aj .
Since Aj is semiprime, then it is fully invariant, so f defines f : M/Aj → (Rx+Aj)/Aj . Notice

that f(x + Aj) = f(x) + Aj = x + Aj . Therefore, by Lemma 2.1, (Rx + Aj)/Aj has a direct

complement in M/Aj , which is a contradiction. Thus A ∈ Γ.

Then, by Zorn’s Lemma, there exists a semiprime submodule A of M maximal with respect

to the property that Rx+A/A has no direct complements in M/A. By hypothesis, A cannot be

prime in M . So, we can assume that A = 0 and M is semiprime but not prime. Hence, there exist

nonzero fully invariant submodules B and C of M such that BMC = 0. Let N = AnnM (C) (see

Definition 3.1). Then 0 6= B ≤ N . Now, denote K = AnnM (N). Since NMC = 0, CMN = 0

by [9, Lemma 1.19], so 0 6= C ≤ K, and by construction KMN = 0. By [9, Lemma 1.19]

N ∩ K = 0, and N and K are semiprime by [9, Lemma 1.23]. Hence, by the choice of A,

(Rx + N)/N has a direct complement in M/N and (Rx + K)/K has a direct complement in

M/K.

Let π : M →M/N , ρ : M →M/K, f : M/N → (Rx+N)/N and g : M/K → (Rx+K)/K

be the canonical projections. Since M is projective in σ[M ], there exist f : M → Rx and
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g : M → Rx such that πf = fπ and ρg = gρ.

M

π
��

f

��

M

ρ

��
g

��

M/N

f
��

M/K

g

��
Rx

π // (Rx+N)/N Rx
ρ // (Rx+K)/K

Then x−f(x) ∈ N and x−g(x) ∈ K. On the other hand, ρgf(x) = gρf(x) = f(x)+K because

f(x) ∈ Rx. So gf(x)− f(x) ∈ K. Therefore,

x+ (gf − f − g)(x) = x− f(x) + g(f(x)− x) ∈ N

and

x+ (gf − f − g)(x) = x− g(x) + gf(x)− f(x) ∈ K.

Hence, x+(gf−f−g)(x) = 0. This implies that (gf−f−g)(x) = −x, and so (g+f−gf)(x) = x.

Thus M is regular by Proposition 2.2, a contradiction.

Corollary 2.4. Let M be a nonzero finitely generated quasi-projective module. Then M is

regular if and only if every nonzero fully invariant factor module of M is semiprime and every

prime factor module of M is regular.

Proof. ⇒. Since M is regular, NMN = N for every submodule N of M . Then every proper

fully invariant submodule of M is semiprime. Hence every nonzero fully invariant factor module

of M is semiprime.

⇐. First note that M is projective in σ[M ] by [29, 18.3]. Let {Ai}I be a chain of semiprime

submodules of M . Since each Ai is proper and M is finitely generated,
⋃
I Ai is a proper fully

invariant submodule of M . By hypothesis M/
⋃
I Ai is a semiprime module. Thus

⋃
I Ai is

semiprime in M .

3 Primitive submodules

In this section, we define primitive submodules and consider some of their basic properties.

First, recall the annihilator of a module.

Definition 3.1. [4] Let M and X be R-modules. The annihilator of X in M is defined as

AnnM (X) =
⋂
{Ker(f) | f ∈ HomR(M,X)}.

This is also defined as RejM (X) in the literature (see [1]). Note that AnnR(X) = lR(X), the

usual left annihilator of X in R by [1, Proposition 8.22].
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According to [4, Proposition 1.6], AnnM (X) is a fully invariant submodule of M and is the

greatest submodule of M such that AnnM (X)MX = 0. Also, notice that AnnM (X) = M if and

only if HomR(M,X) = 0.

Definition 3.2. Let M be a module and P a submodule of M . The module P is called a

primitive submodule of M if there exists a simple module S ∈ σ[M ] such that P = AnnM (S).

The module M is called primitive if 0 is a primitive submodule of M .

Remark 3.3. 1. Rad(M) ⊆ AnnM (S) for any module M and any simple module S ∈ σ[M ].

2. The following are equivalent for an R-module M .

i) Rad(M) = M .

ii) AnnM (S) = M for every simple module S ∈ σ[M ].

iii) HomR(M,S) = 0 for every simple module S ∈ σ[M ].

Indeed, if M has a maximal submodule M, then M has a proper primitive submodule,

namely P = AnnM (M/M). Hence every nonzero module has a primitive submodule.

Here, we should note that σ[M ] always has a simple module for any nonzero module M

(see [29]).

3. Clearly, if M is a generator in σ[M ], then HomR(M,S) 6= 0 for every simple module

S ∈ σ[M ]. The converse is true if M is quasi-projective by [29, 18.5].

Proposition 3.4. Let M be projective in σ[M ]. Then any proper primitive submodule of M is

prime in M .

Proof. Let P = AnnM (S) be a proper primitive submodule of M where S ∈ σ[M ] is simple. Let

N and L be fully invariant submodules of M such that NML ≤ P . Then (NML)MS = 0. Since

M is projective in σ[M ], NM (LMS) = 0 by [4, Proposition 5.6]. On the other hand, LMS ≤ S

gives that LMS = 0 or LMS = S. If LMS = 0, then we have L ≤ P . If LMS = S, then

0 = NM (LMS) = NMS. It follows that N ≤ P . Hence P is a prime submodule of M .

Example 3.5. Let p ∈ Z be a prime number and let k be any positive integer. Then the

abelian group Zpk is self-projective. Since Zpk is finitely generated, it is projective in σ[Zpk ]

by [29, 18.3]. Note that Zpk/pZpk ∼= Zp. Since pZpk is fully invariant in Zpk , Ann Z
pk

(Zp) = pZpk
by [6, Proposition 1.8]. Hence the primitive submodule Ann Z

pk
(Zp) = pZpk is prime in Zpk .

Proposition 3.6. For any module M , Rad(M) =
⋂
{P ≤M |P is primitive}.

Proof. If M = 0, then there is nothing to prove. Assume that M 6= 0. Denote P =
⋂
{P ≤M |P

is primitive}. Since Rad(M) ⊆ AnnM (S) for every simple module S ∈ σ[M ], we have that

Rad(M) ⊆ P. On the other hand, if Rad(M) = M , then the only primitive submodule of M is

M by Remark 3.3. Hence P ⊆ Rad(M). Assume that Rad(M) 6= M , and let M be a maximal

submodule of M . Then AnnM (M/M) ⊆M becauseM is the kernel of the natural epimorphism

M →M/M. This implies that P ⊆ AnnM (M/M) ⊆M. Hence again P ⊆ Rad(M).
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Lemma 3.7. Let M be a module and P = AnnM (S) a proper primitive submodule of M for

some simple S ∈ σ[M ]. Then S ∈ σ[M/P ] and AnnM/P (S) = 0.

Proof. Since P = AnnM (S) is a proper submodule of M , there exists a nonzero homomorphism

f : M → S. Then P ⊆ Ker(f) and so we have an epimorphism M/P → M/Ker(f) ∼= S. It

follows that S ∈ σ[M/P ].

Let x + P ∈ M/P be a nonzero element in AnnM/P (S). Since x 6∈ P , there exists a

homomorphism g : M → S such that g(x) 6= 0. So P ⊆ Ker(g). This implies that there

exists a homomorphism g : M/P → S such that g = gπ where π : M → M/P is the canonical

epimorphism. Thus 0 6= g(x) = gπ(x) = g(x + P ) = 0, a contradiction. Hence AnnM/P (S) =

0.

Definition 3.8. Let M be a module. M is a quasi-duo module if all maximal submodules of

M are fully invariant.

In [23, 3.25], quasi-duo modules were presented as quasi-invariant modules.

Proposition 3.9. Let M be projective in σ[M ]. Then M is quasi-duo if and only if the maximal

and proper primitive submodules of M are the same.

Proof. It is clear that if the maximal and primitive submodules coincide, then M is quasi-duo.

LetM be a maximal submodule of M . Since M is quasi-duo, we haveMM (M/M) = 0 by [6,

Proposition 1.8], so M ⊆ AnnM (M/M). Thus M = AnnM (M/M). Now, let P = AnnM (S)

be a proper primitive submodule for some simple module S in σ[M ]. Let 0 6= f : M → S. Since

Ker(f) is maximal, it is fully invariant in M . So 0 = Ker(f)M (M/Ker(f)) ∼= Ker(f)MS.

Thus Ker(f) = P .

4 Modules whose primitive factors are artinian

In this section, we prove that every primitive factor module of a projective fully-bounded Noethe-

rian module is artinian FI-simple.

Let us first consider the modules whose primitive factors are artinian. Obviously, ifM/Rad(M)

is artinian, then M/P is artinian for any primitive submodule P of M . On the other hand, we

will show that if M is a projective module in σ[M ] and M/P is artinian for any primitive

submodule P of M , then M/P is semisimple. To prove it, we need the following.

Definition 4.1. A module M is called retractable [16] if HomR(M,N) 6= 0 for all 0 6= N ≤M .

Lemma 4.2. Let M be projective in σ[M ]. If M is a semiprime module, then it is retractable.

Proof. Let M be semiprime and N ≤ M . If Hom(M,N) = 0, then MMN = 0. But NMN ⊆
MMN = 0, and so N = 0.

Proposition 4.3. Let M be a projective module in σ[M ] and let P be a primitive submodule of

M . If M/P is artinian, then M/P is semisimple.
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Proof. Let M be a projective module in σ[M ] and P a primitive submodule of M such that

M/P is artinian. If P = M , then there is nothing to prove. Assume that P 6= M . Since P is

fully invariant, M/P is projective in σ[M/P ] (see [26, Lemma 9]) and it is a prime module by

Proposition 3.4 and [19, Proposition 18]. So M/P is retractable by Lemma 4.2. Any retractable

semiprime artinian module is semisimple by [9, Theorem 1.17]. Hence M/P is semisimple.

Now, we give the following definitions generalizing the concept of left bounded (resp., fully

bounded) rings given by Chatters and Hajarnavis in [11] to the module theory.

Definition 4.4. 1) A module M is bounded if any essential submodule of M contains a fully

invariant submodule of M which is an essential submodule.

2) M is fully bounded if every prime factor module of M is bounded.

3) M is an FBN-module if M is fully bounded and noetherian.

Example 4.5. If M is an artinian uniserial module (i.e. a module whose submodules are linearly

ordered), then Soc(M) is simple, fully invariant and essential in M . Since Soc(M) is contained

in all nonzero submodules of M , we have that M is bounded. Moreover, since every factor

module of an artinian uniserial module is artinian uniserial, M is also fully bounded.

In the literature, there are many other generalizations of bounded (resp., fully bounded)

rings to modules, for example see [7], [15], [17], and [22]. The definitions of bounded and fully

bounded modules given in [7, Definition 2.1] are very close to ours. For convenience of the

reader, we will give the definitions here and compare them with ours.

Definition 4.6. [7, Definition 2.1] Let M be a module and τ a hereditary torsion theory in

σ[M ]. A submodule N of M is τ -pure if M/N is τ -torsion-free. The module M is τ -bounded

if every τ -pure essential submodule of M contains a nonzero fully invariant submodule of M .

The module M is fully τ -bounded if for every prime submodule P in M , the module M/P is

τ -bounded.

It is clear that if M is a bounded module, then M is ξ-bounded, where ξ is the hereditary

torsion theory (0, σ[M ]). In general, the converse is not true, as the following example shows.

Example 4.7. Consider the Z-module M = Q⊕Zp where p ∈ Z is a prime number. Note that

the submodule Z⊕Zp is essential in M . Now, we claim that M has no nontrivial essential fully

invariant submodules. In fact, if N ≤e M and fully invariant in M , then 0 6= N ∩ (Q⊕ 0), but

Q has no nontrivial fully invariant submodules, hence N ∩ (Q⊕ 0) = Q⊕ 0. On the other hand,

since 0 6= N ∩(0⊕Zp), then 0⊕Zp ⊆ N . Thus, N = M . Now, if K ≤e M , then 0 6= K∩(0⊕Zp).
Hence 0⊕ Zp ⊆ K and 0⊕ Zp is fully invariant in M . Thus, M is ξ-bounded but not bounded.

However, for the trivial hereditary torsion theory ξ = (0, σ[M ]) in σ[M ], fully ξ-bounded

and fully bounded modules are equivalent provided that M is projective in σ[M ]:

Proposition 4.8. Let M be projective in σ[M ]. Then M is a fully bounded module if and only

if M is a fully ξ-bounded module.
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Proof. ⇒. It is obvious.

⇐. Let P be a prime submodule of M and consider the factor module M/P . Let N ≤e M/P .

Since M is fully ξ-bounded, then there exists a nonzero fully invariant submodule K of M/P

such that K ⊆ N . Since M/P is a prime module, by [10, Lemma 4.5] (for a proof of this lemma

see [9, Proposition 1.3]), every nonzero fully invariant submodule is essential, hence K ≤e M/P .

Thus, M/P is fully bounded.

Definition 4.9. A module M is called FI-simple [10], if it has no fully invariant submodules

except 0 and M .

Lemma 4.10. A module M is semisimple Artinian FI-simple if and only if M ∼= S(n) where n

is a natural number and S is a simple module.

Proof. It follows from the facts that, if M is a semisimple module, then each homogeneous

component (i.e. the direct sum of all isomorphic simple submodules) of M is fully invariant in

M , and each fully invariant submodule F of M is the direct sum of the homogeneous components

of M such that each of which has nonzero intersection with F .

Definition 4.11. [8] Let M be an R-module. A left annihilator in M is a submodule of the

form

AX =
⋂
{Ker(f) | f ∈ X}

for some X ⊆ EndR(M).

The following result will be used to prove the main theorem.

Proposition 4.12. [10, Proposition 2.11] Let M be projective in σ[M ] with nonzero socle. If

M is a prime module satisfying ACC (ascending chain condition) on left annihilators, then M

is semisimple artinian and FI-simple.

We are now going to prove the main theorem of this section. Note that the ring version was

proved in [14, Proposition 8.4].

Theorem 4.13. Let M be projective in σ[M ]. If M is an FBN-module, then M/P is artinian

and FI-simple for every primitive submodule P of M .

Proof. Assume that M 6= 0. For any proper primitive submodule P of M , M/P is projective in

σ[M/P ] (see [26, Lemma 9]), FBN and prime. Hence without loss of generality, we can assume

P = 0. According to Proposition 4.12, the proof will be completed if Soc(M) 6= 0. Let S be

simple in σ[M ] such that P = AnnM (S) = 0. Then MMS 6= 0 and so there exists a nonzero

morphism f : M → S. Now we claim that Ker(f) is not essential in M . Since M is bounded, it

is enough to prove that Ker(f) has no nonzero fully invariant submodule of M . Assume on the

contrary that N is a nonzero fully invariant submodule of M such that N ⊆ Ker(f). Then there

is an epimorphism M/N → M/Ker(f) ∼= S. By [4, Lemma 5.4], there exists an epimorphism

NM (M/N) → NMS. Since N is fully invariant in M , NM (M/N) = 0 by [6, Proposition 1.8].
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Hence NMS = 0. Since AnnM (S) = 0, N = 0. This proves the claim. Then there exists

0 6= K ≤ M such that Ker(f) ∩ K = 0. Since Ker(f) is a maximal submodule of M , we

conclude that M = Ker(f)⊕K. Thus K ∼= S, and so Soc(M) 6= 0.

Recall that a module M is called Kasch if every simple module in σ[M ] can be embedded

in M .

Proposition 4.14. Let M be projective in σ[M ]. If M is a Kasch and an FBN-module, then

M/Rad(M) is semisimple artinian.

Proof. First notice that since M is noetherian, Rad(M) 6= M . Since M is Kasch, every simple

module in σ[M ] can be embedded in Soc(M), and since M is noetherian, Soc(M) is finitely

generated. Then the set of simple modules in σ[M ] is finite up to isomorphism. Hence the set

of primitive submodules of M is finite, say P1, ..., Pn. This implies that Rad(M) = P1 ∩ · · · ∩Pn
by Proposition 3.6. Then by the monomorphism M/Rad(M) → M/P1 ⊕ · · · ⊕M/Pn defined

by m + Rad(M) 7→ (m + P1, . . . ,m + Pn) and Theorem 4.13, we obtain that M/Rad(M) is

semisimple artinian.

5 Co-semisimple and regular modules

Dual to semisimple modules are the co-semisimple modules which were introduced by Fuller [12]

and also called V-modules by Ramamurthi [21].

Definition 5.1. A module M is co-semisimple if each simple module (in σ[M ]) is M -injective.

If RR is co-semisimple, we call R a left V-ring.

Notice that any simple module not belonging to σ[M ] is M -injective, and semisimple modules

are co-semisimple (see [29, p. 190]). It is well known that co-semisimple and regular modules

are independent notions (see [29, Example 23.6]). In this section, we investigate some conditions

under which regular modules and co-semisimple modules coincide.

The following characterization of co-semisimple modules was given in [12, Proposition 3.1],

for further characterizations see [29, 23.1].

Proposition 5.2. The following are equivalent for a module M :

1. M is co-semisimple.

2. Any proper submodule of M is an intersection of maximal submodules.

Furthermore, we recall the following lemma.

Lemma 5.3. [10, Lemma 1.1] Let M be projective in σ[M ], K ≤ M , and {Xi}I a family of

modules in σ[M ]. Then

KM (
∑
I

Xi) =
∑
I

(KMXi).
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Proposition 5.4. [10, Proposition 4.4] Let M be a projective module in σ[M ]. If M is co-

semisimple, then it is fully idempotent.

Proof. Let N be a submodule of M and suppose that NMN ⊂ N . According to Proposition 5.2,

there exists a maximal submodule M of M such that NMN ⊆ M but N 6⊆ M. Hence M =

N +M. Therefore, by Lemma 5.3,

N ⊆ NMM = NM (M+N) = NMM+NMN ⊆M,

a contradiction. Thus NMN = N2 = N .

Proposition 5.5. Let M be a nonzero co-semisimple module. Then M has a proper primitive

submodule.

Proof. Let L be a nonzero finitely generated submodule ofM . Since L has a maximal submodule,

there exists an epimorphism L→ S for some simple module S ∈ σ[M ]. Since M is co-semisimple,

S is M -injective. So there exists a nonzero morphism M → S. Then HomR(M,S) 6= 0, and

hence AnnM (S) is the proper primitive submodule of M .

Theorem 5.6. Let M be projective in σ[M ]. Then the following are equivalent:

1) M is co-semisimple.

2) M is a generator in σ[M ], fully idempotent, and every primitive factor module of M is

co-semisimple.

Proof. (1)⇒ (2). Since M is co-semisimple, it is fully idempotent by Proposition 5.4. The result

23.8 in [29] states that if M is M -projective and co-semisimple, then M is a generator in σ[M ].

So every primitive submodule of M is proper by Remark 3.3(3). Now, let P be a primitive

submodule of M and S ∈ σ[M/P ] be simple. Since σ[M/P ] ⊆ σ[M ], S is simple in σ[M ]. Then

S is M -injective, and so it is M/P -injective. Hence M/P is co-semisimple.

(2) ⇒ (1). Let S be a simple module in σ[M ] and Ŝ = EM (S) the M -injective hull of S in

σ[M ]. Denote P := AnnM (S). Since M is a generator in σ[M ], P 6= M (see Remark 3.3(3)).

Then M/P is co-semisimple by hypothesis. Now, assume that P = AnnM (Ŝ). By [7, Proposition

1.5], Ŝ ∈ σ[M/P ]. Since M/P is co-semisimple, S is injective in σ[M/P ] by Lemma 3.7. So S is

a direct summand of Ŝ, and hence S = Ŝ is injective in σ[M ]. In this case M is co-semisimple.

Assume that P 6= AnnM (Ŝ). Then there exists a morphism f : M → Ŝ such that f(P ) 6= 0.

Since S ≤e Ŝ, S ⊆ f(P ). Let p ∈ P be such that S = Rf(p). Then S = f(Rp) = f(RpMRp) ⊆
RpMf(Rp) ⊆ PMS = 0. Hence S = 0, a contradiction.

Theorem 5.7. Let M be a module. Assume that HomR(M,S) 6= 0 for every simple module

in σ[M ], and every primitive factor module of M is co-semisimple. If M is regular, then M is

cosemisimple.
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Proof. Let S be a simple module in σ[M ] and consider the proper primitive submodule P =

AnnM (S) of M . By hypothesis, M/P is co-semisimple. By Lemma 3.7, S ∈ σ[M/P ], and then

S is M/P -injective. Now, we claim that S is M -injective. Let N ≤ M and f : N → S be a

morphism. Since M is fully idempotent, N ∩P = N ∩ (PMP ), so let n = f1(p1) + · · ·+ fk(pk) ∈
N ∩P where each fi ∈ Hom(M,P ). Since M is regular, Rn is a direct summand of M , and then

we have the canonical projection π : M → Rn. Therefore, n = π(n) = π(f1(p1)+ · · ·+fk(pk)) =

πf1(p1) + · · ·+ πfk(pk). Thus

f(n) = f(πf1(p1) + · · ·+ πfk(pk)) = fπf1(p1) + · · ·+ fπfk(pk) = 0

because fπfi : M → S for all 1 ≤ i ≤ k. Then, we have a well-defined morphism f : (N +

P )/P → S. Since S is M/P -injective, there exists f ′ : M/P → S such that f ′|(N+P )/P = f .

Thus, if ρ : M →M/P is the canonical epimorphism, f ′(ρ(N)) = f ′((N + P )/P ) = f(ρ(N)) =

f(N). Hence S is M -injective. Thus M is co-semisimple.

Corollary 5.8. Consider the following conditions for a ring R:

1) R is von Neumann regular, and every left primitive factor ring of R is a left V-ring.

2) R is fully left idempotent, and every left primitive factor ring of R is a left V-ring.

3) R is a left V-ring.

Then (1) ⇒ (2) ⇔ (3).

Proof. This follows from [25, Proposition 22.2] and Theorems 5.6 and 5.7.

Lemma 5.9. 1) If M is projective in σ[M ] and a prime module, then E = EndR(M) is a prime

ring.

2) [9, Corollary 1.10] If M is retractable and E = EndR(M) is a prime ring, then M is a

prime module.

Proof. 1) Let I and J be ideals of E such that IJ = 0. We can assume that I and J are cyclic.

On the other hand, since M is M -projective, J = HomR(M,JM) by [29, 18.4]. Now, assume

that J 6= 0. Then there exists a nonzero morphism g : M → JM such that fg = 0 for all

f ∈ I. Also since I = HomR(M, IM), we have g(M)MIM = 0. By hypothesis, M is prime and

projective in σ[M ], and so IM = 0 by [6, Proposition 1.11]. Thus I = 0.

Lemma 5.10. If M is projective in σ[M ], semiprime, and bounded, then it is non-M -singular.

Proof. Suppose that Z(M) 6= 0. Then there exists 0 6= f ∈ Hom(M,Z(M)) by Lemma 4.2.

Since Z(M) is M -singular and M is projective in σ[M ], Ker(f) ≤e M by [7, Proposition 1.2].

Since M is bounded, there exists a fully invariant submodule N of M such that N ⊆ Ker(f)

and N ≤e M . By [4, Lemma 5.4], there is an epimorphism

NM (M/N)→ NM (M/Ker(f)).
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Since N is fully invariant, NM (M/N) = 0 by [6, Proposition 1.8]. It follows that NMf(M) ∼=
NM (M/Ker(f)) = 0. Since (N ∩ f(M))M (N ∩ f(M)) ⊆ NMf(M) = 0 and M is semiprime, we

have that N ∩ f(M) = 0. But N ≤e M , this is a contradiction. Thus M is non-M -singular.

A module M is called Goldie [27] if it satisfies the ACC on left annihilators and has finite

uniform dimension.

Theorem 5.11. Let M be finitely generated, quasi-projective, co-semisimple, and non-M -

singular with E := EndR(M) prime. If every primitive factor module of M is artinian, then M

is semisimple artinian.

Proof. First we claim that M is a prime Goldie module.

Assume that M 6= 0. Since M is co-semisimple, it is semiprime and then it is retractable by

Lemma 4.2. So M is prime by Lemma 5.9.

On the other hand, T := EndR(M̂) is the maximal ring of quotients of E by [30, 11.1 and

11.5] where M̂ is the M -injective hull of M . Let {Nn : n ∈ N} be an independent family of

submodules of M̂ . Then {HomR(M̂,Nn) : n ∈ N} is an independent family of right ideals

of T . Since EE is essential in T by [30, 11.5], we have an independent family of cyclic right

ideals of E, say gnE (n ∈ N), such that all gnT (n ∈ N) is independent in T . Since E is a

prime ring, there exists hn ∈ E (n ∈ N) such that zn := gnhn−1gn−1 . . . h1g1 6= 0. So, we have

a descending chain of left ideals Tz1 ⊇ · · · ⊇ Tzn ⊇ · · · . Since T is a regular ring, there exist

nonzero idempotents fn ∈ T such that Tzn = Tfn for all n ∈ N. Then there is an ascending

chain (1− f1)T ⊆ · · · ⊆ (1− fn)T ⊆ · · · . Consider the R-submodule

K :=
( ⋃
n>0

(1− fn)T
)
M̂

of M̂ .

If M ⊆ K, then M ⊆ (1 − fn)TM̂ ⊆ K ⊆ M̂ for some n because M is finitely generated.

Then (1 − fn)TM̂ ≤e M̂ , but (1 − fn)M̂ ∩ fnM̂ = 0 gives a contradiction. Thus K ⊂ M̂ and

M 6⊆ K. Since M is co-semisimple, so is M̂ . Then there exists a maximal submodule M of M̂

such that K ⊆M and M 6⊆ M.

Assume that j : M → M̂ and π : M̂ → M̂/M are the canonical inclusion and projection

respectively. Since M 6⊆ M, πj 6= 0. This implies that P = AnnM (M̂/M) is a proper primitive

submodule of M . Notice that TP ⊆ M, in fact, if α ∈ T , then πα(P ) = παj(P ) = 0 because

παj : M → M̂/M. Thus TP ⊆M.

By hypothesis M/P is artinian, hence Soc(M/P ) 6= 0, therefore by Propositions 4.3 and

4.12, M/P is FI-simple. Hence P is a maximal fully invariant submodule of M . On the other

hand, TP∩M is a fully invariant submodule of M containing P , so P = TP∩M or TP∩M = M .

But, since M 6⊆ M, we have P = TP ∩M .

We now claim that zn(M) 6⊆ P for all n. Suppose that zn(M) ⊆ P for some n. By

construction, write fn = αzn for some α ∈ T . Then fn(M) = αzn(M) ⊆ α(P ) ⊆ M. Thus
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fn(M) ⊆ M. But (1 − fn)(M) ⊆ M, then M ⊆ (1 − fn)(M) + fn(M) ⊆ M, a contradiction.

Now, since zn(M) ⊆ gn(M), then gn(M) 6⊆ P for all n.

Since T = Qmax(E), by [13, Lemma 9.7] there exist orthogonal idempotents en ∈ T such that

gnT = enT . We claim that en(M) 6⊆ TP for all n. Assume to the contrary that en(M) ⊆ TP

for some n. Then gnE(M) = engnE(M) ⊆ TP ∩M = P , and so gn(M) ⊆ P , a contradiction.

This enables us to define the canonical projection ρ : M̂ → M̂/TP with ρ(en(M)) 6= 0 for all

n. Now let ρ(e1(m)) ∈ ρ(e1(M)) ∩
∑

i 6=1 ρ(ei(M)), then e1(m) = e2(m2) + · · · + ek(mk) + x

with x ∈ TP . Since en’s are orthogonal idempotents, e1(m) = e1(x) ∈ TP . Thus ρ(e1(m)) = 0.

This implies that {ρ(en(M))} is an independent family of submodules of M̂/TP . Notice that

we have a monomorphism η : M/P → M̂/TP given by η(m+ P ) = m+ TP . Since gn = engn,

gnE(M) ⊆ en(M) and we have that gnE(M) 6⊆ P . So {ρ(gnE(M))} is an inde pendent family

of nonzero submodules of η(M/P ) ∼= M/P . This is a contradiction because M/P is artinian.

Thus M̂ has finite uniform dimension, then so does M . Now, M is a prime Goldie module

by [9, Theorem 2.8].

Since M is co-semisimple Goldie, the only prime submodule in M is 0 by [10, Proposition 4.6

and Corollary 4.8]. Since M has a proper primitive submodule by Proposition 5.5 and proper

primitive submodules are prime, 0 is primitive. According to the hypothesis, M is artinian.

Any retractable semiprime artinian module is semisimple by [9, Theorem 1.17]. Thus M is

semisimple.

Corollary 5.12. Let M be finitely generated, quasi-projective, co-semisimple, and fully bounded.

If every primitive factor module of M is artinian, then M is regular.

Proof. Let M be prime. By hypothesis, M is bounded, and so non-M -singular by Lemma 5.10.

According to Lemma 5.9 and Theorem 5.11, M is semisimple, hence it is regular.

Assume that M is not prime and P is a prime submodule of M . Then M/P is a nonzero

prime module. Since M/P satisfies all the conditions of the hypothesis, it is semisimple artinian

by the argument above. This implies that every prime factor module of M is regular. Since M

is co-semisimple, every proper fully invariant submodule of M is semiprime. Thus M is regular

by Corollary 2.4.

This corollary will enable us to prove a module theoretic version of Theorem 2.7 of [31].

Recall that a module M is called duo (see [18]) if every submodule of M is fully invariant in

M .

Proposition 5.13. Let M be finitely generated quasi-projective. If M is quasi-duo, then the

following are equivalent.

1) M is co-semisimple.

2) M is regular, duo, and a generator in σ[M ].

3) M is regular and a generator in σ[M ].
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4) M is fully idempotent and a generator in σ[M ].

Proof. (1) ⇒ (2). Since M is co-semisimple and projective in σ[M ], it is a generator in σ[M ]

by [29, 23.8]. Let N ≤M , and write N = ∩i∈INi for some maximal submodules Ni of M . Then

f(Ni) ⊆ Ni for any endomorphism f of M . This implies that f(N) ⊆ N , hence M is duo. Since

M is quasi-projective, every factor module of M is duo by [18, Proposition 1.4]. On the other

hand, obviously every duo module is bounded. It follows that M is fully bounded. Thus M is

regular by Proposition 3.9 and Corollary 5.12.

(2) ⇒ (3) ⇒ (4). They are obvious.

(4) ⇒ (1). It follows by Proposition 3.9 and Theorem 5.6.

Proposition 5.14. Let M be projective in σ[M ]. Suppose that M is prime but not primitive,

and every essential submodule of M is a finite intersection of maximal submodules. Then M is

non-M -singular.

Proof. We will show that M is bounded. Let N ≤e M . By hypothesis, there exists a finite

family of maximal submodules M1, . . . ,Mn such that N =
⋂n
i=1Mi. Hence there exists a

monomorphism M/N ↪→
⊕n

i=1M/Mi. Let Pi = AnnM (M/Mi) for i = 1, . . . , n. Since M is

prime but not primitive, each Pi 6= 0 and Pi ≤e M , so P1 ∩ · · · ∩ Pn 6= 0 and

(P1 ∩ · · · ∩ Pn)M

n⊕
i=1

M/Mi = 0.

This implies that

(P1 ∩ · · · ∩ Pn)MM/N = 0.

Hence P1 ∩ · · · ∩Pn ⊆ N . Since P1 ∩ · · · ∩Pn is essential and fully invariant in M , we have that

M is bounded. Thus the proof is completed by Lemma 5.10.

Theorem 5.15. Let M be finitely generated and quasi-projective. Suppose that every primitive

factor module of M is artinian, and every essential submodule is a finite intersection of maximal

submodules. If M is co-semisimple, then M is regular.

Proof. Suppose that M is primitive. By hypothesis, it is Artinian. Since M is co-semisimple, it

is semiprime by Proposition 5.4. Hence, M is semisimple by [9, Theorem 1.17].

Suppose that M is not primitive. If M is prime, then M is non-M -singular by Proposi-

tion 5.14. So M is semisimple artinian by Lemma 5.9 and Theorem 5.11.

Assume that M is not prime. We will use Corollary 2.4 to show the regularity of M .

Since M is co-semisimple, every nonzero fully invariant factor module of M is semiprime. Now

take a proper prime submodule P of M and consider the prime module M/P . We claim that

M/P is regular. If M/P is primitive, then M/P is semisimple Artinian by hypothesis and

Proposition 4.3. Assume that M/P is not primitive. Note the fact that M/P satisfies all of the

conditions in the hypothesis. Indeed, every primitive factor module of M/P is artinian, M/P is

co-semisimple, and for any essential submodule N/P of M/P , N is an intersection of maximal
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submodules M1, . . . ,Mn of M since N ≤e M . This implies that N/P is the finite intersection of

maximal submodules M1/P, . . . ,Mn/P of M/P . Hence, M/P is semisimple artinian as was in

the case of M above. As a result, in all cases, every prime factor module of M is regular. Thus

M is regular by Corollary 2.4.

Corollary 5.16. Let R be a ring such that every left primitive factor ring is artinian. Assume

that every essential left ideal of R is a finite intersection of maximal left ideals. If R is a left

V-ring, then R is von Neumann regular.

We end the paper with the following remark.

Remark 5.17. Recall that a ring R is fully idempotent if every two-sided ideal is idempotent.

In [2, Lemma 4.3], Baccella proved the following:

“A prime fully idempotent ring is right and left nonsingular.”

But this lemma is false. Consider the ring R constructed by G.M. Bergman which is presented

in detail in [11, pp. 27]. This ring is a prime (in fact, primitive), uniform ring and has a unique

proper two-sided ideal U . The ideal U is idempotent and U = Zr(R), the right singular ideal

of R. Thus R is a prime fully idempotent ring and it is not right nonsingular. Moreover, it

can be seen that R is not left nonsingular. This implies that R is neither right nor left V -ring

by [24, Proposition 4.5].

On the other hand, in [3, Theorem], it was proved that if R is a ring whose right primitive

factor rings are artinian, then R is a right V-ring iff R is fully right idempotent iff R is von

Neumann regular. But in that proof, it was used the fact that any prime right V-ring is right

nonsingular by citing [2, Lemma 4.3]. Therefore the truth of [3, Theorem] is not certain now.

Accordingly, we proved in Corollary 5.12 that if R is a right V -ring and right fully bounded ring

whose right primitive factor rings are artinian, then R is von Neumann regular.

In the literature some authors frequently use “any prime right V-ring is right nonsingular”

based on [2, Lemma 4.3]. But now it turns out to be a problem and we do not have a proof or

a counterexample. Some approaches to this are Lemma 5.10 and Proposition 5.14. The next

proposition is another approximation.

Proposition 5.18. Let M be projective in σ[M ]. If M is prime, co-semisimple and Soc(M) 6= 0,

then M is non-M -singular and primitive.

Proof. Assume that Z(M) 6= 0. Since M is prime, any nonzero fully invariant submodule of M

is essential in M . Then Soc(M)∩Z(M) 6= 0. So there exists a simple M -singular submodule S

of M . Since S is M -injective, it is a direct summand of M . Thus S is projective in σ[M ] and

M -singular, a contradiction.

Let S be a simple submodule of M . Since AnnM (S)MS = 0 and M is prime, AnnM (S) = 0.

Thus M is primitive.

Corollary 5.19. If R is a prime left V-ring such that Soc(RR) 6= 0, then R is a left nonsingular

left primitive ring.
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