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Abstract

In this paper we study when a unital right module M over a ring R
with identity has a special ”small image” property we call (S∗): namely, M
has (S∗) if every submodule N of M contains a direct summand K of M
such that every cyclic submodule C of N/K is small (meaning ”small in its
injective hull E(C)”). If xR is small for every element x of a module M ,
M is said to be cosingular. In Theorem 4.4 we prove every right R–module
satisfies (S∗) if and only if every right R–module is the direct sum of an
injective module and a cosingular module. Over a right self–injective ring
R, every right R–module satisfies (S∗) if and only if R is quasi–Frobenius
(Theorem 5.5). It follows that over a commutative ring R, every module
satisfies (S∗) if and only if R is a direct product of a quasi-Frobenius ring
and a cosingular ring.

Key words: small module, self–injective ring, Harada ring, quasi–Frobenius
ring.

1 INTRODUCTION AND NOTATION

All rings have identity and all modules are unital right modules.
Let R be a ring and M a right R–module. We write E(M), RadM and

Z(M) for the injective envelope, the radical and the singular submodule of M ,
respectively. We denote the radical of R by J(R). We use N ≤ M to signify that
N is a submodule of M . If N is essential in M we write N ≤e M .

A submodule N of M is called a small submodule if, whenever N +L = M for
some submodule L of M , we have M = L; and in this case we write N << M .
In [1], Leonard defines a module M to be small if it is a small submodule of some
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R–module and he shows that M is small if and only if M is small in its injective
hull. We put

Z∗(M) = {m ∈ M : mR is a small module }.

Since Rad(M) is the union of all small submodules of M, we see that
Z∗(E)=Rad(E) for any injective module E, and
Z∗(M) = M∩ Rad E(M) = M∩ RadE ′ for every injective module E ′

containing M .
Note that if M is a vector space over the rational numbers Q, then M is a

semisimple injective Q–module; hence Z∗(MQ) =Rad(MQ) = 0. However M is
also a module over the integers Z, and as such is torsion–free injective, so that
Z∗(MZ) = M . Thus Z∗(M) depends on which ring R one is considering. In
practice it is usually clear which ring is being considered.

In this note, we call a module M cosingular if Z∗(M) = M . A ring R is called
right cosingular if the (right) R–module R is cosingular.

In Section 2, we give some properties of cosingular modules and some examples
of cosingular rings.

Let K be a class of modules. Then d∗K is defined in [2] to be the class of
modules M such that for every submodule N of M , there exists a direct summand
K of M such that (1) K is contained in N and (2) the factor module N/K belongs
to K. Some properties of d∗K have been studied for various special classes K of
modules. In [3], the class of modules M such that, for every submodule N of M ,
there exists a direct summand K of M contained in N with N/K ≤Rad(M/K)
is investigated.

ForK the class of cosingular modules, we associate the class d∗K with property
(S∗). That is, a module M satisfies (S∗) if, for every submodule N of M , there
exists a direct summand K of M such that K is contained in N and the factor
module N/K is cosingular.

In Section 3, we study some properties of modules that satisfy (S∗). We prove
that if the ring R satisfies (S∗), then M/Z∗(M) is semisimple for every R–module
M (Proposition 3.9).

In Section 4, we deal with properties of a ring R that hold when every R–
module satisfies (S∗). It is proved that every R–module satisfies (S∗) if and only if
every R–module is a direct sum of an injective module and a cosingular module.
In Theorem 4.9 we characterize H–rings (defined at the beginning of section 4)
using (S∗).

Finally in Section 5 we characterize QF–rings (Theorem 5.5).

2 COSINGULAR MODULES

Before we define a cosingular module, let us state some useful lemmas.

Lemma 2.1 Let R be a ring and let ϕ : M → M ′ be a homomorphism of R-
modules M,M ′. Then ϕ(Z∗(M)) ≤Z∗(M ′).



3

Proof If i : M ′ →E(M ′) is the inclusion mapping then the homomorphism
iϕ : M →E(M ′) can be extended to a homomorphism θ :E(M) →E(M ′). Now
θ(Rad E(M)) ≤RadE(M ′) by [4, Proposition 9.14]. Hence ϕ(Z∗(M)) ≤Z∗(M ′).
2

Lemma 2.2 Let N be a submodule of an R–module M . Then Z∗(N) = N∩Z∗(M).

Proof It is clear. 2

Lemma 2.3 Let Mi(i ∈ I) be any collection of R–modules and let M = ⊕i∈IMi.
Then Z∗(M) = ⊕i∈IZ

∗(Mi).

Proof By Lemma 2.2, Z∗(Mi) ≤ Z ∗(M) for all i ∈ I and hence ⊕i∈I Z∗(Mi) ≤
Z∗(M).

Let πi : M → Mi denote the canonical projection for each i ∈ I. Let
m ∈Z∗(M). Then m = m1 + · · · + mn for some positive integer n and elements
mj ∈ Mi(j) (1≤ j ≤ n), for distinct i(1), . . . , i(n) in I. For each 1 ≤ j ≤ n,

mj = πi(j)(m) ∈ πi(j)(Z
∗(M)) ≤Z∗(Mi(j)),

by Lemma 2.1. Thus m ∈ ⊕i∈IZ
∗(Mi) and hence Z∗(M) = ⊕i∈IZ

∗(Mi). 2

For any non–empty subset X of an R–module M we set
rR(X) = {r ∈ R : xr = 0 for all x ∈ X}.

Lemma 2.4 Let R be a right Artinian ring with Jacobson radical J and let M
be an R–module. Then Z∗(M) = {m ∈ M : mrR(J) = 0}.

Proof See [5, Theorem 3]. 2

Definitions 2.5 Let R be a ring and M an R–module. M is called cosingular if
Z∗(M) = M . R is called right cosingular if the (right) R–module R is cosingular.

Small modules are cosingular. If R is a right perfect ring, RadM is the unique
largest small submodule of M and so M is small if and only if M is cosingular
[6, Chapter 1].

Lemma 2.6 For any ring R, the class of cosingular R–modules is closed under
submodules, homomorphic images and direct sums but not (in general) under
essential extensions or extensions.
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Proof The class of cosingular R-modules is closed under submodules by
Lemma 2.2, under homomorphic images by Lemma 2.1 and under direct sums by
Lemma 2.3.

Let F be a field and let R =

{[
a b
0 a

]
: a, b ∈ F

}
. Then R is a commutative

Artinian ring with Jacobson radical J =

[
0 F
0 0

]
. Note that rR(J) = J and

that J is an essential ideal of R. By Lemma 2.4, the R-module J is cosingular
but its essential extension RR is not. Moreover, the R-module J and R/J are
both cosingular by Lemma 2.4 but the R–module R is not. 2

Corollary 2.7 Let R be a right cosingular ring. Then any (right) R–module is
cosingular.

Proof Let M be an R–module. Let m ∈ M . By Lemma 2.6, mR =Z∗(mR)
≤Z∗(M). Thus Z∗(M) = M and M is cosingular. 2

Next we consider some examples of right cosingular rings.

Lemma 2.8 A ring R is right cosingular if and only if E =RadE for every
injective right R–module E.

Proof It is clear from Corollary 2.7. 2

Lemma 2.9 [6] There does not exist a right perfect right cosingular ring.

Proof It is clear from Lemma 2.8. 2

Theorem 2.10 [7] Let R be a prime right Goldie ring which is not right primitive
(e.g. a commutative domain which is not a field). Then R is a right cosingular
ring.

Proof Let r ∈ R and E =E(rR). Suppose that E = rR + L for some L ≤ E.
If r is not in L, then E/L is non–zero and a cyclic module so that there exists
a maximal submodule P of E with L contained in P . The module U = E/P is
simple, and if I is its annihilator in R we know that I is a non–zero ideal of R
by our hypothesis. But in this case I contains a non–zero divisior by Goldie’s
Theorem [8, Proposition 5.9] and then E = EI by [9, Proposition 2.6] so that
E = P , a contradiction. Hence r ∈ L and so E = L and rR is small. Thus R is
right cosingular. 2
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3 MODULES WITH (S∗)

We begin with some definitions.
A module M is called a (D1)–module if for every submodule N of M , there

is a decomposition M = M1 ⊕M2 such that M1 ≤ N and N ∩M2 << M [10,
Chapter 4].

Let A and L be submodules of a module M . L is called a supplement of A in
M if it is minimal with the property A + L = M . A submodule K of M is called
a supplement (in M) if K is a supplement of some submodule of M . It is easy to
check that L is a supplement of A in M if and only if M = A + L and A ∩ L is
small in L.

We say that M has (S∗) if for every submodule N of M there exists a direct
summand K of M such that K ≤ N and N/K is cosingular. A ring R satisfies
(S∗) if the (right) R–module R satisfies (S∗).

(D1)–modules satisfies (S∗). But the converse does not hold in general. For
example, let R = Z. Since Z∗(R) = R, R satisfies (S∗). But, since no proper
submodule in R has a supplement in R, R is not a (D1)–module [10, p.56].

The following two lemmas follow immediately from the definitions.

Lemma 3.1 Let M be an R–module. The following statements are equivalent.
(i) M satisfies (S∗),
(ii) For every submodule N of M , M has a decomposition M = A⊕B such that
A ≤ N and N ∩B is cosingular,
(iii) For every submodule N of M , N has a decomposition N = A⊕B such that
A is a direct summand of M and B is cosingular.

Lemma 3.2 Let M be an R–module that satisfies (S∗). Then any submodule of
M satisfies (S∗).

Lemma 3.3 Let M be a module that satisfies (S∗) and such that Z∗(M) is small
in M . Then M is a (D1)–module.

Proof Let N be a submodule of M . Then there exists a direct summand K of
M such that K ≤ N and N/K is cosingular. Let L be a submodule of M such
that M = K ⊕ L. Then N = K ⊕ (N ∩ L). Since N/K = Z ∗(N/K), N ∩ L is
cosingular. Then by hypothesis N ∩ L << M . Hence M is a (D1)–module. 2

Remark 3.4 In general, when a module M is a (D1)–module, Z∗(M) is not small
in M .

Let R =

[
F 0
F F

]
be lower triangular matrices over a field F . R is right

Artinian, J(R) =

[
0 0
F 0

]
, Soc(RR) =

[
F 0
F 0

]
and Z∗(RR) =Soc(RR) by [7,

Example 11]. Hence Z∗(RR) is not small in R because Z∗(RR) 6=J(R).
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Lemma 3.5 Let M be an R–module that satisfies (S∗). Suppose that there exists
a supplement of Z∗(M) in M . Then there is a decomposition M = A ⊕ B such
that A is a (D1)–module and B is cosingular.

Proof By hypothesis, there exists a submodule A of M such that M = A+
Z∗(M), A∩Z∗(M) << A. Then Z∗(A) =RadA << A. Since M satisfies (S∗),
there exists a direct summand K of M such that K ≤ A, A/K = Z∗(A/K).
Let B be a submodule of M such that M = K ⊕ B. Then A = K ⊕ (A ∩ B).
Since A/K is cosingular, A ∩ B = Z∗(A ∩ B) ≤ Z ∗(A). Since Z∗(A) << A and
A ∩ B is a direct summand of A then A ∩ B = 0. Hence M = A ⊕ B. By
Lemma 3.2 and Lemma 3.3, A is a (D1)–module. In addition, we have M = A+
Z∗(M) = A+Z∗(A)+Z∗(B) = A⊕Z∗(B) and hence Z∗(B) = B. This completes
the proof. 2

Corollary 3.6 Let M be a module that satisfies (S∗). Then there is a decompo-
sition M = A⊕B such that A is semisimple with Z∗(A) = 0 and Z∗(B) ≤e B.

Proof Let A be a submodule of M maximal with respect to the property
A∩Z∗(M) = 0. Since M satisfies (S∗), it follows that there exists a direct sum-
mand K of M such that K ≤ A, A/K is cosingular. Let B be a submodule
of M such that M = K ⊕ B. Then A = K ⊕ (A ∩ B). Since A∩Z∗(M) = 0,
Z∗(A ∩ B) = A ∩ B = 0. Then M = A ⊕ B. By Lemma 3.2, A is semisimple.
Now Z∗(M) =Z∗(B) and A⊕Z∗(M) is an essential submodule of M . It follows
that Z∗(B) ≤e B. 2

For the converse of the Corollary 3.6 we have the following example.

Example 3.7 Let F be a field, L an F–vector space of finite dimension and
L∗ =HomF (L, F ). We put

R =




F L∗ F
0 F L
0 0 F




Then R is right perfect and a QF–3 ring. If [L : F ] ≥ 2, (∗∗) Every inde-
composable injective module is hollow, namely every proper submodule is small,
does not hold [6, Example 1].

Then there exists an indecomposable injective module M that is not hollow.
Then Z∗(M) =RadM << M . If Z∗(M) = 0, M is semisimple since R is right
perfect, a contradiction. If M satisfies (S∗), then M is a (D1)–module since
Z∗(M) << M by Lemma 3.3. By [10, Corollary 4.9] M is hollow, a contradiction.

Hence there exists a uniform module M with Z∗(M) 6= 0 that does not satisfy
(S∗).

Now we generalize Corollary 2.7.

Lemma 3.8 Let R be a ring. Then MZ∗(R) ≤Z∗(M) for any R–module M .
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Proof Let m ∈ M . Define a mapping ϕ : R →E(M) by ϕ(r) = mr for all
r ∈ R. Then ϕ is a homomorphism and ϕ can be extended to a homomorphism
θ :E(R) →E(M). By [4, Proposition 9.14], θ(Rad E(R)) ≤RadE(M).

Let a ∈Z∗(R) = R∩RadE(R). Then ma = ϕ(a) = θ(a) ∈ θ(RadE(R)) ≤
RadE(M) and hence ma ∈ M∩RadE(M) =Z∗(M). It follows that mZ∗(R) ≤
Z∗(M) and hence MZ∗(R) ≤Z∗(M). 2

Proposition 3.9 Let R be a ring that satisfies (S∗). Then M/Z∗(M) is semisim-
ple for every R–module M .

Proof If R =Z∗(R) then M =Z∗(M) for every R–module M by Corollary 2.7
or Lemma 3.8. Suppose that Z∗(R) 6= R. Let P be a maximal right ideal
of R such that Z∗(R) ≤ P . There exists an idempotent e and a cosingular
right ideal C such that P = eR ⊕ C. Note that C =Z∗(C) ≤Z∗(R) and hence
P/Z∗(R) = (eR+Z∗(R))/Z∗(R) = (e+Z∗(R))(R/Z∗(R)). Thus P/Z∗(R) is a
direct summand of R/Z∗(R).

It follows that every maximal right ideal of R/Z∗(R) is a direct summand.
Therefore R/Z∗(R) is semisimple. Let M be any R–module. By Lemma 3.8,
MZ∗(R) ≤Z∗(M) and hence M/Z∗(M) is an R/Z∗(R)–module. It follows that
M/Z∗(M) is semisimple. 2

Let Gen(M) denote the class of M–generated modules for any module M .

Proposition 3.10 Let M be an R–module. The following statements are equiv-
alent.
(i) M/Z∗(M) is semisimple,
(ii) For every L ≤ M there exists a submodule K ≤ M such that L + K = M
and L ∩K cosingular,
(iii) There exists a decomposition M = A⊕B such that A is semisimple, B/Z∗(B)
is semisimple and Z∗(B) ≤e B,
(iv) For any N ∈Gen(M), N/Z∗(N) is semisimple,
(v) For any N ∈Gen(M), for every L ≤ N there exists a submodule K ≤ N such
that L + K = N and L ∩K cosingular,
(vi) For any N ∈Gen(M), N = N1 ⊕N2 such that N1 is semisimple, N2/Z

∗(N2)
is semisimple and Z∗(N2) ≤e N2.

Proof (i)⇒(iii) Let A be a maximal submodule with respect to A∩Z∗(M) = 0.
Then A⊕Z∗(M) is essential in M . Moreover A ∼= (A⊕Z∗(M))/Z∗(M) is a direct
summand in M/Z∗(M), hence semisimple and there is a semisimple submodule
B/Z∗(M) such that (A + B)/Z∗(M) = M/Z∗(M). Hence M = A + B and
A ∩ B ≤ A∩Z∗(M) = 0. Because A⊕Z∗(M) ≤e M , Z∗(M) ≤e B. Note that
Z∗(M) =Z∗(A)⊕Z∗(B) =Z∗(B).
(iii)⇒(i) Since the homomorphic image of a semisimple module is semisimple and
M/Z∗(B) ∼= A⊕ (B/Z∗(B)), it is clear.
(i)⇒(ii) Since (L+Z∗(M))/Z∗(M) is a direct summand in M/Z∗(M), it is clear.
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(ii)⇒(i) Let L/Z∗(M) ≤ M/Z∗(M), then there exists a submodule K ≤ M such
that L+K = M and L∩K is cosingular. Thus L/Z∗(M)⊕K+Z∗(M)/Z∗(M) =
M/Z∗(M). Hence M/Z∗(M) is semisimple.
(iv)⇒(i) It is clear.
(i)⇒(iv) Let N ∈Gen(M). Then there exist a set Λ and an epimorphism f :
M (Λ) → N . Since f(Z∗(M (Λ))) ≤Z∗(N) and M (Λ)/Z∗(M (Λ)) ∼= (M/Z∗(M))(Λ),
we get an epimorphism f : (M/Z∗(M))(Λ) → N/Z∗(N). Hence N/Z∗(N) is
semisimple.
(iv)⇔(v) ⇔(vi) Same as the proof of (i) ⇔ (ii) ⇔ (iii) for N ∈Gen(M). 2

4 H–RINGS

H–rings are investigated by several authors for example [5], [6], [11], [12].

Definitions 4.1 An R–module M is called non–small if M is not small. Oshiro
[12] called a ring R a right H–ring (in honor of Harada [6]) if every injective right
R–module is (D1), defined at the beginning of section 3.

Theorem 4.2 [12, Theorem 2.11] The following statements are equivalent for a
ring R.
(i) R is a right H–ring,
(ii) R is right Artinian and every non–small R–module contains a non–zero in-
jective submodule,
(iii) R is right perfect and for any exact sequence φ : P → E → 0 where E is
injective and kerφ is small in P , P is injective,
(iv) Every R–module is a direct sum of an injective module and a small module.

Before giving the characterization of H–rings first we are interested in the
condition that every right R–module satisfies (S∗).

Proposition 4.3 Let R be a ring. An injective R–module M satisfies (S∗) if
and only if every submodule of M is a direct sum of an injective module and a
cosingular module.

Proof Suppose that M satisfies (S∗). Let N be a submodule of M . There exist
submodules K, K ′ of M such that M = K ⊕K ′, K ≤ N and N/K is cosingular.
Then N = K ⊕ (N ∩K ′) where K is injective and N ∩K ′ is cosingular because
N ∩K ′ ∼= N/K.

Conversely, suppose that every submodule of M is a direct sum of an injective
module and a cosingular module. Let L be any submodule of M . Then L =
L1 ⊕ L2 for some injective module L1 and cosingular module L2. Clearly L1 is a
direct summand of M and L/L1 =Z∗(L/L1) because L/L1

∼= L2. 2
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Theorem 4.4 The following statements are equivalent for a ring R.
(i) Every right R–module satisfies (S∗),
(ii) Every injective right R–module satisfies (S∗),
(iii) Every right R–module is a direct sum of an injective module and a cosingular
module.

Proof (i)⇔(ii) It is clear because every submodule of a module with (S∗) also
has (S∗). (ii)⇔ (iii) by Proposition 4.3. 2

If the right R–module R satisfies (S∗), then every right R–module need not
satisfy (S∗). The following example is given in [12, Chapter 5]. It is also discussed
in [11, 2.3.4 and 2.3.5].

Example 4.5 Let Q = k[x, y]/(x2, y2) where k is a field. Then Q is a local QF–
ring by [12, Remark on p. 336]. Let J=J(Q), S=Soc(QQ)(=Soc(QQ)), Q = Q/S
and a = a + S for any a in Q. We define W as follows:

W =

[
Q Q
J Q

]
=

{[
a b
d c

]
: a, b, c ∈ Q, d ∈ J

}
.

W is a ring by the usual addition and multiplication of matrices. We put

1W =

[
1 0
0 1

]
, e =

[
1 0
0 0

]
, and f =

[
0 0
0 1

]
in W . Then 1W is the identity el-

ement of W and {e, f} is a set of orthogonal primitive idempotents and 1 = e+f .
Oshiro showed that W is a right and left Artinian but not right H-ring. Then
there exists an injective right W–module E such that E is not a (D1)–module.
But since W is right perfect, WW satisfies (S∗) and Z∗(E) =Rad(E) << E. If E
satisfies (S∗), by Lemma 3.3, E must be a (D1)–module, a contradiction. Hence
every right W–module does not satisfy (S∗).

Definitions 4.6 A module M is called extending if it satisfies (C1): Every sub-
module of M is essential in a summand of M . M is called quasi–continuous if
it satisfies (C1), and if M1 and M2 are summands of M such that M1 ∩M2 = 0,
then M1⊕M2 is a summand of M [10]. M is called

∑
–injective (respectively,

∑
–

extending) if every direct sum of copies of M is injective (respectively, extending)
[13] or [14].

Proposition 4.7 Assume that every right R–module satisfies (S∗). Then R =
A⊕B is the direct sum of a

∑
–injective right ideal A and a cosingular right ideal

B.

Proof Assume that every right R–module satisfies (S∗). Then R has a decom-
position R = A ⊕ B where A is injective and B is cosingular by Theorem 4.4.
Since A is an injective right ideal, Z∗(A) =Rad(A). Hence Z∗(A(Λ)) =Rad(A(Λ))
for every index set Λ. Again, by Theorem 4.4, A(Λ) = N⊕K where N is injective
and K is cosingular. Note that
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Z∗(A(Λ)) =Z∗(N)⊕K =Rad(A(Λ)) =RadN⊕RadK.

Then RadK = K. By [4, Proposition 17.14], K = 0. Thus A(Λ) is injective
for every index set Λ. This completes the proof. 2

Example 4.8 The converse of the Proposition 4.7 does not hold in general.
Let W be as defined in Example 4.5. Then WW

∼= eW ⊕ eJ(W ) and eW
is injective [12, Section 5] or [11, the proof of Theorem 2.3.5]. Since W is right
Artinian, W is right Noetherian by the Hopkins–Levitzki Theorem. Hence eW
is

∑
–injective by [4, Proposition 18.13]. On the other hand, eJ(W ) is cosingular

because eJ(W ) = J(eW ) ≤Z∗(W ). But, as was shown in Example 4.5, every
right W–module does not satisfy (S∗).

Now we give a characterization of H–rings.

Theorem 4.9 The following statements are equivalent for a ring R.
(i) R is a right H–ring,
(ii) R is right perfect and every right R–module satisfies (S∗),
(iii) For every injective right R-module M , RadM << M and every right R–
module satisfies (S∗).

Proof (i)⇒(ii) If R is a right H–ring, then every injective R–module satisfies
(S∗). Hence (ii) holds by Theorem 4.4.
(ii)⇒(iii) It is clear.
(iii)⇒(i) Let M be an injective R–module. Then RadM =Z∗(M). By hypothesis
Z∗(M) << M . Since M satisfies (S∗), M is a (D1)–module by Lemma 3.3. Hence
R is a right H–ring. 2

If every right R–module satisfies (S∗), then R need not be H–ring in general.
For example, let R = Z. Since Z∗(R) = R, every R–module satisfies (S∗) by
Corollary 2.7 or Lemma 3.8. But since no proper submodule in R has a supple-
ment in R, R is not a right H–ring.

5 QF–RINGS

In this section our aim is to use (S∗) property to characterize QF–rings. Next we
give three lemmas used in the characterization of QF–rings.

Lemma 5.1 Let Pi (1 ≤ i ≤ n) be a finite collection of projective injective R–
modules satisfying (S∗) and let P = P1 ⊕ · · · ⊕ Pn. Then P satisfies (S∗).

Proof By induction on n it is sufficient to prove the result when n = 2. Let
P = P1 ⊕ P2 and let πi : P −→ Pi (i = 1, 2) denote the canonical projections.
Let N be a submodule of P . By hypothesis, the submodule π1(N) = Q1 ⊕ L1
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for some direct summand Q1 of P1 and cosingular submodule L1 of P1. Let
σ : π1(N) −→ Q1 denote the canonical projection. Then σπ1 : N −→ Q1 is
an epimorphism with kernel H = {m ∈ N : π1(m) ∈ L1}. Note that Q1 is
a projective module and hence N = N1 ⊕ H for some submodule N1

∼= Q1.
Repeating the same argument for π2(H) we see that H = N2 ⊕ N ′ for some
submodule N2 isomorphic to a direct summand of P2 and submodule N ′ where
N ′ = {m ∈ N : π1(m) ∈ L1, π2(m) ∈ L2} for some cosingular submodule L2 of
P2.

Now N = N1⊕N2⊕N ′ where N1⊕N2 is injective and hence a direct summand
of P . Moreover, N ′ ≤ L1 ⊕ L2 so that N ′ is cosingular by Lemma 2.6. It follows
that P satisfies (S∗). 2

Corollary 5.2 Let R be a right self–injective ring that satisfies (S∗). Then R is
semiperfect.

Proof By Lemma 5.1, every finitely generated free right R–module satisfies (S∗)
and, by Lemma 3.2, so too does every finitely generated projective R–module.

Let M be a finitely generated R–module. Let P be a finitely generated pro-
jective R–module and let ϕ : P → M be an epimorphism with kernel K. There
exist submodules Q,Q′ of P such that P = Q⊕Q′, Q ≤ K and K/Q is cosingu-
lar. Now K = Q⊕ (K ∩Q′) and hence M ∼= P/K ∼= Q′/(K ∩Q′) where K ∩Q′

is cosingular.
Now K ∩ Q′ =Z∗(K ∩ Q′) ≤Z∗(Q′) =RadQ′ << Q′ since Q′ is injective and

finitely generated. Thus M has a projective cover and R is semiperfect. 2

Lemma 5.3 Let R be a ring with Z∗(RR) =J(R) and assume that the right R-
module E(R(N)) satisfies (S∗). Then the right R–module R is

∑
–injective, hence

R is a QF–ring.

Proof Let F = R⊕R⊕ . . . be the free right R–module which is the direct sum
of a countably infinite number of copies of R, i.e. F = R(N). By hypothesis E(F )
satisfies (S∗). By Proposition 4.3, F = X ⊕ Y for some injective submodule X
and cosingular submodule Y . Note that

Y =Z∗(Y ) ≤Z∗(F ) =J⊕J⊕ . . . = FJ,

by Lemma 2.3, where J is the Jacobson radical of R. Note that (F/X) = (F/X)J.
But F/X ∼= Y so that F/X is projective and hence F/X = 0 by [4, Proposition
17.14]. Thus F is injective. By [14, Proposition 20.3A], RR is

∑
–injective. Hence

R is a QF–ring [13, 18.1]. 2

Lemma 5.4 Let R be a semiperfect ring. If Z∗(RR) =Z(RR) then Z∗(RR) =J(R).
The converse holds when R is right or left perfect right quasi-continuous.
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Proof Let R be a semiperfect ring and assume Z∗(RR) =Z(RR). Then there
exists an idempotent e of R such that eR ≤Z(RR) and (1− e)R∩Z(RR) is small
in R by [10, Corollary 4.42]. Since Z(RR) does not contain any non–zero idem-
potents, it follows that Z(RR) ≤J(R) (see also [15, the proof of Lemma 4(viii)]).
Hence Z∗(RR) =J(R).

For converse, assume that Z∗(RR) =J(R). Since R is right or left perfect right
quasi–continuous, Z(RR) =J(R) by [16, Lemma 6]. Hence Z∗(RR) =Z(RR). 2

Oshiro [12] also called a ring R a right co–H–ring if every projective right R–
module is extending. R is a right co–H–ring if and only if R is right

∑
–extending

[13, 11.13].

Theorem 5.5 The following statements are equivalent for a ring R.

(1) R is a QF–ring,
(2) R is a right self–injective ring and every right R–module satisfies (S∗),
(3) R is a right self-injective ring and E(R(N)) satisfies (S∗),
(4) Z∗(RR) =J(R) and either of the following conditions hold.

(a) every right R-module satisfies (S∗) or
(b) E(R(N)) satisfies (S∗) or
(c) R is a right co–H–ring or
(d) R is a right H–ring,

(5) Z∗(RR) =Z(RR) and either of the following conditions hold.
(a) every right R–module satisfies (S∗) or
(b) E(R(N)) satisfies (S∗) or
(c) R is a right co–H–ring or
(d) R is a right H–ring.

Proof For (1)⇒ (2), suppose that R is a QF–ring. Then R is right self–injective
and by [12, Theorem 4.3] and Theorem 4.9, every right R–module satisfies (S∗).
The implications (2) ⇒ (3), (1) ⇒ (4a) ⇒ (4b), (1) ⇒ (4c) are all clear.
The implications (3) ⇒ (1) and (4b) ⇒ (1) follow from Lemma 5.3.
For (4c) ⇒ (4b), since R is a right perfect ring, every projective R–module sat-
isfies (S∗) by [10, Theorem 4.41]. On the other hand, the family of all projective
R–modules is closed under taking essential extensions by [12, Theorem 3.18].
Hence E(R(N)) satisfies (S∗).
The equivalency (4d) ⇔ (1) follows from [6, p.673 Corollary]. The implications
(1) ⇒ (5a) ⇒ (5b) and (1) ⇒ (5d) are clear.
For (5b) ⇒ (1), let F = R(N). By hypothesis E(F ) satisfies (S∗). By Proposi-
tion 4.3, F = X ⊕ Y for some injective submodule X and cosingular submodule
Y . Note that Z∗(X) ⊕ Y =Z∗(F ) =Z(F ) =Z(X)⊕Z(Y ). Then Y =Z(Y ). Since
Y is projective, Y = 0. Hence F = X is injective. Then RR is

∑
–injective by

[13, 2.4].
The implication (1) ⇒ (5c) follows from [12, Theorem 4.3]. The implications (5c)
⇒ (4c) and (5d) ⇒ (4d) follow from Lemma 5.4. 2
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Corollary 5.6 Let R be a commutative ring. Then every R–module satisfies (S∗)
if and only if R is the direct sum R1⊕R2 of a QF–ring R1 and a cosingular ring
R2.

Proof Suppose that every R–module satisfies (S∗). By Theorem 4.4 there exist
ideals R1 and R2 of R such that R = R1⊕R2, R1 is injective and R2 is cosingular.
Thus R1 is a self–injective ring and R2 is a cosingular ring. It can easily be checked
that every R1–module satisfies (S∗). By Theorem 5.5, R1 is a QF–ring.

Conversely, suppose that R = R1⊕R2 is the direct sum of a QF–ring R1 and
a cosingular ring R2. Let M be any R–module. Then M = MR1 ⊕ MR2. By
Lemma 3.8, MR2 ≤Z∗(M) and by Theorem 5.5 and Theorem 4.4, MR1 = A⊕B
for some injective submodule A and cosingular submodule B. Hence M = A⊕A′

where A is injective and A′ is cosingular. By Theorem 4.4, every R–module
satisfies (S∗). 2
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