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Abstract

ABSTRACT. Let R be a ring with identity and M a right R-module. Let
E(M) denote the injective hull of M and Z∗(M) := M ∩RadE(M). We say M
has ∗-radical if Z∗(M) = RadM . In this note we characterize rings in terms of
modules having ∗-radical. First we prove that R is a right V-ring (GV-ring) if
and only if every (singular) right R-module has ∗-radical. After that we show
that R is a right H-ring if and only if every right R-module that has ∗-radical is
lifting and, R is a semiprimary QF-3 ring if and only if R is right perfect and
every projective right R-module that has ∗-radical is injective (extending).
Finally we obtain that R is a QF-ring if and only if every right R-module that
has ∗-radical is projective if and only if Z∗(R) =J(R) and every projective
right R-module that has ∗-radical is injective (extending).

1 Preliminaries

Throughout this paper we assume that R is an associative ring with unit and all
R-modules cosidered are unitary right R-modules. Let M be an R-module. We
write E(M), RadM , Soc(M) and Z(M) for the injective envelope, the Jacobson
radical, the socle and the singular submodule of M , respectively. J(R) is the Ja-
cobson radical of R. A submodule N of M is indicated by writting N ≤ M . The
notation N ≤e M is reserved for essential submodules.

DEFINITION. A ring R is called a right V-ring if every right ideal of R is an
intersection of maximal right ideals. R is called a right GV-ring if every simple
singular right R-module is injective [12].

R is a right V-ring iff every simple right R-module is injective iff RadM = 0 for
every right R-module M . [7]

DEFINITION. A module M is called extending if every submodule of M is essential
in a summand of M . A module M is called quasi-continuous if it is extending and
for summands M1 and M2 of M such that M1 ∩M2 = 0, M1⊕M2 is a summand of
M . M is called continuous if it is extending and for a submodule A of M which is
isomorphic to a summand of M , A is a summand of M . Note that quasi-injective
modules are continuous (see, for example [15]).
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2 A. ÇÍĞDEM ÖZCAN

M is called
∑

-extending (-injective) if every direct sum of copies of M is ex-
tending (-injective) (see for example [6] or [8]).

DEFINITION. Let N be a submodule of a module M . N is called a small sub-
module if whenever N + L = M for some submodule L of M we have L = M and
in this case we write N << M . M is called lifting if for every submodule N of M
there is a decomposition M = M1⊕M2 such that M1 ≤ N and N ∩M2 << M (see,
for example [15]). Oshiro [18] called a ring R a right H-ring if every injective right
R-module is lifting. He also called a ring R a right co-H-ring if every projective
right R-module is extending.

A ring R is called semilocal if R/J(R) satisfies the minimum condition on right
ideals. A ring R is semiprimary if R is semilocal and J(R) is nilpotent. A ring
R is called a right QF-3 ring if R has injective projective faithful right ideal. We
call R is a right QF-3+ ring if E(RR) is projective. Jans [13] showed that among
rings with minimal condition on right ideals, the classes of QF-3 and QF-3+ rings
coincide.

A ring R is a semiprimary QF-3 ring when R is a semiprimary left and right
QF-3 ring. The class of semiprimary QF-3 rings is a generalization of the class of
QF-rings (Quasi-Frobenius rings). The class of H-rings and co-H-rings are general-
izations of semiprimary QF-3 rings. Tachikawa [23, Proposition 3.3] proved that a
semiprimary QF-3 ring is a right and left QF-3+-ring.

DEFINITION. An R-module M is said to be small if it is a small submodule of
some R-module and it is said to be non-small if it is not a small module. M is a
small module if and only if M is small in its injective hull [14]. We put

Z∗(M) = {m ∈ M : mR is small } [11].

Since Rad(M) is the union of all small submodules in M , RadM ≤ Z∗(M), and

Z∗(M) = M∩ Rad E(M) = M∩ RadE′

for every injective module E′ ⊇ M . Note that simple modules are either injective
or small. If M is a small module then Z∗(M) = M .

In this note we say a module M has ∗-radical if Z∗(M) =Rad(M). A ring R
has ∗-radical if RR has ∗-radical. Clearly injective modules have ∗-radical. But
modules that have ∗-radical are not injective in general (Example 4.1). In the light
of this result we define the following properties in this note.
(T1) Every module has ∗-radical.
(T2) Every singular module has ∗-radical.
(T3) Every projective module has ∗-radical.
(T4) Every module that has ∗-radical is projective.
(T5) Every module that has ∗-radical is injective.
(T6) Every projective module that has ∗-radical is injective.
(T7) Every projective module that has ∗-radical is extending.

At once it can be easily seen that (T1) =⇒ (T2) and (T3); (T5) =⇒ (T6) =⇒
(T7).

In the second part of this note we prove that R is a right V-ring ⇐⇒ (T1) holds
⇐⇒ Every quasi-injective module has ∗-radical ⇐⇒ Every quasi-projective module
has ∗-radical ⇐⇒ (T3) holds and R is a right GV-ring. And (T2) holds ⇐⇒ R is
a right GV-ring.
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In the third part we prove that (T4) holds ⇐⇒ R is a QF-ring. Also we give
some other results about (T3).

In the last part of this study we prove that R is a right H-ring if and only if
every module that has ∗-radical is lifting if and only if R is a right perfect ring and
(T5) holds. After that we show that (T7) holds ⇐⇒ Every projective module that
has ∗-radical is quasi-injective ⇐⇒ Every projective module that has ∗-radical is
continuous ⇐⇒ Every projective module that has ∗-radical is quasi-continuous. If
R is a right QF-3+ ring, (T6) ⇐⇒ (T7). And R is a semiprimary QF-3 ring ⇐⇒
(T6) holds and R is right perfect ⇐⇒ (T7) holds and R is right perfect. Finally we
give a characterization of QF-rings by using these properties.

2 Properties (T1) and (T2)

First we give the following useful lemmas.
Lemma 2.1 Let R be a ring and let ϕ : M −→ M ′ be a homomorphism of R-
modules M,M ′. Then ϕ(Z∗(M)) ≤Z∗(M ′).

Proof If i : M ′ −→E(M ′) is the inclusion mapping, then the homomorphism
iϕ : M −→E(M ′) can be lifted to a homomorphism θ :E(M) −→E(M ′). Now
θ(Rad E(M)) ≤RadE(M ′) by [1, Proposition 9.14]. Then ϕ(Z∗(M)) ≤Z∗(M ′). 2

Lemma 2.2 Any direct summand of a module that has ∗-radical has ∗-radical.

Proof Let M be a module that has ∗-radical and N a direct summand of M . Let
x ∈ Z∗(N). Then xR << E(N) ≤ E(M). It follows that x ∈ Z∗(M) = Rad(M)
and then xR << M . Since N is a direct summand of M , xR << N . Hence
Z∗(N) = Rad(N). 2

Proposition 2.3 The following are equivalent for any ring R.
(i) R is a right V-ring,
(ii) R satisfies (T1),
(iii) Every quasi-injective right R-module has ∗-radical,
(iv) Every quasi-projective right R-module has ∗-radical,
(v) R satisfies (T3) and is a right GV-ring.

Proof We first note that R is a right V-ring ⇐⇒ for every right R-module M ,
Z∗(M) = 0 [19, Theorem 12].
(i)=⇒ (ii) As RadM ≤Z∗(M) for any R-module M , it is clear. (ii)=⇒ (iii) Clear.
(iii)=⇒ (i)Let M be a simple R-module. Then RadM =Z∗(M) = 0, i.e. M is
injective. (i)=⇒ (iv) Clear. (iv) =⇒ (v) Let M be a simple singular R-module.
Since M is quasi-projective, RadM=Z∗(M) = 0. Then M is injective. (v)=⇒ (i)
Let M be a simple R-module. If M is singular M is injective. If M is projective,
by (T3), RadM=Z∗(M) = 0. Again M is injective. 2

Proposition 2.4 The following are equivalent for any ring R.
(i) R is a right GV-ring,
(ii) R satisfies (T2).
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Proof R is a right GV-ring ⇐⇒ Z(M)∩Z∗(M) = 0 for any right R-module M [19,
Theorem 10].
(i) =⇒ (ii) Let M be a singular R-module. Then Z∗(M) = 0. Hence Z∗(M) =RadM .
(ii)=⇒ (i) Let M be a simple singular R-module. By hypothesis, Z∗(M)=RadM =
0. Since M is simple, M is injective. 2

Example 2.5 There exists a ring R with ∗-radical, but R has a right R-module
which does not have ∗-radical. Let R be the endomorphism ring of an infinite
dimensional (left) vector space V over a field F . Then R is a von Neumann regular
right self-injective ring but not a right V-ring, because VR is a simple small module
(see [25, 23.6]). Then Z∗(RR) =J(R) = 0 but 0=J(VR) 6= Z∗(VR) = VR.

3 Properties (T3) and (T4)

Example 3.1 Every projective module does not have ∗-radical in general.

Proof Let R =
[

F 0
F F

]
be lower triangular matrices over a field F . Then

J(R) =
[

0 0
F 0

]
and Soc(RR) =

[
F 0
F 0

]
. By [19, Example 11], Soc(RR) =

Z∗(RR) 6=J(R). 2

By Proposition 2.3, V-rings satisfy (T3). Also QF-rings satisfy (T3) because over
a QF-ring R, every projective right R-module is injective [8, 24.8]. If R satisfies
(T3), then R is not necessarily a V-ring nor a QF-ring. Because there are many
examples of QF-rings which are not V-rings and V-rings which are not QF-rings.

Note that any projective module that has ∗-radical is non-small. Because pro-
jective modules do not equal to their radicals. Hence small rings, for example
commutative domains (see [22]), do not satisfy (T3).

In [21], Rayar showed that R is a QF-ring iff every R-module is a direct sum of
an injective and a singular module iff every R-module is a direct sum of a projective
and a small module. Now,

Proposition 3.2 Let R be a right Noetherian or a semilocal ring. If R satisfies
(T3) then every semisimple right R-module is a direct sum of an injective module
and a singular module.

Proof Let M be a semisimple module. As any simple module is projective or
singular then M has a decomposition M = N ⊕ K where N is the direct sum of
projective simples and K is the direct sum of singular simples. Then K is singular.
Also by (T3), Z∗(N)=RadN = 0. Hence N is the direct sum of injectives. If R is
right Noetherian, by [8, 20.1 Theorem], N is injective. If R is semilocal then N is
also injective by [20, Theorem 4]. 2

For the converse of the Proposition 3.2 we give the following example.

Example 3.3 [2, Example 12.18] Let S be Z localised at 2Z and set

R =
{[

a 2b
c d

]
: a, b, c, d ∈ S, a− d ∈ 2S

}
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with the usual matrix operations, then R is a prime left and right Noetherian local
ring which is not an integral domain. J=J(R)= 2Se11+2Se12+Se21+ 2Se22 then
R/J∼= Z/2Z.

Let M be a semisimple R-module and N a simple submodule of M . As R is
local, N ∼= R/J; and as Z is uniform, N is singular. This implies that M is singular.

On the other hand since R is a prime right Goldie ring which is not primitive,
Z∗(M) = M for every right R-module M [19]. So R does not satisfy (T3) because
Z∗(RR) = R. 2

Harada proved that over a right perfect ring R, R is a right QF-3+ ring if and
only if any non-small indecomposable projective R-module is injective [11, Theorem
1.3]. He also proved that if R is a right Artinian right QF-3+ ring with Z∗(R) =J(R)
then it is a QF-ring. Now we give the following result over a right perfect ring.

Theorem 3.4 Let R be a right perfect right QF-3+ ring and assume that R satisfies
(T3). Then R is a QF-ring.

Proof Let R = e1R⊕ . . .⊕ enR where {e1, ..., en} is an orthogonal set of idempo-
tents with each eiR is local indecomposable projective (see [1] and [15]). By (T3),
Z∗(eiR) =J(eiR) for all i. Then each eiR is non-small. Hence each eiR is injective
by [11, Theorem 1.3]. This implies that R is right self-injective.

Now we claim that R is a semiprimary ring. Since R is extending and has
no infinite set of orthogonal idempotents, R has acc on right annihilator ideals.
Z(R) and hence J(R) is nilpotent by [10, Theorem 3.31]. This implies that R is a
semiprimary ring.

Since R is semiprimary and a right QF-3+ ring R is a semiprimary QF-3 ring.
Then E(R) = R is

∑
-injective by [5], i.e. R is a QF-ring. 2

Note that a ring R is a QF-ring if and only if every injective right R-module is
projective by [8, 24.8].

Theorem 3.5 The following are equivalent for any ring R.
(i) R is a QF-ring,
(ii) R satisfies (T4).

Proof (ii)=⇒ (i) Let M be an injective R-module. Then Z∗(M) =RadM . Hence
M is projective. This implies that R is a QF-ring.
(i)=⇒ (ii) Let M be an R-module with Z∗(M)=RadM . By [21], M has a decom-
position M = P ⊕S where P is projective and S is small. Then Z∗(S)=RadS = S.
Since R is right perfect, S = 0. Hence M is projective. 2

Corollary 3.6 (T4)=⇒ (T3).

4 Properties (T5), (T6) and (T7)

In this section we characterize QF-rings, H-rings and semiprimary QF-3 rings.
Example 4.1 Every module that has ∗-radical need not be injective.
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Proof Let R be the ring of polynomials in countably many indeterminates {xi}
over Z2 = Z/2Z where we impose the following relations:
(i) x3

k = 0 for all k,
(ii) xkxj = 0 for all k 6= j and,
(iii) x2

k = x2
j for all k, j.

R is commutative, semiprimary, local, continuous but not self-injective by [17].
J(R) = (x1, x2, ...) is the unique maximal ideal in R. Since J(R) ≤ Z∗(R), Z∗(R) =
J(R) or Z∗(R) = R. If Z∗(R) = R then for any injective module M , Z∗(M) =
Rad(M) = M . This contradicts that R is a perfect ring. Hence Z∗(R) =J(R) but
R is not self-injective. 2

Theorem 4.2 [18, Theorem 2.11] The following statements are equivalent for any
ring R.
(i) R is a right H-ring,
(ii) R is right Artinian and every non-small R-module contains a non-zero injective
submodule,
(iii) R is right perfect and for any exact sequence φ : P −→ E −→ 0 where E
injective and kerφ is small in P , P is injective,
(iv) Every R-module is a direct sum of an injective module and a small module.
When this is so, then R is a semiprimary QF-3 ring.

Lemma 4.3 Let R be a ring which satisfies (T5). Then for any exact sequence
φ : P −→ E −→ 0 where E is injective and kerφ << P , P is injective.

Proof Let φ : P −→ E −→ 0 be an exact sequence where E is injective and
kerφ << P . Then φ(RadP ) =RadE ≤ φ(Z∗(P )) ≤ Z∗(E) =RadE by [1, Proposi-
tion 9.15] and Lemma 2.1, and so φ(RadP ) =φ(Z∗(P )). Since kerφ ≤RadP,RadP=
Z∗(P ). By hypothesis, P is injective. 2

Theorem 4.4 The following statements are equivalent for any ring R.
(i) R is a right H-ring,
(ii) R is right perfect and satisfies (T5),
(iii) Every right R-module that has ∗-radical is lifting.

Proof (i)=⇒(ii) R is right perfect by Theorem 4.2. Let M be a module that has
∗-radical. M = N ⊕K where N is injective and K is small by Theorem 4.2. Then
K = Z∗(K) ≤ Z∗(M) = RadM . Since R is right perfect, RadM << M . It follows
that K << M . So M = N is injective.
(ii)=⇒(i) By Lemma 4.3 and Theorem 4.2.
(ii)=⇒(iii) Let M be a right R-module that has ∗-radical. By (ii), M is injective.
Then M is lifting by Theorem 4.2.
(iii)=⇒(i) It is clear. 2

Lemma 4.5 R satisfies (T7) if and only if for every R-module M that has ∗-radical
and has a projective cover P , P is

∑
-extending.

Proof ( ⇐=) It is clear.
(=⇒) Let M be a module that has ∗-radical and f : P −→ M an epimorphism with
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kerf << P . Then by the proof of Lemma 4.3, Z∗(P ) = RadP . Hence Z∗(P (Λ)) =
Rad(P (Λ)) for any index set Λ. Since any direct sum of projective modules is
projective, P (Λ) is projective. By (T7), P is

∑
-extending. 2

Proposition 4.6 The following are equivalent for any ring R.
(i) R satisfies (T7),
(ii) Every projective R-module that has ∗-radical is quasi-continuous,
(iii) Every projective R-module that has ∗-radical is continuous,
(iv) Every projective R-module that has ∗-radical is quasi-injective.

Proof (iv) =⇒ (iii) =⇒ (ii) =⇒ (i) Clear.
(i)=⇒ (iv) Let M be a projective R-module that has ∗-radical. Then M is

∑
-

extending by Lemma 4.5. By [4, 3.6], M has a decomposition M = ⊕Mi(i ∈
I) where each Mi is finitely generated, quasi-injective and indecomposable. In
addition, Mi’s have local endomorphism ring by [25, 19.9] and then Mi’s are local
by [25, 19.7]. Since Mi’s are non-small and local, every monomorphism Mi −→
Mj(i 6= j) is an isomorphism. Hence by [6, Corollary 8.9], M is quasi-injective. 2

Now we deal with the relationship between (T6) and (T7).

Proposition 4.7 Assume that R is a right QF-3+ ring and satisfies (T7). Then
R satisfies (T6).

Proof Let M be a projective R-module that has ∗-radical. Then M⊕E(RR)
is projective by hypothesis and [15, Corollary 4.36]. Since E(RR) is injective,
Z∗(M⊕E(RR)) =Rad(M⊕E(RR)). By Proposition 4.6 , M⊕E(RR) is quasi-injective.
Hence M is injective. 2

Example 4.8 If R is (right and left) perfect right QF-3+ then R need not satisfy
(T7).

Proof Let R be any (right and left) perfect ring such that E(RR) is projective
but E(RR) is not (for the existence of such a ring see [16] ). Let M be a direct sum
of countably many copies of E(RR). Then M is not quasi-injective by [26, Lemma
3.1]. But M is projective and has ∗-radical. Hence RR does not satisfy (T7) by
Proposition 4.6. 2

We do not know whether (T7) is equivalent to (T6) for any ring R. Now we
give some results over a perfect ring.

Colby and Rutter [5, Theorem 1.3] proved that a ring R is semiprimary QF-3 if
and only if R is right perfect and the projective cover of every injective R-module is
injective if and only if R is right perfect and injective envelope of every projective
R-module is projective. After that Vanaja [24, Theorem 1.5] showed that R is
semiprimary QF-3 if and only if R is right perfect and any projective R-module
whose indecomposable direct summands are non-small is extending.

Now, let R be a semiperfect ring and M a projective R-module that has ∗-radical.
Then M has a decomposition M ∼= ⊕Mα (α ∈ Λ) where each Mα is indecomposable
local (see [1, 27.11], [1, 27.6] and [25, 19.7]). By Lemma 2.2, Z∗(Mα) =Rad(Mα)
and then Mα is non-small for all α.
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Theorem 4.9 The following are equivalent for any ring R.
(i) R is a semiprimary QF-3 ring,
(ii) R satisfies (T6) and is right perfect,
(iii) R satisfies (T7) and is right perfect.

Proof (ii) =⇒ (iii) It is clear.
(i)=⇒ (ii) Let M be a projective module that has ∗-radical. By above remark,
M ∼= ⊕Mα (α ∈ Λ) where each Mα is indecomposable and non-small. Since R is a
right QF-3+ ring, all Mα is injective. M ∼= ⊕Mα is a direct summand of E(RR)(Λ).
Then as E(RR) is

∑−injective M is injective.
(iii)=⇒ (i) Let M be a projective module which every indecomposable summands
are non-small. Then M ∼= ⊕Mα (α ∈ Λ) where each Mα is indecomposable non-
small and local. Then Z∗(Mα) = Rad(Mα) (α ∈ Λ). This implies that Z∗(M) =
Rad(M). By (T7), M is extending. Thus by [24, Theorem 1.5], we get the result.
2

Example 4.10 If R satisfies (T6), R need not satisfy (T5).

Proof Let R =




R 0 0
R Q 0
R R R


 where R is the real numbers and Q is the rational

numbers. R is a semiprimary QF-3 ring but not right Noetherian [5, 1.4 Remarks].
By Theorem 4.9, R satisfies (T6) and by Theorem 4.2 and Theorem 4.4, R does not
satisfy (T5). 2

Proposition 4.11 Assume that R is semiperfect. If R satisfies (T6) then any non-
small indecomposable projective R-module is injective. The converse holds when, in
addition, R is right Noetherian.

Proof Let M be a non-small indecomposable projective R-module. Since R is
semiperfect, M is local. This implies that Z∗(M) =Rad(M). By (T6), M is injec-
tive.

For the converse, let M be a projective R-module that has ∗-radical. Again
M ∼= ⊕Mα (α ∈ Λ) where each Mα is non-small indecomposable projective. By
assumption, Mα’s are injective. As R is right Noetherian, M is injective. 2

Another relationship between (T6) and ”any non-small indecomposable projec-
tive module is injective” is given over a right GV-ring. In [19, Theorem 10] it is also
proved that R is a right GV-ring if and only if every small module is projective.

Proposition 4.12 If R is a right GV-ring and satisfies (T6) then any non-small
indecomposable projective module is injective.

Proof Let M be a non-small indecomposable projective module. We claim that
Z∗(M) =Rad(M). If not, let x ∈Z∗(M)−Rad(M). Then there exists a maximal
submodule B of xR such that xR/B ≤d M/B. Then M/B = xR/B ⊕ L/B for
some L. Since xR is small, then xR/B is small. By [19, Theorem 10], xR/B is
projective. This implies that M/L is simple projective. Hence L ≤d M . If L = 0,
M/B = xR/B and then B ≤d M . If B = 0, M = xR which is contradicted by M
is non-small. If B = M , xR = B, a contradiction. If L = M , again xR = B, a
contradiction. Hence Z∗(M) =Rad(M). By (T6), M is injective. 2
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Theorem 4.13 [18, Theorem 3.18], [6, 11.13] The following are equivalent for any
ring R.
(i) R is a right co-H-ring,
(ii) Every R-module is expressed as a direct sum of a projective module and a sin-
gular module,
(iii) The family of all projective R-modules is closed under taking essential exten-
sions,
(iv) R is right

∑
-extending,

When this is so, then R is a semiprimary QF-3 ring.

Theorem 4.14 [18, Theorem 4.3] The following are equivalent for any ring R.
(i) R is a QF-ring,
(ii) R is a right H-ring with Z(R) =J(R),
(iii) R is a right co-H-ring with Z(R) =J(R).

Lemma 4.15 Let R be a semiperfect ring. If Z∗(RR) =Z(RR) then Z∗(RR) =J(R).
The converse holds when R is right or left perfect right quasi-continuous.

Proof Let R be a semiperfect ring and assume Z∗(RR) =Z(RR). Then there exists
an idempotent e of R such that eR ≤Z(RR) and (1− e)R∩Z(RR) is small in R by
[15, Corollary 4.42]. Since Z(RR) does not contain any non-zero idempotents, it
follows that Z(RR) ≤J(R). Hence Z∗(RR) =J(R).

For converse, assume that Z∗(RR) =J(R). Since R is right or left perfect right
quasi-continuous Z(RR) =J(R) by [3, Lemma 6]. Hence Z∗(RR) =Z(RR). 2

Theorem 4.16 The following are equivalent for any ring R.

(1) R is a QF-ring,
(2) Z∗(RR) =J(R) and

(a) R satisfies (T5) or
(b) R satisfies (T6) or
(c) R satisfies (T7) or
(d) R is a right co-H-ring or
(e) R is a right H-ring,

(3) Z∗(RR) =Z(RR) and
(a) R is semiperfect and

(i) R satisfies (T5) or
(ii) R satisfies (T6) or
(iii) R satisfies (T7) or

(d) R is a right co-H-ring or
(e) R is a right H-ring.

Proof (1=⇒2a) Since R is right self-injective, Z∗(RR) =J(R). By Theorem 4.4,
R satisfies (T5).
(2a=⇒2b=⇒2c) Clear.
(2c=⇒2d) By Lemma 4.5, R is

∑
-extending. Hence R is a right co-H-ring.

(2d=⇒1) Let F = R(N) be the free right R-module which is the direct sum of a
countably infinite number of copies of R. By Theorem 4.13, E(F ) is projective.
Since R is right perfect, E(F ) is lifting. Then E(F ) = X ⊕ Y where X ≤ F and
F ∩ Y <<E(F ). Hence F = X ⊕ (F ∩ Y ). As Z∗(F )=RadF and F ∩ Y ≤d F ,
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Z∗(F ∩Y )=Rad(F ∩Y ) = F ∩Y . Since F ∩Y is projective, this is a contradiction.
Hence F = X is injective. By [8, Proposition 20.3A], RR is

∑
-injective. By [6,

18.1], R is a QF-ring.
(2e⇐⇒1) By [11, p.673 Corollary].
(1=⇒3a(i)) As R is self-injective, Z(RR)=J(R)=Z∗(RR).
(3a(i)=⇒3a(ii)=⇒3a(iii)) Clear.
(3a(iii)=⇒3d) As Z∗(RR) =Z(RR) and R is semiperfect, Z∗(RR) =J(R) by Lemma
4.15. Hence R is

∑
-extending by Lemma 4.5.

(3d=⇒1)As by Lemma 4.15, Z∗(RR) =J(R) the proof is completed by the proof of
(2d=⇒1).
(3e⇐⇒1) By Lemma 4.15 and [11, p.673 Corollary]. 2
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