Modules Having *-Radical

A. Çiğdem Özcan

June 9, 2005

Abstract

ABSTRACT. Let R be a ring with identity and M a right R-module. Let E(M) denote the injective hull of M and $Z^*(M) := M \cap \text{Rad}E(M)$. We say M has *-radical if $Z^*(M) = \text{Rad}M$. In this note we characterize rings in terms of modules having *-radical. First we prove that R is a right V-ring (GV-ring) if and only if every (singular) right R-module has *-radical. After that we show that R is a right H-ring if and only if every right R-module that has *-radical is lifting and, R is a semiprimary QF-3 ring if and only if R is right perfect and every projective right R-module that has *-radical is injective (extending). Finally we obtain that R is a QF-ring if and only if every right R-module that has *-radical is $Z^*(R) = J(R)$ and every projective right R-module that has *-radical is injective (extending).

1 Preliminaries

Throughout this paper we assume that R is an associative ring with unit and all R-modules cosidered are unitary right R-modules. Let M be an R-module. We write E(M), RadM, Soc(M) and Z(M) for the injective envelope, the Jacobson radical, the socle and the singular submodule of M, respectively. J(R) is the Jacobson radical of R. A submodule N of M is indicated by writting $N \leq M$. The notation $N \leq_e M$ is reserved for essential submodules.

DEFINITION. A ring R is called a right *V*-ring if every right ideal of R is an intersection of maximal right ideals. R is called a right *GV*-ring if every simple singular right *R*-module is injective [12].

R is a right V-ring iff every simple right R-module is injective iff $\operatorname{Rad} M = 0$ for every right R-module M. [7]

DEFINITION. A module M is called *extending* if every submodule of M is essential in a summand of M. A module M is called *quasi-continuous* if it is extending and for summands M_1 and M_2 of M such that $M_1 \cap M_2 = 0$, $M_1 \oplus M_2$ is a summand of M. M is called *continuous* if it is extending and for a submodule A of M which is isomorphic to a summand of M, A is a summand of M. Note that quasi-injective modules are continuous (see, for example [15]).

¹⁹⁹¹ Mathematics Subject Classification. Primary 16L60; Secondary 16D50, 16D60, 16D80.

M is called \sum -extending (-injective) if every direct sum of copies of M is extending (-injective) (see for example [6] or [8]).

DEFINITION. Let N be a submodule of a module M. N is called a *small submodule* if whenever N + L = M for some submodule L of M we have L = M and in this case we write $N \ll M$. M is called *lifting* if for every submodule N of M there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll M$ (see, for example [15]). Oshiro [18] called a ring R a right *H*-ring if every injective right *R*-module is lifting. He also called a ring R a right *co-H*-ring if every projective right *R*-module is extending.

A ring R is called *semilocal* if R/J(R) satisfies the minimum condition on right ideals. A ring R is *semiprimary* if R is semilocal and J(R) is nilpotent. A ring R is called a right QF-3 ring if R has injective projective faithful right ideal. We call R is a right QF-3⁺ ring if $E(R_R)$ is projective. Jans [13] showed that among rings with minimal condition on right ideals, the classes of QF-3 and QF-3⁺ rings coincide.

A ring R is a semiprimary QF-3 ring when R is a semiprimary left and right QF-3 ring. The class of semiprimary QF-3 rings is a generalization of the class of QF-rings (Quasi-Frobenius rings). The class of H-rings and co-H-rings are generalizations of semiprimary QF-3 rings. Tachikawa [23, Proposition 3.3] proved that a semiprimary QF-3 ring is a right and left QF-3⁺-ring.

DEFINITION. An *R*-module M is said to be *small* if it is a small submodule of some *R*-module and it is said to be *non-small* if it is not a small module. M is a small module if and only if M is small in its injective hull [14]. We put

$$Z^*(M) = \{m \in M : mR \text{ is small }\}$$
 [11].

Since $\operatorname{Rad}(M)$ is the union of all small submodules in M, $\operatorname{Rad}M \leq Z^*(M)$, and

$$Z^*(M) = M \cap \text{Rad } E(M) = M \cap \text{Rad} E'$$

for every injective module $E' \supseteq M$. Note that simple modules are either injective or small. If M is a small module then $Z^*(M) = M$.

In this note we say a module M has *-radical if $Z^*(M) = \operatorname{Rad}(M)$. A ring R has *-radical if R_R has *-radical. Clearly injective modules have *-radical. But modules that have *-radical are not injective in general (Example 4.1). In the light of this result we define the following properties in this note.

(T1) Every module has *-radical.

(T2) Every singular module has *-radical.

(T3) Every projective module has *-radical.

(T4) Every module that has *-radical is projective.

(T5) Every module that has *-radical is injective.

(T6) Every projective module that has *-radical is injective.

(T7) Every projective module that has *-radical is extending.

At once it can be easily seen that $(T1) \implies (T2)$ and (T3); $(T5) \implies (T6) \implies (T7)$.

In the second part of this note we prove that R is a right V-ring \iff (T1) holds \iff Every quasi-injective module has *-radical \iff Every quasi-projective module has *-radical \iff (T3) holds and R is a right GV-ring. And (T2) holds \iff R is a right GV-ring.

In the third part we prove that (T4) holds $\iff R$ is a QF-ring. Also we give some other results about (T3).

In the last part of this study we prove that R is a right H-ring if and only if every module that has *-radical is lifting if and only if R is a right perfect ring and (T5) holds. After that we show that (T7) holds \iff Every projective module that has *-radical is quasi-injective \iff Every projective module that has *-radical is continuous \iff Every projective module that has *-radical is quasi-continuous. If R is a right QF-3⁺ ring, (T6) \iff (T7). And R is a semiprimary QF-3 ring \iff (T6) holds and R is right perfect \iff (T7) holds and R is right perfect. Finally we give a characterization of QF-rings by using these properties.

2 Properties (T1) and (T2)

First we give the following useful lemmas.

Lemma 2.1 Let R be a ring and let $\varphi : M \longrightarrow M'$ be a homomorphism of Rmodules M, M'. Then $\varphi(Z^*(M)) \leq Z^*(M')$.

Proof If $i: M' \longrightarrow E(M')$ is the inclusion mapping, then the homomorphism $i\varphi: M \longrightarrow E(M')$ can be lifted to a homomorphism $\theta: E(M) \longrightarrow E(M')$. Now $\theta(\text{Rad } E(M)) \leq \text{Rad} E(M')$ by [1, Proposition 9.14]. Then $\varphi(Z^*(M)) \leq Z^*(M')$. \Box

Lemma 2.2 Any direct summand of a module that has *-radical has *-radical.

Proof Let M be a module that has *-radical and N a direct summand of M. Let $x \in Z^*(N)$. Then $xR \ll E(N) \leq E(M)$. It follows that $x \in Z^*(M) = \operatorname{Rad}(M)$ and then $xR \ll M$. Since N is a direct summand of M, $xR \ll N$. Hence $Z^*(N) = \operatorname{Rad}(N)$.

Proposition 2.3 The following are equivalent for any ring R.

(i) R is a right V-ring,
(ii) R satisfies (T1),
(iii) Every quasi-injective right R-module has *-radical,
(iv) Every quasi-projective right R-module has *-radical,
(v) R satisfies (T3) and is a right GV-ring. **Proof** We first note that R is a right V-ring ⇐⇒ for every for eve

Proof We first note that R is a right V-ring \iff for every right R-module M, $Z^*(M) = 0$ [19, Theorem 12].

(i) \Longrightarrow (ii) As Rad $M \leq Z^*(M)$ for any R-module M, it is clear. (ii) \Longrightarrow (iii) Clear. (iii) \Longrightarrow (i)Let M be a simple R-module. Then Rad $M = Z^*(M) = 0$, i.e. M is injective. (i) \Longrightarrow (iv) Clear. (iv) \Longrightarrow (v) Let M be a simple singular R-module. Since M is quasi-projective, Rad $M = Z^*(M) = 0$. Then M is injective. (v) \Longrightarrow (i) Let M be a simple R-module. If M is singular M is injective. If M is projective, by (T3), Rad $M = Z^*(M) = 0$. Again M is injective. \Box

Proposition 2.4 The following are equivalent for any ring R.
(i) R is a right GV-ring,
(ii) R satisfies (T2).

Proof R is a right GV-ring $\iff Z(M) \cap Z^*(M) = 0$ for any right R-module M [19, Theorem 10].

(i) \Longrightarrow (ii) Let M be a singular R-module. Then $Z^*(M) = 0$. Hence $Z^*(M) = \text{Rad}M$. (ii) \Longrightarrow (i) Let M be a simple singular R-module. By hypothesis, $Z^*(M) = \text{Rad}M = 0$. Since M is simple, M is injective.

Example 2.5 There exists a ring R with *-radical, but R has a right R-module which does not have *-radical. Let R be the endomorphism ring of an infinite dimensional (left) vector space V over a field F. Then R is a von Neumann regular right self-injective ring but not a right V-ring, because V_R is a simple small module (see [25, 23.6]). Then $Z^*(R_R) = J(R) = 0$ but $0 = J(V_R) \neq Z^*(V_R) = V_R$.

3 Properties (T3) and (T4)

Example 3.1 Every projective module does not have *-radical in general.

Proof Let
$$R = \begin{bmatrix} F & 0 \\ F & F \end{bmatrix}$$
 be lower triangular matrices over a field F . Then
 $J(R) = \begin{bmatrix} 0 & 0 \\ F & 0 \end{bmatrix}$ and $\operatorname{Soc}(R_R) = \begin{bmatrix} F & 0 \\ F & 0 \end{bmatrix}$. By [19, Example 11], $\operatorname{Soc}(R_R) = Z^*(R_R) \neq J(R)$.

By Proposition 2.3, V-rings satisfy (T3). Also QF-rings satisfy (T3) because over a QF-ring R, every projective right R-module is injective [8, 24.8]. If R satisfies (T3), then R is not necessarily a V-ring nor a QF-ring. Because there are many examples of QF-rings which are not V-rings and V-rings which are not QF-rings.

Note that any projective module that has *-radical is non-small. Because projective modules do not equal to their radicals. Hence small rings, for example commutative domains (see [22]), do not satisfy (T3).

In [21], Rayar showed that R is a QF-ring iff every R-module is a direct sum of an injective and a singular module iff every R-module is a direct sum of a projective and a small module. Now,

Proposition 3.2 Let R be a right Noetherian or a semilocal ring. If R satisfies (T3) then every semisimple right R-module is a direct sum of an injective module and a singular module.

Proof Let M be a semisimple module. As any simple module is projective or singular then M has a decomposition $M = N \oplus K$ where N is the direct sum of projective simples and K is the direct sum of singular simples. Then K is singular. Also by (T3), $Z^*(N)$ =RadN = 0. Hence N is the direct sum of injectives. If R is right Noetherian, by [8, 20.1 Theorem], N is injective. If R is semilocal then N is also injective by [20, Theorem 4].

For the converse of the Proposition 3.2 we give the following example.

Example 3.3 [2, Example 12.18] Let S be Z localised at 2Z and set

$$R = \left\{ \left[\begin{array}{cc} a & 2b \\ c & d \end{array} \right] : a, b, c, d \in S, a - d \in 2S \right\}$$

with the usual matrix operations, then R is a prime left and right Noetherian local ring which is not an integral domain. $J=J(R)=2Se_{11}+2Se_{12}+Se_{21}+2Se_{22}$ then $R/J\cong Z/2Z$.

Let M be a semisimple R-module and N a simple submodule of M. As R is local, $N \cong R/J$; and as Z is uniform, N is singular. This implies that M is singular.

On the other hand since R is a prime right Goldie ring which is not primitive, $Z^*(M) = M$ for every right R-module M [19]. So R does not satisfy (T3) because $Z^*(R_R) = R$.

Harada proved that over a right perfect ring R, R is a right QF-3⁺ ring if and only if any non-small indecomposable projective R-module is injective [11, Theorem 1.3]. He also proved that if R is a right Artinian right QF-3⁺ ring with $Z^*(R) = J(R)$ then it is a QF-ring. Now we give the following result over a right perfect ring.

Theorem 3.4 Let R be a right perfect right $QF-3^+$ ring and assume that R satisfies (T3). Then R is a QF-ring.

Proof Let $R = e_1 R \oplus \ldots \oplus e_n R$ where $\{e_1, \ldots, e_n\}$ is an orthogonal set of idempotents with each $e_i R$ is local indecomposable projective (see [1] and [15]). By (T3), $Z^*(e_i R) = J(e_i R)$ for all *i*. Then each $e_i R$ is non-small. Hence each $e_i R$ is injective by [11, Theorem 1.3]. This implies that R is right self-injective.

Now we claim that R is a semiprimary ring. Since R is extending and has no infinite set of orthogonal idempotents, R has acc on right annihilator ideals. Z(R) and hence J(R) is nilpotent by [10, Theorem 3.31]. This implies that R is a semiprimary ring.

Since R is semiprimary and a right QF-3⁺ ring R is a semiprimary QF-3 ring. Then E(R) = R is \sum -injective by [5], i.e. R is a QF-ring.

Note that a ring R is a QF-ring if and only if every injective right R-module is projective by [8, 24.8].

Theorem 3.5 The following are equivalent for any ring R.
(i) R is a QF-ring,
(ii) R satisfies (T4).

Proof (ii) \implies (i) Let M be an injective R-module. Then $Z^*(M) = \text{Rad}M$. Hence M is projective. This implies that R is a QF-ring.

(i) \Longrightarrow (ii) Let M be an R-module with $Z^*(M) = \operatorname{Rad} M$. By [21], M has a decomposition $M = P \oplus S$ where P is projective and S is small. Then $Z^*(S) = \operatorname{Rad} S = S$. Since R is right perfect, S = 0. Hence M is projective.

Corollary 3.6 $(T_4) \Longrightarrow (T_3)$.

4 Properties (T5), (T6) and (T7)

In this section we characterize QF-rings, H-rings and semiprimary QF-3 rings. **Example 4.1** Every module that has *-radical need not be injective.

A. ÇÍĞDEM ÖZCAN

Proof Let R be the ring of polynomials in countably many indeterminates $\{x_i\}$ over $Z_2 = Z/2Z$ where we impose the following relations:

(i) $x_k^3 = 0$ for all k,

(ii) $x_k x_j = 0$ for all $k \neq j$ and,

(iii) $x_k^2 = x_j^2$ for all k, j.

R is commutative, semiprimary, local, continuous but not self-injective by [17]. $J(R) = (x_1, x_2, ...)$ is the unique maximal ideal in *R*. Since $J(R) \leq Z^*(R), Z^*(R) = J(R)$ or $Z^*(R) = R$. If $Z^*(R) = R$ then for any injective module *M*, $Z^*(M) = Rad(M) = M$. This contradicts that *R* is a perfect ring. Hence $Z^*(R) = J(R)$ but *R* is not self-injective.

Theorem 4.2 [18, Theorem 2.11] The following statements are equivalent for any ring R.

(i) R is a right H-ring,

(ii) R is right Artinian and every non-small R-module contains a non-zero injective submodule,

(iii) R is right perfect and for any exact sequence $\phi : P \longrightarrow E \longrightarrow 0$ where E injective and ker ϕ is small in P, P is injective,

(iv) Every R-module is a direct sum of an injective module and a small module. When this is so, then R is a semiprimary QF-3 ring.

Lemma 4.3 Let R be a ring which satisfies (T5). Then for any exact sequence $\phi: P \longrightarrow E \longrightarrow 0$ where E is injective and ker $\phi \ll P$, P is injective.

Proof Let $\phi : P \longrightarrow E \longrightarrow 0$ be an exact sequence where E is injective and $\ker \phi \ll P$. Then $\phi(\operatorname{Rad} P) = \operatorname{Rad} E \leq \phi(Z^*(P)) \leq Z^*(E) = \operatorname{Rad} E$ by [1, Proposition 9.15] and Lemma 2.1, and so $\phi(\operatorname{Rad} P) = \phi(Z^*(P))$. Since $\ker \phi \leq \operatorname{Rad} P$, $\operatorname{Rad} P = Z^*(P)$. By hypothesis, P is injective.

Theorem 4.4 The following statements are equivalent for any ring R.

(i) R is a right H-ring,

(ii) R is right perfect and satisfies (T5),

(iii) Every right R-module that has *-radical is lifting.

Proof (i) \Longrightarrow (ii) R is right perfect by Theorem 4.2. Let M be a module that has *-radical. $M = N \oplus K$ where N is injective and K is small by Theorem 4.2. Then $K = Z^*(K) \leq Z^*(M) = \text{Rad}M$. Since R is right perfect, $\text{Rad}M \ll M$. It follows that $K \ll M$. So M = N is injective.

(ii) \Longrightarrow (i) By Lemma 4.3 and Theorem 4.2.

(ii) \Longrightarrow (iii) Let M be a right R-module that has *-radical. By (ii), M is injective. Then M is lifting by Theorem 4.2. (iii) \Longrightarrow (i) It is clear.

Lemma 4.5 R satisfies (T7) if and only if for every R-module M that has *-radical and has a projective cover P, P is \sum -extending.

Proof (\iff) It is clear.

 (\Longrightarrow) Let M be a module that has *-radical and $f: P \longrightarrow M$ an epimorphism with

ker $f \ll P$. Then by the proof of Lemma 4.3, $Z^*(P) = \text{Rad}P$. Hence $Z^*(P^{(\Lambda)}) = \text{Rad}(P^{(\Lambda)})$ for any index set Λ . Since any direct sum of projective modules is projective, $P^{(\Lambda)}$ is projective. By (T7), P is Σ -extending. \Box

Proposition 4.6 The following are equivalent for any ring R.

(i) R satisfies (T7),

(ii) Every projective R-module that has *-radical is quasi-continuous,

(iii) Every projective R-module that has *-radical is continuous,

(iv) Every projective R-module that has *-radical is quasi-injective.

Proof (iv) \Longrightarrow (iii) \Longrightarrow (ii) \Longrightarrow (i) Clear.

(i) \Longrightarrow (iv) Let M be a projective R-module that has *-radical. Then M is \sum -extending by Lemma 4.5. By [4, 3.6], M has a decomposition $M = \bigoplus M_i (i \in I)$ where each M_i is finitely generated, quasi-injective and indecomposable. In addition, M_i 's have local endomorphism ring by [25, 19.9] and then M_i 's are local by [25, 19.7]. Since M_i 's are non-small and local, every monomorphism $M_i \longrightarrow M_j (i \neq j)$ is an isomorphism. Hence by [6, Corollary 8.9], M is quasi-injective. \Box

Now we deal with the relationship between (T6) and (T7).

Proposition 4.7 Assume that R is a right QF- 3^+ ring and satisfies (T7). Then R satisfies (T6).

Proof Let M be a projective R-module that has *-radical. Then $M \oplus E(R_R)$ is projective by hypothesis and [15, Corollary 4.36]. Since $E(R_R)$ is injective, $Z^*(M \oplus E(R_R)) = \operatorname{Rad}(M \oplus E(R_R))$. By Proposition 4.6, $M \oplus E(R_R)$ is quasi-injective.

Example 4.8 If R is (right and left) perfect right QF- 3^+ then R need not satisfy (T7).

Proof Let R be any (right and left) perfect ring such that $E(R_R)$ is projective but E(RR) is not (for the existence of such a ring see [16]). Let M be a direct sum of countably many copies of $E(R_R)$. Then M is not quasi-injective by [26, Lemma 3.1]. But M is projective and has *-radical. Hence R_R does not satisfy (T7) by Proposition 4.6.

We do not know whether (T7) is equivalent to (T6) for any ring R. Now we give some results over a perfect ring.

Colby and Rutter [5, Theorem 1.3] proved that a ring R is semiprimary QF-3 if and only if R is right perfect and the projective cover of every injective R-module is injective if and only if R is right perfect and injective envelope of every projective R-module is projective. After that Vanaja [24, Theorem 1.5] showed that R is semiprimary QF-3 if and only if R is right perfect and any projective R-module whose indecomposable direct summands are non-small is extending.

Now, let R be a semiperfect ring and M a projective R-module that has *-radical. Then M has a decomposition $M \cong \bigoplus M_{\alpha}$ ($\alpha \in \Lambda$) where each M_{α} is indecomposable local (see [1, 27.11], [1, 27.6] and [25, 19.7]). By Lemma 2.2, $Z^*(M_{\alpha}) = \operatorname{Rad}(M_{\alpha})$ and then M_{α} is non-small for all α . **Theorem 4.9** The following are equivalent for any ring R. (i) R is a semiprimary QF-3 ring, (ii) R satisfies (T6) and is right perfect,

(iii) R satisfies (T7) and is right perfect.

Proof (ii) \implies (iii) It is clear.

(i) \Longrightarrow (ii) Let M be a projective module that has *-radical. By above remark, $M \cong \oplus M_{\alpha} \ (\alpha \in \Lambda)$ where each M_{α} is indecomposable and non-small. Since R is a right QF-3⁺ ring, all M_{α} is injective. $M \cong \oplus M_{\alpha}$ is a direct summand of $E(R_R)^{(\Lambda)}$. Then as $E(R_R)$ is \sum -injective M is injective.

(iii) \Longrightarrow (i) Let M be a projective module which every indecomposable summands are non-small. Then $M \cong \oplus M_{\alpha}$ ($\alpha \in \Lambda$) where each M_{α} is indecomposable nonsmall and local. Then $Z^*(M_{\alpha}) = \operatorname{Rad}(M_{\alpha})$ ($\alpha \in \Lambda$). This implies that $Z^*(M) =$ $\operatorname{Rad}(M)$. By (T7), M is extending. Thus by [24, Theorem 1.5], we get the result. \Box

Example 4.10 If R satisfies (T6), R need not satisfy (T5).

Proof Let $R = \begin{bmatrix} R & 0 & 0 \\ R & Q & 0 \\ R & R & R \end{bmatrix}$ where R is the real numbers and Q is the rational

numbers. R is a semiprimary QF-3 ring but not right Noetherian [5, 1.4 Remarks]. By Theorem 4.9, R satisfies (T6) and by Theorem 4.2 and Theorem 4.4, R does not satisfy (T5).

Proposition 4.11 Assume that R is semiperfect. If R satisfies (T6) then any nonsmall indecomposable projective R-module is injective. The converse holds when, in addition, R is right Noetherian.

Proof Let M be a non-small indecomposable projective R-module. Since R is semiperfect, M is local. This implies that $Z^*(M) = Rad(M)$. By (T6), M is injective.

For the converse, let M be a projective R-module that has *-radical. Again $M \cong \bigoplus M_{\alpha} \ (\alpha \in \Lambda)$ where each M_{α} is non-small indecomposable projective. By assumption, M_{α} 's are injective. As R is right Noetherian, M is injective. \Box

Another relationship between (T6) and "any non-small indecomposable projective module is injective" is given over a right GV-ring. In [19, Theorem 10] it is also proved that R is a right GV-ring if and only if every small module is projective.

Proposition 4.12 If R is a right GV-ring and satisfies (T6) then any non-small indecomposable projective module is injective.

Proof Let M be a non-small indecomposable projective module. We claim that $Z^*(M) = \operatorname{Rad}(M)$. If not, let $x \in Z^*(M) - \operatorname{Rad}(M)$. Then there exists a maximal submodule B of xR such that $xR/B \leq_d M/B$. Then $M/B = xR/B \oplus L/B$ for some L. Since xR is small, then xR/B is small. By [19, Theorem 10], xR/B is projective. This implies that M/L is simple projective. Hence $L \leq_d M$. If L = 0, M/B = xR/B and then $B \leq_d M$. If B = 0, M = xR which is contradicted by M is non-small. If B = M, xR = B, a contradiction. If L = M, again xR = B, a contradiction. Hence $Z^*(M) = \operatorname{Rad}(M)$. By (T6), M is injective.

Theorem 4.13 [18, Theorem 3.18], [6, 11.13] The following are equivalent for any ring R.

(i) R is a right co-H-ring,

(ii) Every R-module is expressed as a direct sum of a projective module and a sinqular module.

(iii) The family of all projective R-modules is closed under taking essential extensions.

(iv) R is right \sum -extending,

When this is so, then R is a semiprimary QF-3 ring.

Theorem 4.14 [18, Theorem 4.3] The following are equivalent for any ring R. (i) R is a QF-ring,

(ii) R is a right H-ring with Z(R) = J(R), (iii) R is a right co-H-ring with Z(R) = J(R).

Lemma 4.15 Let R be a semiperfect ring. If $Z^*(R_R) = Z(R_R)$ then $Z^*(R_R) = J(R)$. The converse holds when R is right or left perfect right quasi-continuous.

Proof Let R be a semiperfect ring and assume $Z^*(R_R) = Z(R_R)$. Then there exists an idempotent e of R such that $eR \leq Z(R_R)$ and $(1-e)R \cap Z(R_R)$ is small in R by [15, Corollary 4.42]. Since $Z(R_R)$ does not contain any non-zero idempotents, it follows that $Z(R_R) \leq J(R)$. Hence $Z^*(R_R) = J(R)$.

For converse, assume that $Z^*(R_R) = J(R)$. Since R is right or left perfect right quasi-continuous $Z(R_R) = J(R)$ by [3, Lemma 6]. Hence $Z^*(R_R) = Z(R_R)$.

Theorem 4.16 The following are equivalent for any ring R.

(1) R is a QF-ring, (2) $Z^*(R_R) = J(R)$ and (a) R satisfies (T5) or (b) R satisfies (T6) or (c) R satisfies (T7) or (d) R is a right co-H-ring or (e) R is a right H-ring, (3) $Z^*(R_R) = Z(R_R)$ and (a) R is semiperfect and (i) R satisfies (T5) or (ii) R satisfies (T6) or (iii) R satisfies (T7) or (d) R is a right co-H-ring or (e) R is a right H-ring.

Proof (1 \Longrightarrow 2a) Since R is right self-injective, $Z^*(R_R) = J(R)$. By Theorem 4.4, R satisfies (T5).

 $(2a \Longrightarrow 2b \Longrightarrow 2c)$ Clear.

 $(2c \Longrightarrow 2d)$ By Lemma 4.5, R is \sum -extending. Hence R is a right co-H-ring.

 $(2d \Longrightarrow 1)$ Let $F = R^{(N)}$ be the free right *R*-module which is the direct sum of a countably infinite number of copies of R. By Theorem 4.13, E(F) is projective. Since R is right perfect, E(F) is lifting. Then $E(F) = X \oplus Y$ where $X \leq F$ and $F \cap Y \ll E(F)$. Hence $F = X \oplus (F \cap Y)$. As $Z^*(F) = \operatorname{Rad} F$ and $F \cap Y \leq_d F$,

 $Z^*(F \cap Y)$ =Rad $(F \cap Y) = F \cap Y$. Since $F \cap Y$ is projective, this is a contradiction. Hence F = X is injective. By [8, Proposition 20.3A], R_R is ∑-injective. By [6, 18.1], R is a QF-ring. (2e \iff 1) By [11, p.673 Corollary]. (1 \implies 3a(i)) As R is self-injective, $Z(R_R)=J(R)=Z^*(R_R)$. (3a(i) \implies 3a(ii)) \implies 3a(iii)) Clear. (3a(ii) \implies 3d) As $Z^*(R_R) = Z(R_R)$ and R is semiperfect, $Z^*(R_R) = J(R)$ by Lemma 4.15. Hence R is \sum -extending by Lemma 4.5. (3d \implies 1)As by Lemma 4.15, $Z^*(R_R) = J(R)$ the proof is completed by the proof of (2d \implies 1). (3e \iff 1) By Lemma 4.15 and [11, p.673 Corollary]. □

References

- F.W. Anderson, K.R. Fuller, Ring and Categories of Modules, (1974), Springer-Verlag, Berlin-Heidelberg-NewYork.
- [2] A.W. Chatters, C.R. Hajarnavis, Rings with chain conditions, (1980), Pitman, London.
- [3] J.Clark, D.V. Huynh, When self-injective semiperfect ring Quasi-frobenius?, *Journal of Alg.*,165 (1994), 531-542.
- [4] J.Clark, R.Wisbauer, Polyform and projective ∑-extending modules, Algebra Colloquim, 5:4 (1998), 391-408.
- [5] R.R. Colby, E.A.Rutter, Generalizations of QF-3 algebras, Trans. Amer. Math. Soc., 153 (1971), 371-386.
- [6] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules, (1994), Pitman RN Mathematics 313, Longman, Harlow.
- [7] C. Faith, Lectures on injective modules and quotient rings (Lecture Notes in Math. 49), (1967), Springer-Verlag, Berlin Heidelberg-NewYork.
- [8] C. Faith, Algebra II, Ring Theory, (1976), Springer Grundl. 191.
- [9] K.R. Fuller, Relative projectivity and injectivity classes determined by simple modules, J. London Math.Soc, 5 (1972), 423-431.
- [10] K.R. Goodearl, Ring Theory, (1976), Pure and Applied Math., No:33, Marcel-Dekker.
- [11] M. Harada, Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F.Van Oystaeyen, ed.NewYork: Marcel Dekker.
- [12] Y. Hirano, Regular modules and V-modules, *Hiroshima Math.J.*, 11 (1981), 125-142.
- [13] J.P.Jans, Projective-injective modules, Pacific J.Math. 9 (1959), 1103-1108.

- [14] W.W. Leonard, Small Modules, Proc. Amer. Math. Soc. 17 (1966), 527-531.
- [15] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, (1990), London Math.Soc. LN.147, Cambridge University Press, NewYork Sydney.
- [16] B. Müller, Dominant dimension of semiprimary rings, J.Reine Angew Math. 232 (1968), 173-179.
- [17] W.K. Nicholson and M.F. Yousif, Continuous rings with chain conditions, Journal of Pure and Applied Algebra, 97 (1994), 325-332.
- [18] K. Oshiro, Lifting modules, extending modules and their applications to QFrings, *Hokkaido Math. J.*, 13 (1984), 310-338.
- [19] A.Ç.Özcan, Some characterizations of V-modules and rings, Vietnam J.Math., 26(3) (1998), 253-258.
- [20] A.Ç.Ozcan and A. Harmancı, Characterization of some rings by functor Z^{*}(.), *Turkish J.Math.*, 21(3) (1997), 325-331.
- [21] M. Rayar, On small and cosmall modules, Acta Math.Acad.Sci.Hungar,39(4) (1982), 389-392.
- [22] M. Rayar, A note on small rings, Acta Math.Hung., 49(3-4) (1987), 381-383.
- [23] H.Tachikawa, On left QF-3 rings, Pacific J.Math., 32 (1970), 255-268.
- [24] N. Vanaja, Characterization of rings using extending and lifting modules, *Ring Theory*, (1993), 329-342 World Sci.Publishing, River Edge.
- [25] R. Wisbauer, Foundations of Module and Ring Theory, (1991), Gordon and Breach, Reading.
- [26] K.Yamagata, The exchange property and direct sums of indecomposable injective modules, *Pacific J.Math*, 55 (1974), 301-317.

DEPARTMENT OF MATHEMATICS, HACETTEPE UNIVERSITY, 06532 BEYTEPE, ANKARA TURKEY. *E-mail address*: ozcan@hacettepe.edu.tr