Modules Having *-Radical

A. Çiğdem Özcan

June 9, 2005

Abstract

ABSTRACT. Let R be a ring with identity and M a right R-module. Let $\mathrm{E}(M)$ denote the injective hull of M and $\mathrm{Z}^{*}(M):=M \cap \operatorname{RadE}(M)$. We say M has $*$-radical if $\mathrm{Z}^{*}(M)=\operatorname{Rad} M$. In this note we characterize rings in terms of modules having *-radical. First we prove that R is a right V-ring (GV-ring) if and only if every (singular) right R-module has $*$-radical. After that we show that R is a right H-ring if and only if every right R-module that has *-radical is lifting and, R is a semiprimary QF-3 ring if and only if R is right perfect and every projective right R-module that has $*$-radical is injective (extending). Finally we obtain that R is a QF-ring if and only if every right R-module that has $*$-radical is projective if and only if $\mathrm{Z}^{*}(R)=\mathrm{J}(R)$ and every projective right R-module that has *-radical is injective (extending).

1 Preliminaries

Throughout this paper we assume that R is an associative ring with unit and all R-modules cosidered are unitary right R-modules. Let M be an R-module. We write $\mathrm{E}(M), \operatorname{Rad} M, \operatorname{Soc}(M)$ and $\mathrm{Z}(M)$ for the injective envelope, the Jacobson radical, the socle and the singular submodule of M, respectively. $\mathrm{J}(R)$ is the Jacobson radical of R. A submodule N of M is indicated by writting $N \leq M$. The notation $N \leq_{e} M$ is reserved for essential submodules.

DEFINITION. A ring R is called a right V-ring if every right ideal of R is an intersection of maximal right ideals. R is called a right $G V$-ring if every simple singular right R-module is injective [12].
R is a right V-ring iff every simple right R-module is injective iff $\operatorname{Rad} M=0$ for every right R-module M. [7]

DEFINITION. A module M is called extending if every submodule of M is essential in a summand of M. A module M is called quasi-continuous if it is extending and for summands M_{1} and M_{2} of M such that $M_{1} \cap M_{2}=0, M_{1} \oplus M_{2}$ is a summand of $M . M$ is called continuous if it is extending and for a submodule A of M which is isomorphic to a summand of M, A is a summand of M. Note that quasi-injective modules are continuous (see, for example [15]).

1991 Mathematics Subject Classification. Primary 16L60; Secondary 16D50, 16D60, 16D80.
M is called \sum-extending (-injective) if every direct sum of copies of M is extending (-injective) (see for example [6] or [8]).

DEFINITION. Let N be a submodule of a module $M . N$ is called a small submodule if whenever $N+L=M$ for some submodule L of M we have $L=M$ and in this case we write $N \ll M . M$ is called lifting if for every submodule N of M there is a decomposition $M=M_{1} \oplus M_{2}$ such that $M_{1} \leq N$ and $N \cap M_{2} \ll M$ (see, for example [15]). Oshiro [18] called a ring R a right H-ring if every injective right R-module is lifting. He also called a ring R a right co-H-ring if every projective right R-module is extending.

A ring R is called semilocal if $R / \mathrm{J}(R)$ satisfies the minimum condition on right ideals. A ring R is semiprimary if R is semilocal and $\mathrm{J}(R)$ is nilpotent. A ring R is called a right $Q F-3$ ring if R has injective projective faithful right ideal. We call R is a right $Q F-3^{+}$ring if $\mathrm{E}\left(R_{R}\right)$ is projective. Jans [13] showed that among rings with minimal condition on right ideals, the classes of $\mathrm{QF}-3$ and $\mathrm{QF}-3^{+}$rings coincide.

A ring R is a semiprimary QF-3 ring when R is a semiprimary left and right QF-3 ring. The class of semiprimary QF-3 rings is a generalization of the class of QF-rings (Quasi-Frobenius rings). The class of H-rings and co-H-rings are generalizations of semiprimary QF-3 rings. Tachikawa [23, Proposition 3.3] proved that a semiprimary QF-3 ring is a right and left QF-3+ ${ }^{+}$-ring.

DEFINITION. An R-module M is said to be small if it is a small submodule of some R-module and it is said to be non-small if it is not a small module. M is a small module if and only if M is small in its injective hull [14]. We put

$$
\mathrm{Z}^{*}(M)=\{m \in M: m R \text { is small }\} \quad[11]
$$

Since $\operatorname{Rad}(M)$ is the union of all small submodules in $M, \operatorname{Rad} M \leq \mathrm{Z}^{*}(M)$, and

$$
\mathrm{Z}^{*}(M)=M \cap \operatorname{Rad} \mathrm{E}(M)=M \cap \operatorname{Rad} E^{\prime}
$$

for every injective module $E^{\prime} \supseteq M$. Note that simple modules are either injective or small. If M is a small module then $\mathrm{Z}^{*}(M)=M$.

In this note we say a module M has $*$-radical if $\mathrm{Z}^{*}(M)=\operatorname{Rad}(M)$. A ring R has $*$-radical if R_{R} has $*$-radical. Clearly injective modules have $*$-radical. But modules that have $*$-radical are not injective in general (Example 4.1). In the light of this result we define the following properties in this note.
(T1) Every module has *-radical.
(T2) Every singular module has *-radical.
(T3) Every projective module has *-radical.
(T4) Every module that has *-radical is projective.
(T5) Every module that has *-radical is injective.
(T6) Every projective module that has *-radical is injective.
(T7) Every projective module that has *-radical is extending.
At once it can be easily seen that $(\mathrm{T} 1) \Longrightarrow(\mathrm{T} 2)$ and $(\mathrm{T} 3) ;(\mathrm{T} 5) \Longrightarrow(\mathrm{T} 6) \Longrightarrow$ (T7).

In the second part of this note we prove that R is a right V-ring \Longleftrightarrow (T1) holds \Longleftrightarrow Every quasi-injective module has $*$-radical \Longleftrightarrow Every quasi-projective module has $*$-radical $\Longleftrightarrow(\mathrm{T} 3)$ holds and R is a right GV-ring. And (T2) holds $\Longleftrightarrow R$ is a right GV-ring.

In the third part we prove that (T4) holds $\Longleftrightarrow R$ is a QF-ring. Also we give some other results about (T3).

In the last part of this study we prove that R is a right H-ring if and only if every module that has *-radical is lifting if and only if R is a right perfect ring and (T5) holds. After that we show that (T7) holds \Longleftrightarrow Every projective module that has $*$-radical is quasi-injective \Longleftrightarrow Every projective module that has $*$-radical is continuous \Longleftrightarrow Every projective module that has $*$-radical is quasi-continuous. If R is a right $\mathrm{QF}-3^{+}$ring, $(\mathrm{T} 6) \Longleftrightarrow(\mathrm{T} 7)$. And R is a semiprimary $\mathrm{QF}-3$ ring \Longleftrightarrow (T6) holds and R is right perfect $\Longleftrightarrow(\mathrm{T} 7)$ holds and R is right perfect. Finally we give a characterization of QF-rings by using these properties.

2 Properties (T1) and (T2)

First we give the following useful lemmas.
Lemma 2.1 Let R be a ring and let $\varphi: M \longrightarrow M^{\prime}$ be a homomorphism of R modules M, M^{\prime}. Then $\varphi\left(Z^{*}(M)\right) \leq Z^{*}\left(M^{\prime}\right)$.

Proof If $i: M^{\prime} \longrightarrow \mathrm{E}\left(M^{\prime}\right)$ is the inclusion mapping, then the homomorphism $i \varphi: M \longrightarrow \mathrm{E}\left(M^{\prime}\right)$ can be lifted to a homomorphism $\theta: \mathrm{E}(M) \longrightarrow \mathrm{E}\left(M^{\prime}\right)$. Now $\theta(\operatorname{Rad} \mathrm{E}(M)) \leq \operatorname{RadE}\left(M^{\prime}\right)$ by $[1$, Proposition 9.14$]$. Then $\varphi\left(\mathrm{Z}^{*}(M)\right) \leq \mathrm{Z}^{*}\left(M^{\prime}\right)$.

Lemma 2.2 Any direct summand of a module that has *-radical has *-radical.
Proof Let M be a module that has *-radical and N a direct summand of M. Let $x \in \mathrm{Z}^{*}(N)$. Then $x R \ll \mathrm{E}(N) \leq \mathrm{E}(M)$. It follows that $x \in \mathrm{Z}^{*}(M)=\operatorname{Rad}(M)$ and then $x R \ll M$. Since N is a direct summand of $M, x R \ll N$. Hence $\mathrm{Z}^{*}(N)=\operatorname{Rad}(N)$ 。

Proposition 2.3 The following are equivalent for any ring R.
(i) R is a right V-ring,
(ii) R satisfies (T1),
(iii) Every quasi-injective right R-module has *-radical,
(iv) Every quasi-projective right R-module has *-radical,
(v) R satisfies (T3) and is a right GV-ring.

Proof We first note that R is a right V-ring \Longleftrightarrow for every right R-module M, $\mathrm{Z}^{*}(M)=0[19$, Theorem 12].
(i) \Longrightarrow (ii) As $\operatorname{Rad} M \leq \mathrm{Z}^{*}(M)$ for any R-module M, it is clear. (ii) \Longrightarrow (iii) Clear. (iii) \Longrightarrow (i)Let M be a simple R-module. Then $\operatorname{Rad} M=\mathrm{Z}^{*}(M)=0$, i.e. M is injective. (i) \Longrightarrow (iv) Clear. (iv) \Longrightarrow (v) Let M be a simple singular R-module. Since M is quasi-projective, $\operatorname{Rad} M=\mathrm{Z}^{*}(M)=0$. Then M is injective. (v) \Longrightarrow (i) Let M be a simple R-module. If M is singular M is injective. If M is projective, by $(\mathrm{T} 3), \operatorname{Rad} M=\mathrm{Z}^{*}(M)=0$. Again M is injective.

Proposition 2.4 The following are equivalent for any ring R.
(i) R is a right $G V$-ring,
(ii) R satisfies (T2).

Proof R is a right GV-ring $\Longleftrightarrow \mathrm{Z}(M) \cap \mathrm{Z}^{*}(M)=0$ for any right R-module M [19, Theorem 10].
(i) \Longrightarrow (ii) Let M be a singular R-module. Then $\mathrm{Z}^{*}(M)=0$. Hence $\mathrm{Z}^{*}(M)=\operatorname{Rad} M$. (ii) \Longrightarrow (i) Let M be a simple singular R-module. By hypothesis, $\mathrm{Z}^{*}(M)=\operatorname{Rad} M=$ 0 . Since M is simple, M is injective.

Example 2.5 There exists a ring R with $*$-radical, but R has a right R-module which does not have *-radical. Let R be the endomorphism ring of an infinite dimensional (left) vector space V over a field F. Then R is a von Neumann regular right self-injective ring but not a right V-ring, because V_{R} is a simple small module (see $[25,23.6]$). Then $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)=0$ but $0=\mathrm{J}\left(V_{R}\right) \neq \mathrm{Z}^{*}\left(V_{R}\right)=V_{R}$.

3 Properties (T3) and (T4)

Example 3.1 Every projective module does not have *-radical in general.
Proof Let $R=\left[\begin{array}{cc}F & 0 \\ F & F\end{array}\right]$ be lower triangular matrices over a field F. Then $J(R)=\left[\begin{array}{cc}0 & 0 \\ F & 0\end{array}\right]$ and $\operatorname{Soc}\left(R_{R}\right)=\left[\begin{array}{cc}F & 0 \\ F & 0\end{array}\right]$. By [19, Example 11], $\operatorname{Soc}\left(R_{R}\right)=$ $\mathrm{Z}^{*}\left(R_{R}\right) \neq \mathrm{J}(R)$.

By Proposition 2.3, V-rings satisfy (T3). Also QF-rings satisfy (T3) because over a QF-ring R, every projective right R-module is injective [8, 24.8]. If R satisfies (T3), then R is not necessarily a V-ring nor a QF-ring. Because there are many examples of QF-rings which are not V-rings and V-rings which are not QF-rings.

Note that any projective module that has *-radical is non-small. Because projective modules do not equal to their radicals. Hence small rings, for example commutative domains (see [22]), do not satisfy (T3).

In [21], Rayar showed that R is a QF-ring iff every R-module is a direct sum of an injective and a singular module iff every R-module is a direct sum of a projective and a small module. Now,

Proposition 3.2 Let R be a right Noetherian or a semilocal ring. If R satisfies (T3) then every semisimple right R-module is a direct sum of an injective module and a singular module.

Proof Let M be a semisimple module. As any simple module is projective or singular then M has a decomposition $M=N \oplus K$ where N is the direct sum of projective simples and K is the direct sum of singular simples. Then K is singular. Also by $(\mathrm{T} 3), \mathrm{Z}^{*}(N)=\operatorname{Rad} N=0$. Hence N is the direct sum of injectives. If R is right Noetherian, by [8, 20.1 Theorem], N is injective. If R is semilocal then N is also injective by [20, Theorem 4].

For the converse of the Proposition 3.2 we give the following example.
Example 3.3 [2, Example 12.18] Let S be Z localised at 2 Z and set

$$
R=\left\{\left[\begin{array}{rr}
a & 2 b \\
c & d
\end{array}\right]: a, b, c, d \in S, a-d \in 2 S\right\}
$$

with the usual matrix operations, then R is a prime left and right Noetherian local ring which is not an integral domain. $\mathrm{J}=\mathrm{J}(R)=2 \mathrm{Se}_{11}+2 \mathrm{Se}_{12}+\mathrm{Se}_{21}+2 \mathrm{Se}_{22}$ then $R / \mathrm{J} \cong \mathrm{Z} / 2 \mathrm{Z}$.

Let M be a semisimple R-module and N a simple submodule of M. As R is local, $N \cong R / \mathrm{J}$; and as Z is uniform, N is singular. This implies that M is singular.

On the other hand since R is a prime right Goldie ring which is not primitive, $\mathrm{Z}^{*}(M)=M$ for every right R-module M [19]. So R does not satisfy (T3) because $\mathrm{Z}^{*}\left(R_{R}\right)=R$.

Harada proved that over a right perfect ring R, R is a right $\mathrm{QF}-3^{+}$ring if and only if any non-small indecomposable projective R-module is injective [11, Theorem 1.3]. He also proved that if R is a right Artinian right QF-3 ${ }^{+}$ring with $\mathrm{Z}^{*}(R)=\mathrm{J}(R)$ then it is a QF-ring. Now we give the following result over a right perfect ring.

Theorem 3.4 Let R be a right perfect right $Q F-3^{+}$ring and assume that R satisfies (T3). Then R is a $Q F$-ring.

Proof Let $R=e_{1} R \oplus \ldots \oplus e_{n} R$ where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthogonal set of idempotents with each $e_{i} R$ is local indecomposable projective (see [1] and [15]). By (T3), $\mathrm{Z}^{*}\left(e_{i} R\right)=\mathrm{J}\left(e_{i} R\right)$ for all i. Then each $e_{i} R$ is non-small. Hence each $e_{i} R$ is injective by [11, Theorem 1.3]. This implies that R is right self-injective.

Now we claim that R is a semiprimary ring. Since R is extending and has no infinite set of orthogonal idempotents, R has acc on right annihilator ideals. $\mathrm{Z}(R)$ and hence $\mathrm{J}(R)$ is nilpotent by [10, Theorem 3.31]. This implies that R is a semiprimary ring.

Since R is semiprimary and a right QF-3 ${ }^{+}$ring R is a semiprimary $\mathrm{QF}-3$ ring. Then $\mathrm{E}(R)=R$ is \sum-injective by [5], i.e. R is a QF-ring.

Note that a ring R is a QF-ring if and only if every injective right R-module is projective by [8, 24.8].

Theorem 3.5 The following are equivalent for any ring R.
(i) R is a $Q F$-ring,
(ii) R satisfies (T4).

Proof $(\mathrm{ii}) \Longrightarrow$ (i) Let M be an injective R-module. Then $\mathrm{Z}^{*}(M)=\operatorname{Rad} M$. Hence M is projective. This implies that R is a QF-ring.
(i) \Longrightarrow (ii) Let M be an R-module with $\mathrm{Z}^{*}(M)=\operatorname{Rad} M$. By [21], M has a decomposition $M=P \oplus S$ where P is projective and S is small. Then $\mathrm{Z}^{*}(S)=\operatorname{Rad} S=S$. Since R is right perfect, $S=0$. Hence M is projective.

Corollary $3.6(T 4) \Longrightarrow(T 3)$.

4 Properties (T5), (T6) and (T7)

In this section we characterize QF-rings, H-rings and semiprimary QF-3 rings.
Example 4.1 Every module that has *-radical need not be injective.

A. ÇÍĞDEM ÖZCAN

Proof Let R be the ring of polynomials in countably many indeterminates $\left\{x_{i}\right\}$ over $\mathrm{Z}_{2}=\mathrm{Z} / 2 \mathrm{Z}$ where we impose the following relations:
(i) $x_{k}^{3}=0$ for all k,
(ii) $x_{k} x_{j}=0$ for all $k \neq j$ and,
(iii) $x_{k}^{2}=x_{j}^{2}$ for all k, j.
R is commutative, semiprimary, local, continuous but not self-injective by [17]. $\mathrm{J}(R)=\left(x_{1}, x_{2}, \ldots\right)$ is the unique maximal ideal in R. Since $\mathrm{J}(R) \leq \mathrm{Z}^{*}(R), \mathrm{Z}^{*}(R)=$ $\mathrm{J}(R)$ or $\mathrm{Z}^{*}(R)=R$. If $\mathrm{Z}^{*}(R)=R$ then for any injective module $M, \mathrm{Z}^{*}(M)=$ $\operatorname{Rad}(M)=M$. This contradicts that R is a perfect ring. Hence $\mathrm{Z}^{*}(R)=\mathrm{J}(R)$ but R is not self-injective.

Theorem 4.2 [18, Theorem 2.11] The following statements are equivalent for any ring R.
(i) R is a right H-ring,
(ii) R is right Artinian and every non-small R-module contains a non-zero injective submodule,
(iii) R is right perfect and for any exact sequence $\phi: P \longrightarrow E \longrightarrow 0$ where E injective and kerф is small in P, P is injective,
(iv) Every R-module is a direct sum of an injective module and a small module. When this is so, then R is a semiprimary QF-3 ring.

Lemma 4.3 Let R be a ring which satisfies (T5). Then for any exact sequence $\phi: P \longrightarrow E \longrightarrow 0$ where E is injective and ker $\phi \ll P, P$ is injective.

Proof Let $\phi: P \longrightarrow E \longrightarrow 0$ be an exact sequence where E is injective and $\operatorname{ker} \phi \ll P$. Then $\phi(\operatorname{Rad} P)=\operatorname{Rad} E \leq \phi\left(\mathrm{Z}^{*}(P)\right) \leq \mathrm{Z}^{*}(E)=\operatorname{Rad} E$ by [1, Proposition 9.15] and Lemma 2.1, and so $\phi(\operatorname{Rad} P)=\phi\left(\mathrm{Z}^{*}(P)\right)$. Since $\operatorname{ker} \phi \leq \operatorname{Rad} P, \operatorname{Rad} P=$ $\mathrm{Z}^{*}(P)$. By hypothesis, P is injective.

Theorem 4.4 The following statements are equivalent for any ring R.
(i) R is a right H-ring,
(ii) R is right perfect and satisfies (T5),
(iii) Every right R-module that has *-radical is lifting.

Proof (i) \Longrightarrow (ii) R is right perfect by Theorem 4.2. Let M be a module that has *-radical. $M=N \oplus K$ where N is injective and K is small by Theorem 4.2. Then $K=\mathrm{Z}^{*}(K) \leq \mathrm{Z}^{*}(M)=\operatorname{Rad} M$. Since R is right perfect, $\operatorname{Rad} M \ll M$. It follows that $K \ll M$. So $M=N$ is injective.
(ii) \Longrightarrow (i) By Lemma 4.3 and Theorem 4.2.
(ii) \Longrightarrow (iii) Let M be a right R-module that has $*$-radical. By (ii), M is injective. Then M is lifting by Theorem 4.2.
(iii) \Longrightarrow (i) It is clear.

Lemma 4.5 R satisfies (T7) if and only if for every R-module M that has $*$-radical and has a projective cover P, P is \sum-extending.

Proof (\Longleftarrow) It is clear.
(\Longrightarrow) Let M be a module that has $*$-radical and $f: P \longrightarrow M$ an epimorphism with
$\operatorname{ker} f \ll P$. Then by the proof of Lemma $4.3, \mathrm{Z}^{*}(P)=\operatorname{Rad} P$. Hence $\mathrm{Z}^{*}\left(P^{(\Lambda)}\right)=$ $\operatorname{Rad}\left(P^{(\Lambda)}\right)$ for any index set Λ. Since any direct sum of projective modules is projective, $P^{(\Lambda)}$ is projective. By (T7), P is \sum-extending.

Proposition 4.6 The following are equivalent for any ring R.
(i) R satisfies (T7),
(ii) Every projective R-module that has *-radical is quasi-continuous,
(iii) Every projective R-module that has *-radical is continuous,
(iv) Every projective R-module that has *-radical is quasi-injective.

Proof (iv) \Longrightarrow (iii) \Longrightarrow (ii) \Longrightarrow (i) Clear.
(i) \Longrightarrow (iv) Let M be a projective R-module that has $*$-radical. Then M is \sum extending by Lemma 4.5. By [4, 3.6], M has a decomposition $M=\oplus M_{i}(i \in$ I) where each M_{i} is finitely generated, quasi-injective and indecomposable. In addition, M_{i} 's have local endomorphism ring by $[25,19.9]$ and then M_{i} 's are local by $[25,19.7]$. Since M_{i} 's are non-small and local, every monomorphism $M_{i} \longrightarrow$ $M_{j}(i \neq j)$ is an isomorphism. Hence by [6, Corollary 8.9], M is quasi-injective.

Now we deal with the relationship between (T6) and (T7).
Proposition 4.7 Assume that R is a right $Q F-3^{+}$ring and satisfies (T7). Then R satisfies (T6).

Proof Let M be a projective R-module that has *-radical. Then $M \oplus \mathrm{E}\left(R_{R}\right)$ is projective by hypothesis and [15, Corollary 4.36]. Since $\mathrm{E}\left(R_{R}\right)$ is injective, $\mathrm{Z}^{*}\left(M \oplus \mathrm{E}\left(R_{R}\right)\right)=\operatorname{Rad}\left(M \oplus \mathrm{E}\left(R_{R}\right)\right)$. By Proposition 4.6, $M \oplus \mathrm{E}\left(R_{R}\right)$ is quasi-injective. Hence M is injective.

Example 4.8 If R is (right and left) perfect right $Q F-3^{+}$then R need not satisfy (T7).

Proof Let R be any (right and left) perfect ring such that $\mathrm{E}\left(R_{R}\right)$ is projective but $\mathrm{E}\left({ }_{R} R\right)$ is not (for the existence of such a ring see [16]). Let M be a direct sum of countably many copies of $\mathrm{E}\left(R_{R}\right)$. Then M is not quasi-injective by [26, Lemma 3.1]. But M is projective and has *-radical. Hence R_{R} does not satisfy (T7) by Proposition 4.6.

We do not know whether (T7) is equivalent to (T6) for any ring R. Now we give some results over a perfect ring.

Colby and Rutter [5, Theorem 1.3] proved that a ring R is semiprimary QF-3 if and only if R is right perfect and the projective cover of every injective R-module is injective if and only if R is right perfect and injective envelope of every projective R-module is projective. After that Vanaja [24, Theorem 1.5] showed that R is semiprimary QF-3 if and only if R is right perfect and any projective R-module whose indecomposable direct summands are non-small is extending.

Now, let R be a semiperfect ring and M a projective R-module that has *-radical. Then M has a decomposition $M \cong \oplus M_{\alpha}(\alpha \in \Lambda)$ where each M_{α} is indecomposable local (see $[1,27.11],[1,27.6]$ and $[25,19.7])$. By Lemma 2.2, $\mathrm{Z}^{*}\left(M_{\alpha}\right)=\operatorname{Rad}\left(M_{\alpha}\right)$ and then M_{α} is non-small for all α.

Theorem 4.9 The following are equivalent for any ring R.
(i) R is a semiprimary $Q F-3$ ring,
(ii) R satisfies (T6) and is right perfect,
(iii) R satisfies (T7) and is right perfect.

Proof (ii) \Longrightarrow (iii) It is clear.
(i) \Longrightarrow (ii) Let M be a projective module that has $*$-radical. By above remark, $M \cong \oplus M_{\alpha}(\alpha \in \Lambda)$ where each M_{α} is indecomposable and non-small. Since R is a right QF-3 3^{+}ring, all M_{α} is injective. $M \cong \oplus M_{\alpha}$ is a direct summand of $\mathrm{E}\left(R_{R}\right)^{(\Lambda)}$. Then as $\mathrm{E}\left(R_{R}\right)$ is \sum-injective M is injective.
(iii) \Longrightarrow (i) Let M be a projective module which every indecomposable summands are non-small. Then $M \cong \oplus M_{\alpha}(\alpha \in \Lambda)$ where each M_{α} is indecomposable nonsmall and local. Then $\mathrm{Z}^{*}\left(M_{\alpha}\right)=\operatorname{Rad}\left(M_{\alpha}\right)(\alpha \in \Lambda)$. This implies that $\mathrm{Z}^{*}(M)=$ $\operatorname{Rad}(M)$. By (T7), M is extending. Thus by [24, Theorem 1.5], we get the result.

Example 4.10 If R satisfies (T6), R need not satisfy (T5).
Proof Let $R=\left[\begin{array}{ccc}\mathrm{R} & 0 & 0 \\ \mathrm{R} & \mathrm{Q} & 0 \\ \mathrm{R} & \mathrm{R} & \mathrm{R}\end{array}\right]$ where R is the real numbers and Q is the rational numbers. R is a semiprimary QF-3 ring but not right Noetherian [5, 1.4 Remarks]. By Theorem 4.9, R satisfies (T6) and by Theorem 4.2 and Theorem 4.4, R does not satisfy (T5).

Proposition 4.11 Assume that R is semiperfect. If R satisfies (T6) then any nonsmall indecomposable projective R-module is injective. The converse holds when, in addition, R is right Noetherian.

Proof Let M be a non-small indecomposable projective R-module. Since R is semiperfect, M is local. This implies that $\mathrm{Z}^{*}(M)=\operatorname{Rad}(M)$. By (T6), M is injective.

For the converse, let M be a projective R-module that has $*$-radical. Again $M \cong \oplus M_{\alpha}(\alpha \in \Lambda)$ where each M_{α} is non-small indecomposable projective. By assumption, M_{α} 's are injective. As R is right Noetherian, M is injective.

Another relationship between (T6) and "any non-small indecomposable projective module is injective" is given over a right GV-ring. In [19, Theorem 10] it is also proved that R is a right GV-ring if and only if every small module is projective.
Proposition 4.12 If R is a right $G V$-ring and satisfies (T6) then any non-small indecomposable projective module is injective.

Proof Let M be a non-small indecomposable projective module. We claim that $\mathrm{Z}^{*}(M)=\operatorname{Rad}(M)$. If not, let $x \in \mathrm{Z}^{*}(M)-\operatorname{Rad}(M)$. Then there exists a maximal submodule B of $x R$ such that $x R / B \leq_{d} M / B$. Then $M / B=x R / B \oplus L / B$ for some L. Since $x R$ is small, then $x R / B$ is small. By [19, Theorem 10], $x R / B$ is projective. This implies that M / L is simple projective. Hence $L \leq_{d} M$. If $L=0$, $M / B=x R / B$ and then $B \leq_{d} M$. If $B=0, M=x R$ which is contradicted by M is non-small. If $B=M, x R=B$, a contradiction. If $L=M$, again $x R=B$, a contradiction. Hence $Z^{*}(M)=\operatorname{Rad}(M)$. By (T6), M is injective.

Theorem 4.13 [18, Theorem 3.18], [6, 11.13] The following are equivalent for any ring R.
(i) R is a right co-H-ring,
(ii) Every R-module is expressed as a direct sum of a projective module and a singular module,
(iii) The family of all projective R-modules is closed under taking essential extensions,
(iv) R is right \sum-extending,

When this is so, then R is a semiprimary $Q F-3$ ring.
Theorem 4.14 [18, Theorem 4.3] The following are equivalent for any ring R.
(i) R is a QF-ring,
(ii) R is a right H-ring with $Z(R)=J(R)$,
(iii) R is a right co-H-ring with $Z(R)=J(R)$.

Lemma 4.15 Let R be a semiperfect ring. If $Z^{*}\left(R_{R}\right)=Z\left(R_{R}\right)$ then $Z^{*}\left(R_{R}\right)=J(R)$. The converse holds when R is right or left perfect right quasi-continuous.

Proof Let R be a semiperfect ring and assume $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{Z}\left(R_{R}\right)$. Then there exists an idempotent e of R such that $e R \leq \mathrm{Z}\left(R_{R}\right)$ and $(1-e) R \cap \mathrm{Z}\left(R_{R}\right)$ is small in R by [15, Corollary 4.42]. Since $\mathrm{Z}\left(R_{R}\right)$ does not contain any non-zero idempotents, it follows that $\mathrm{Z}\left(R_{R}\right) \leq \mathrm{J}(R)$. Hence $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)$.

For converse, assume that $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)$. Since R is right or left perfect right quasi-continuous $\mathrm{Z}\left(R_{R}\right)=\mathrm{J}(R)$ by [3, Lemma 6]. Hence $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{Z}\left(R_{R}\right)$.

Theorem 4.16 The following are equivalent for any ring R.
(1) R is a $Q F$-ring,
(2) $Z^{*}\left(R_{R}\right)=J(R)$ and
(a) R satisfies (T5) or
(b) R satisfies (T6) or
(c) R satisfies (T^{7}) or
(d) R is a right co- H -ring or
(e) R is a right H-ring,
(3) $Z^{*}\left(R_{R}\right)=Z\left(R_{R}\right)$ and
(a) R is semiperfect and
(i) R satisfies (T5) or
(ii) R satisfies (T6) or
(iii) R satisfies (T7) or
(d) R is a right co- H -ring or
(e) R is a right H-ring.

Proof $\left(1 \Longrightarrow 2\right.$ a) Since R is right self-injective, $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)$. By Theorem 4.4, R satisfies (T5).
($2 \mathrm{a} \Longrightarrow 2 \mathrm{~b} \Longrightarrow 2 \mathrm{c}$) Clear.
$(2 \mathrm{c} \Longrightarrow 2 \mathrm{~d})$ By Lemma $4.5, R$ is \sum-extending. Hence R is a right co-H-ring.
$(2 \mathrm{~d} \Longrightarrow 1)$ Let $F=R^{(\mathrm{N})}$ be the free right R-module which is the direct sum of a countably infinite number of copies of R. By Theorem 4.13, $\mathrm{E}(F)$ is projective. Since R is right perfect, $\mathrm{E}(F)$ is lifting. Then $\mathrm{E}(F)=X \oplus Y$ where $X \leq F$ and $F \cap Y \ll \mathrm{E}(F)$. Hence $F=X \oplus(F \cap Y)$. As $\mathrm{Z}^{*}(F)=\operatorname{Rad} F$ and $F \cap Y \leq_{d} F$,
$\mathrm{Z}^{*}(F \cap Y)=\operatorname{Rad}(F \cap Y)=F \cap Y$. Since $F \cap Y$ is projective, this is a contradiction. Hence $F=X$ is injective. By [8, Proposition 20.3A], R_{R} is \sum-injective. By [6, 18.1], R is a QF-ring.
($2 \mathrm{e} \Longleftrightarrow 1$) By [11, p. 673 Corollary].
$(1 \Longrightarrow 3 \mathrm{a}(\mathrm{i}))$ As R is self-injective, $\mathrm{Z}\left(R_{R}\right)=\mathrm{J}(R)=\mathrm{Z}^{*}\left(R_{R}\right)$.
(3a(i) $\Longrightarrow 3 \mathrm{a}(\mathrm{ii}) \Longrightarrow 3 \mathrm{a}(\mathrm{iii})$) Clear.
$(3 \mathrm{a}(\mathrm{iii}) \Longrightarrow 3 \mathrm{~d})$ As $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{Z}\left(R_{R}\right)$ and R is semiperfect, $\mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)$ by Lemma 4.15. Hence R is \sum-extending by Lemma 4.5.
$(3 \mathrm{~d} \Longrightarrow 1)$ As by Lemma $4.15, \mathrm{Z}^{*}\left(R_{R}\right)=\mathrm{J}(R)$ the proof is completed by the proof of $(2 \mathrm{~d} \Longrightarrow 1)$.
(3e $\Longleftrightarrow 1)$ By Lemma 4.15 and [11, p. 673 Corollary].

References

[1] F.W. Anderson, K.R. Fuller, Ring and Categories of Modules, (1974), SpringerVerlag, Berlin-Heidelberg-NewYork.
[2] A.W. Chatters, C.R. Hajarnavis, Rings with chain conditions, (1980), Pitman, London.
[3] J.Clark, D.V. Huynh, When self-injective semiperfect ring Quasi-frobenius?, Journal of Alg.,165 (1994), 531-542.
[4] J.Clark, R.Wisbauer, Polyform and projective \sum-extending modules, Algebra Colloquim, 5:4 (1998), 391-408.
[5] R.R. Colby, E.A.Rutter, Generalizations of QF-3 algebras, Trans. Amer. Math. Soc., 153 (1971), 371-386.
[6] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules, (1994), Pitman RN Mathematics 313, Longman, Harlow.
[7] C. Faith, Lectures on injective modules and quotient rings (Lecture Notes in Math. 49), (1967), Springer-Verlag, Berlin Heidelberg-NewYork.
[8] C. Faith, Algebra II, Ring Theory, (1976), Springer Grundl. 191.
[9] K.R. Fuller, Relative projectivity and injectivity classes determined by simple modules, J. London Math.Soc, 5 (1972), 423-431.
[10] K.R. Goodearl, Ring Theory, (1976), Pure and Applied Math., No:33, MarcelDekker.
[11] M. Harada, Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F.Van Oystaeyen, ed.NewYork: Marcel Dekker.
[12] Y. Hirano, Regular modules and V-modules, Hiroshima Math.J., 11 (1981), 125-142.
[13] J.P.Jans, Projective-injective modules, Pacific J.Math. 9 (1959), 1103-1108.
[14] W.W. Leonard, Small Modules, Proc.Amer.Math.Soc. 17 (1966), 527-531.
[15] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, (1990), London Math.Soc. LN.147, Cambridge University Press, NewYork Sydney.
[16] B. Müller, Dominant dimension of semiprimary rings, J.Reine Angew Math. 232 (1968), 173-179.
[17] W.K. Nicholson and M.F. Yousif, Continuous rings with chain conditions, Journal of Pure and Applied Algebra, 97 (1994), 325-332.
[18] K. Oshiro, Lifting modules, extending modules and their applications to QFrings, Hokkaido Math. J., 13 (1984), 310-338.
[19] A.C..Özcan, Some characterizations of V-modules and rings, Vietnam J.Math., 26(3) (1998), 253-258.
[20] A.Ç.Özcan and A. Harmancı, Characterization of some rings by functor Z* (.), Turkish J.Math., 21(3) (1997), 325-331.
[21] M. Rayar, On small and cosmall modules, Acta Math.Acad.Sci.Hungar,39(4) (1982), 389-392.
[22] M. Rayar, A note on small rings, Acta Math.Hung., 49(3-4) (1987), 381-383.
[23] H.Tachikawa, On left QF-3 rings, Pacific J.Math., 32 (1970), 255-268.
[24] N. Vanaja, Characterization of rings using extending and lifting modules, Ring Theory, (1993), 329-342 World Sci.Publishing, River Edge.
[25] R. Wisbauer, Foundations of Module and Ring Theory, (1991), Gordon and Breach, Reading.
[26] K.Yamagata, The exchange property and direct sums of indecomposable injective modules, Pacific J.Math, 55 (1974), 301-317.

DEPARTMENT OF MATHEMATICS, HACETTEPE UNIVERSITY, 06532
BEYTEPE, ANKARA TURKEY.
E-mail address: ozcan@hacettepe.edu.tr

