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On a class of modules

By AYŞE ÇİĞDEM ÖZCAN (Ankara)

Abstract. Let R be a ring with identity and M a unital right R-module. Let
Z∗(M) = {m ∈ M : mR ¿ E(mR)}. In this study we consider the property (T): For
every right R-module M with Z∗(M) = Rad M , M is injective. We give a character-
ization of the property (T) when R is a prime PI-ring. Also, over a right Noetherian
ring R we prove that if R satisfies (T) then every right R-module is the direct sum of
an injective module and a Max-module.

1. Introduction and notations

All rings have identity and all modules are unital right modules.
Let R be a ring and M a right R-module. We write E(M), Rad M

and Soc(M) for the injective envelope, the radical and the socle of M ,
respectively. For the right annihilator of M in R we write ann(M). As
usual, N, C represent the sets of natural numbers and complex numbers. A
submodule N of M is indicated by writing N ≤ M . The notation N ≤e M

is reserved for essential submodules.
Let N be a submodule of M . N is called a small submodule if whenever

N + L = M for some submodule L of M we have M = L, and in this case
we write N ¿ M . In [7] Leonard defined a module M to be small if it is
a small submodule of some R-module. He showed that M is small if and
only if M is small in its injective hull. We put

Z∗(M) = {m ∈ M : mR is small} [5].
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Since Rad(M) is the union of all small submodules in M , Z∗(E) =
Rad(E) for any injective module E and

Z∗(M) = M ∩ RadE(M) = M ∩ Rad E′

for an injective E′ ⊇ M .
In this note we consider the following property:

(T) For every right R-module M with Z∗(M) = Rad(M), M is injective.

Clearly, semisimple rings satisfy (T). We will prove that the following
are equivalent for a prime PI-ring R:

i) R satisfies (T),
ii) For every left R-module with Z∗(M) = Rad(M), M is injective,
iii) R is a hereditary Noetherian ring.

After that we show that over a right Noetherian ring R, if R satisfies
(T) then every right R-module is the direct sum of an injective module
and a Max-module. Also, if R is a prime right Goldie ring which is not
primitive then the converse of the above result holds.

2. Results

We start with the following

Lemma 1. For any module M , Z∗(M) is a submodule of M and
Rad(M) ≤ Z∗(M).

Proof. Elementary. ¤
Let R be a ring with identity and M be a unital right R-module. An

ideal P of R is called right primitive if there exists a simple right R-module
U such that P is the annihilator of U in R.

Lemma 2. Suppose that M = MP for every right primitive ideal P .
Then M = Rad M .

Proof. Suppose that M contains a maximal submodule N and let
P = ann(M/N). Then M = MP ≤ N , a contradiction. ¤

The ring is called right bounded if every essential right ideal contains a
two-sided ideal which is essential as a right ideal. Moreover, R is fully right
bounded if R/P is a right bounded ring for every prime ideal P of R. The
abbreviation right FBN or FBN is commonly used for a right Noetherian
right fully bounded or a Noetherian fully bounded ring, respectively. A
ring R is a PI-ring if R satisfies a polynomial identity.
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Lemma 3. Suppose that R is right FBN or a PI-ring. Then the ring

R/P is (right) Artinian for every right primitive ideal P of R.

Proof. (See for example [4, Proposition 8.4].) ¤

Remark. Certain group rings and certain universal enveloping alge-
bras R have the property that the ring R/P is Artinian (because R/P

is prime, R/P is right Artinian implies R/P is also left Artinian) for ev-
ery right primitive ideal P (see [8]). Of course, simple right Noetherian
rings which are not (right) Artinian, for example the Weyl algebras An(C)
(n ∈ N), do not have this property.

Lemma 4. Let R be a ring such that R/P is an Artinian ring for every

right primitive ideal P of R. Then M = Rad M if and only if M = MP

for every right primitive ideal P of R.

Proof. The sufficiency follows by Lemma 2. Conversely, suppose
that M = Rad M , i.e. M has no maximal submodule. Let P be any
right primitive ideal of R. Then M/MP is a right module over the simple
Artinian ring R/P so that M/MP is semisimple. Because M , and hence
M/MP , does not have a maximal submodule, it follows that M = MP .

¤

Let M be an injective module. Then M = Mc for every regular (i.e.
non-zero divisor) element c in R. A right R-module N is called divisible
if N = Nc for every regular c. Thus injective modules are divisible [9,
Proposition 2.6].

Lemma 5 [6, Proposition 3.5]. Suppose that R is a ring such that

every divisible right R-module is injective. Then R is right hereditary.

Remark. Let R be a semiprime right Goldie ring. Then any torsion
free (i.e. non-singular) divisible right R-module is injective.

Lemma 6. Let R be a prime right or left Goldie ring. Let M be a

divisible right R-module. Then M = MI for every non-zero ideal I of R.

Proof. For any non-zero ideal I of R there exists a regular element c

of R such that c ∈ I. Hence M = Mc ≤ MI ≤ M , i.e. M = MI. ¤
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Lemma 7. Let R be a prime right Noetherian ring. Then M = MI

for every non-zero ideal I of R if and only if M = MP for every non-zero

prime ideal P of R.

Proof. The necessity is clear. Conversely, suppose that M = MP

for every non-zero prime ideal P of R. Let I be any non-zero ideal of R.
Then there exists a positive integer n and prime ideals Pi (1 ≤ i ≤ n) such
that P1 . . . Pn ≤ I ≤ P1 ∩ · · · ∩ Pn. Then M = MPn = MPn−1Pn = · · · =
MP1 . . . Pn ≤ MI ≤ M , i.e. M = MI. ¤

Lemma 8. Let R be a left bounded left Goldie prime ring. Then the

right R-module M is divisible if and only if M = MI for every non-zero

ideal I of R.

Proof. The necessity follows by Lemma 6. Conversely, suppose that
M = MI for every non-zero ideal I of R. Let c be any regular element
of R. Then there exists a non-zero ideal J such that J ≤ Rc. Now
M = MJ ≤ MRc = Mc ≤ M , i.e. M = Mc. ¤

Prime PI-rings are right and left bounded and right and left Goldie,
so Lemma 7 and Lemma 8 give at once:

Corollary 9. Let R be a prime PI-ring. Then M is divisible if and

only if M = MI for every non-zero ideal I of R. If, in addition, R is right

Noetherian, then M is divisible if and only if M = MP for every non-zero

prime ideal P of R.

Lemma 10. Let R be a prime (right and left) FBN-ring which is

not Artinian and for which every non-zero prime ideal is right primitive

(maximal in this case). Then the right R-module M satisfies M = Rad M

if and only if M is divisible.

Proof. By Lemmas 4, 7 and 8. ¤

We refer to [2, Chapter 6] for the definition of Krull Dimension.

Proposition 11. Let R be a prime PI-ring of right Krull dimension 1.

Then the right R-module M satisfies M = Rad M if and only if M is

divisible.

Proof. Suppose that S = Soc RR 6= 0. Then S contains a regular
element c, because R is prime right Goldie, and R ∼= cR ≤ S gives that R
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is right Artinian, contradicting the fact that R has right Krull dimension 1.
Thus S = 0.

Let E be any essential right ideal of R. There exists a non-zero ideal
I of R such that I ≤ E. There exists a regular element d such that
d ∈ I. Now R/dR is Artinian and hence the right R-module R/I is Ar-
tinian (this is because the (right) Krull dimension of R/dR is 0). By the
Hopkins–Levitzki Theorem, the right Artinian ring R/I is right Noether-
ian. Thus R/E is a Noetherian right R-module. It follows that R satisfies
the ascending chain condition on essential right ideals and hence the ring
R/S is a right Noetherian ring by [2, 5.15]. Thus R is a right Noetherian
ring. By [8, 13.6.15 Theorem] R is also left Noetherian.

It is now clear that Lemma 10 can be applied to give the result. ¤

Proposition 12. Let R be a prime right Goldie ring which is not

primitive. Then Z∗(M) = M for every right R-module M . In addition if

R satisfies (T), then every divisible right R-module is injective.

Proof. Let M be a right R-module, x ∈ M and E = E(xR). Sup-
pose that E = xR + L for some L ≤ E. If x is not in L, then E/L is
non-zero and a cyclic module so that there exists a maximal submodule
P of E with L contained in P . The module U = E/P is simple, and if
I is its annihilator in R we know that I is a non-zero ideal of R by our
hypothesis. But in this case I contains a non-zero divisior by Goldie’s
Theorem [4, Proposition 5.9] and then E = EI by [9, Proposition 2.6] so
that E = P , a contradiction. Hence x ∈ L and so E = L and xR is small.
Thus Z∗(M) = M .

Now assume that R satisfies (T). Let M be a divisible right R-module
and N a maximal submodule of M . Then 0 6= ann(M/N) ≤e R. There
exists a non-zero regular element d ∈ ann(M/N). Now M = Md ≤ N and
so M = N . Hence Rad M = M . By hypothesis M is injective. ¤

Remark. Let R be a prime PI-ring. Suppose in addition that R is right
hereditary. Because R is right Goldie it follows that R is right Noetherian
[1, Corollary 8.25] and hence also left Noetherian [8, 13.6.15 Theorem].
By [8, 6.2.8 Corollary] R has right Krull dimension at most 1. Note also
that R is left hereditary because R is right and left Noetherian [1, Corol-
lary 8.18].
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Theorem 13. The following are equivalent for a prime PI-ring R:

(i) For every right R-module M with Z∗(M) = Rad(M), M is injective,

(ii) For every left R-module M with Z∗(M) = Rad(M), M is injective,

(iii) R is a hereditary Noetherian ring.

Proof. (i) =⇒ (iii) We claim that every divisible right R-module is
injective. Let M be divisible. If M = Rad M then Z∗(M) = Rad(M) and
hence M is injective. Suppose M 6= Rad M and let N be a maximal sub-
module of M . If ann(M/N) = 0 then R is primitive. By Kaplansky’s The-
orem, R is semisimple Artinian. Hence M is injective. If ann(M/N) 6=0,
then, by Proposition 12, M is injective. Thus, by Lemma 5, R is right
hereditary. Hence by the above remark R is a hereditary Noetherian ring.

(iii) =⇒ (i) Let M be a right R-module and suppose Z∗(M) = Rad M .
By Proposition 12, M has no maximal submodule. By the above remark,
R has (right or left) Krull dimension 1. By Proposition 11, M is divisible.
Hence M is injective by Theorem 3.37 in [3] and Theorem 3.4 in [6].

(ii) ⇐⇒ (iii) Symmetrical. ¤
We call a module M a Max-module if for every non-zero submodule

N of M , N has a maximal submodule. For any module M we define the
radical series of M to be the chain of submodules

M = M0 ≥ M1 ≥ · · · ≥ Mα ≥ Mα+1 ≥ · · ·
where for any ordinal α ≥ 0, Rad Mα = Mα+1 and Mα =

⋂
0≤β<α Mβ if

α is a limit ordinal. Since M is a set, there exists an ordinal ρ ≥ 0 such
that Mρ = Mρ+1 = . . . .

Proposition 14 [10, Proposition 2.2]. A module M is a Max-module
if and only if Mp = 0.

Theorem 15. Let R be a right Noetherian ring. If R satisfies (T)
then every right R-module is the direct sum of an injective module and a
Max-module.

Proof. Let M be any right R-module. Let S denote the collection
of injective submodules of M (note that 0 ∈ S). Let {Cλ : λ ∈ Λ} be a
chain in S and let C =

⋃
Cλ ( λ ∈ Λ). Since R is right Notherian, Baer’s

Lemma gives that C is injective. Thus C ∈ S. By Zorn’s Lemma S has a
maximal member M1. Because M1 is injective, we have M = M1⊕M2 for
some submodule M2 of M . Let N be a non-zero submodule of M2. By the
choice of M1, M1 ⊕N , hence N is not injective. Thus Rad N 6= Z∗(N) by
hypothesis and it follows that N 6= Rad N . Therefore N has a maximal
submodule. Thus M2 is a Max-module. ¤
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Theorem 16. Let R be a prime right Goldie ring which is not prim-
itive. Assume that every right R-module is the direct sum of an injective
module and a Max-module. Then R satisfies (T).

Proof. Suppose that every right R-module is the direct sum of an
injective module and a Max-module. Let M be any right R-module such
that Z∗(M) = Rad M . Then by Proposition 12, Rad M = M . Let M =
X ⊕ Y where X is injective and Y is a Max-module. Now X ⊕ Y = M =
RadM = RadX ⊕ Rad Y so that Y = Rad Y and Y does not contain
a maximal submodule. This implies that Y = 0 and M = X, i.e. M is
injective. ¤
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