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SEMIPERFECT MODULES WITH RESPECT TO A PRERADICAL
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In this article, we consider the module theoretic version of I-semiperfect rings R for
an ideal I which are defined by Yousif and Zhou (2002). Let M be a left module
over a ring R, N ∈ ��M�, and �M a preradical on ��M�. We call N �M -semiperfect in
��M� if for any submodule K of N , there exists a decomposition K = A⊕ B such that
A is a projective summand of N in ��M� and B ≤ �M�N�. We investigate conditions
equivalent to being a �M -semiperfect module, focusing on certain preradicals such as
ZM� Soc, and �M . Results are applied to characterize Noetherian QF-modules (with
Rad�M� ≤ Soc�M�) and semisimple modules. Among others, we prove that if every
R-module M is Soc-semiperfect, then R is a Harada and a co-Harada ring.
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1. INTRODUCTION

Sandomierski (1969) proved that a ring R is semiperfect if and only if every
simple left R-module has a projective cover. The concept of a semiperfect ring has
been generalized to semiperfect modules by Mares (1963). Mares calls a module
M semiperfect if M is projective and every quotient of M has a projective cover.
Azumaya (1974) proved that a projective module M is semiperfect if and only if
every proper submodule of M is contained in a maximal submodule and every
simple homomorphic image of M has a projective cover. Semiperfect modules were
originally defined for projective modules by Mares, but it has been extended to
arbitrary modules in Kasch (1982).

Let M be a module. Wisbauer (1991) calls a module N in ��M� semiperfect in
��M� if every factor module of N has a projective cover in ��M�. By Wisbauer (1991,
41.14 and 42.1), if a module P in ��M� is projective in ��M�, then P is semiperfect
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in ��M� if and only if for every submodule K of P there exists a decomposition
K = A⊕ B such that A is a summand of P and B � P.

Recently, Yousif and Zhou (2002) have defined right I-semiperfect rings for
an ideal I of a ring R as a generalization of semiperfect rings. They consider the
cases when I is the right singular ideal or the right socle or ��RR� (defined in
Zhou, 2000).

In this article, we define �M -semiperfect modules N in ��M� for any preradical
�M , and consider the cases when �M�N� is the M-singular submodule or the socle
or �M�N�. In Section 2, we give conditions equivalent to being a �M -semiperfect
module in ��M� under some assumptions. We prove that if M is projective in
��M� and RadM � M , then M is ZM -semiperfect in ��M� if and only if M is
semiperfect in ��M� and ZM�M� = Rad�M�. Also we characterize �M -semiperfect
modules in ��M� by using projective �-covers in ��M�. After defining projective
Soc-covers in ��M�, we characterize Soc-semiperfect modules in ��M�. In Section 3,
we give a characterization of Noetherian QF-modules (with Rad�M� ≤ Soc�M�) and
semisimple modules in terms of �M -semiperfect modules.

Throughout this article, R denotes an associative ring with identity, and
modules M are unitary left R-modules. R-Mod denotes the category of all left
R-modules. For a module M�Rad�M�, and Soc�M� are the Jacobson radical and the
socle of M . We write J�R� for the Jacobson radical of R. We use N ≤e M (N � M)
to signify that N is an essential (small) submodule of M . For a (direct) summand K
of M , we write K ≤⊕ M .

Recall that ��M� denotes the full subcategory of R-Mod whose objects are
isomorphic to a submodule of an M-generated module for any R-module M
(Wisbauer, 1991). In case of M = R, ��M� = R-Mod. ��M� is closed under direct
sums, submodules, and factor modules. If a module P is P-projective, then it
is called self-projective. A module P in ��M� is called projective in ��M� if it is
N -projective for every N ∈ ��M�. If P is finitely generated, then it is M-projective if
and only if it is projective in ��M�. A projective module P in ��M� together with an
epimorphism 	 
 P → N with Ker�	� � P is called a projective cover of N in ��M�
(Wisbauer, 1991).

We say that “a submodule A of N is a projective summand of N in ��M�”
whenever A is a summand of N which is projective in ��M�.

A module N ∈ ��M� is called M-singular if N � L/K for an L ∈ ��M� and
K ≤e L. The largest M-singular submodule of N is denoted by ZM�N�. If ZM�N� = 0,
N is called non-M-singular. Note that any simple module is M-singular or
M-projective (Dung et al., 1994, Proposition 4.2).

A functor �M from ��M� to itself is called a preradical on ��M� if it satisfies the
following properties:

i) �M�N� is a submodule of N , for every N ∈ ��M�;
ii) If f 
 N ′ → N is a homomorphism in ��M�, then f��M�N

′�� ≤ �M�N� and �M�f� is
the restriction of f to �M�N

′�.

For example Rad, Soc, and ZM are preradicals. In case M = R, we
write ��N� instead of �M�N�. Note that if K is a summand of N ∈ ��M�,
then K ∩ �M�N� = �M�K�.
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2. �M-SEMIPERFECT MODULES

In this section, M will be any R-module and �M any preradical on ��M� unless
otherwise stated.

Proposition 2.1. The following are equivalent for a module N in ��M�:

(1) For every submodule K of N , there is a decomposition K = A⊕ B such that A is
a projective summand of N in ��M� and B ≤ �M�N�;

(2) For every submodule K of N , there is a decomposition N = A⊕ B such that A is
projective in ��M�, A ≤ K and K ∩ B ≤ �M�N�.

Proof. This is obvious. �

Definition 2.2. A module N ∈ ��M� is said to be �M -semiperfect in ��M� if it
satisfies one of the conditions of Proposition 2.1. If ��M� = R-Mod, then it is said
that N is �-semiperfect.

M is semisimple if and only if M is 0-semiperfect in ��M�, if and only if every
module N in ��M� is �M -semiperfect in ��M� by Wisbauer (1991, 20.3). Let M be a
projective module in ��M� with Rad�M� � M . Then M is Rad-semiperfect in ��M�
if and only if M is semiperfect in ��M�.

A module N in ��M� is called �M -semiregular in ��M� if for every finitely
generated submodule K of N , there exists a decomposition K = A⊕ B such that
A is a summand of N which is projective in ��M� and B ≤ �M�N�. Clearly, if N
is �M -semiperfect in ��M�, then it is �M -semiregular in ��M�. The converse does
not hold in general (see Yousif and Zhou, 2002, Example 2.7(5)). �M -semiregular
modules in R-Mod are studied in Alkan and Özcan (2004) by taking �M�N� as a fully
invariant submodule F of N . Note that any fully invariant submodule F of a module
M defines a preradical (see Raggi et al., 2005).

Zhou (2000) introduces the concept “�-small submodule” as a generalization
of a small submodule. Here we consider this definition in the category ��M�.

Let N be a module in ��M� and K a submodule of N . K is called �-M-small
in N (notation K ��M

N ) if K + L 	= N for any proper submodule L of N with N/L
M-singular.

The properties of �-small submodules that are listed in Zhou (2000, Lemma 1.3)
also hold in ��M�. We write them for convenience.

Lemma 2.3. Let M be a module.

a) For modules K and L with K ≤ L ≤ M , we have L ��M
M if and only if K ��M

M
and L/K ��M

M/K.
b) For submodules K and L of M�K + L ��M

M if and only if K ��M
M and

L ��M
M .

c) If K ��M
M and f 
 M → L is a homomorphism, then f�K� ��M

L.
In particular, if K ��M

M ≤ L, then K ��M
L.

d) If K ≤ L ≤⊕ M and K ��M
M , then K ��M

L.

The following lemma can be seen by a proof similar to Zhou (2000,
Lemma 1.2).
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Lemma 2.4. Let K be a submodule of a module N in ��M�. Then K ��M
N if and

only if N = X ⊕ Y for a projective semisimple submodule Y in ��M� with Y ≤ K,
whenever X + K = N .

Now we consider the following submodule of a module N in ��M� (see also
Zhou, 2000)

�M�N� = ⋂
�K ≤ N 
 N/K is M-singular simple�

By Zhou (2000, Lemma 1.5), �M is a preradical on ��M�. Also �M�N� is the sum of all
�-M-small submodules of N , and hence Rad�N� ≤ �M�N�. If every proper submodule
of N is contained in a maximal submodule of N , then �M�N� ��M

N .
Let N ∈ ��M�. Consider the condition:

�S1� for every summand K of N , there exists a decomposition N = A⊕ B such
that A ≤ K ∩ �M�N� and B ∩ K ∩ �M�N� ��M

N .

If �M�N� ��M
N , then �M�N� satisfies �S1�.

Lemma 2.5 (Wisbauer, 1991, 41.14). Let M be a self-projective module. Suppose
M = P + K where P and K are submodules of M and P ≤⊕ M . Then there exists a
submodule Q ≤ K such that M = P ⊕Q.

Theorem 2.6. Let M be a module and M = M/�M�M�. Consider the following
conditions:

(1) For every submodule K of M , there exists a decomposition K = A⊕ B such that A
is a summand of M and B ≤ �M�M�;

(2) (i) M is semisimple.
(ii) If M/�M�M� = A/�M�M�⊕ B/�M�M�, then there exists a decomposition

M = P ⊕Q such that P = A and Q = B.

Then �1� ⇒ �2i�. If M is self-projective, then �1� ⇒ �2ii�. If M is self-projective and
�M�M� satisfies �S1�, then �2� ⇒ �1�.

Proof. �1� ⇒ �2� Let K ≤ M . Then there is a decomposition M = A⊕ B such
that A ≤ K and K ∩ B ≤ �M�M�. So we get M = A⊕ B. This proves (i).

Now assume M is self-projective and M = A⊕ B. Then there is a
decomposition M = C ⊕D such that C ≤ A and A ∩D ≤ �M�M�. This implies that
M = C + B. By Lemma 2.5, M = C ⊕Q where Q ≤ B. Then (ii) follows because
C = A and Q ≤ B.

�2� ⇒ �1� Assume M is self-projective and �M�M� satisfies �S1�. Let K be
a submodule of M . By hypothesis, M = K ⊕ B for some submodule B of M with
�M�M� ≤ B. Then there exists a decomposition M = P ⊕Q such that P = K and
Q = B. Hence M = K +Q+ �M�M� and so M = K +Q+ �P ∩ �M�M��. By �S1�
and the modularity, there exists a decomposition P ∩ �M�M� = X ⊕ S, where X
is a summand of M and S ��M

M . Then M = K+Q+X+ S = �K+Q+X�⊕D
for a submodule D ≤ S by Lemma 2.4. Let T = K +Q+ X. Then there is a
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decomposition T = �Q⊕ X�⊕ A, where A ≤ K by Lemma 2.5. Since �Q+ X +D� ∩
K ≤ �Q+ �M�M�� ∩ �K + �M�M�� = �M�M�, (1) is proven. �

By the proof of Theorem 2.6, we have the following corollary.

Corollary 2.7. Let M be a module and M = M/�M�M�. Consider the following
conditions:

(1) M is �M -semiperfect in ��M�;
(2) �i� M is semisimple.

(ii) If M/�M�M� = A/�M�M�⊕ B/�M�M�, then there exists a decomposition
M = P ⊕Q such that P = A and Q = B.

Then �1� ⇒ �2i�. If M is self-projective, then �1� ⇒ �2ii�. If M is projective in
��M� and �M�M� satisfies �S1�, then �2� ⇒ �1�.

Let I be an ideal of a ring R. If for every idempotent g + I in R/I there is
an idempotent e ∈ R such that g + I = e+ I , then it is said that idempotents can be
lifted modulo I (Anderson and Fuller, 1974).

For an ideal I of R, we may define a preradical I 
 ��M� → ��M� by I�N� = IN
for a module N ∈ ��M�. Then we have the following corollary.

Corollary 2.8. Let I be an ideal of a ring R satisfying �S1�. Then the following
conditions are equivalent:

(1) R is left I-semiperfect;
(2) R/I is semisimple and idempotents can be lifted modulo I .

Remark 2.9. Indeed, an ideal I of a ring R must satisfy the condition �S1� for the
above equivalence. In Alkan and Özcan (2004, Proposition 3.1), it is proven that
Z�RR� satisfies �S1� if and only if Z�RR� ≤ J�R�. Hence Z�RR� does not satisfy �S1�
in general. For example, Bergman’s example (see Yousif and Zhou, 2002, Example
2.8 and Chatters and Hajarnavis, 1980, Example 1.36) shows that there exists a
ring R with J�R� = 0� Z�RR� 	= 0. Also for this ring, R/Z�RR� is semisimple and
idempotents can be lifted modulo Z�RR�.

Theorem 2.10. Let M be projective in ��M� and M = M1 ⊕M2 a direct sum of
modules M1, M2 such that Mi is �M -semiperfect in ��M� for i = 1� 2. Then M
is �M -semiperfect in ��M�.

Proof. Let L ≤ M . We show that there exists a decomposition M = A⊕ B such
that A ≤ L is projective in ��M� and L ∩ B ≤ �M�M�.

Case (1). If M1 ∩ �L+M2� = 0, then L ≤ M2. Since M2 is �M -semiperfect,
there exists B1 ≤ L such that M2 = B1 ⊕ B2 and L ∩ B2 ≤ �M�M2� for some
submodule B2 of M2. Hence M = M1 ⊕ B1 ⊕ B2 and L ∩ �M1 ⊕ B2� = L ∩ B2 ≤
�M�M2� ≤ �M�M�.
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Case (2). If M1 ∩ �L+M2� 	= 0, then M1 has a decomposition M1 =A1 ⊕A2

such that A1 ≤M1 ∩ �L+M2� and M1 ∩ �L+M2� ∩ A2 = A2 ∩ �L+M2� ≤ �M�M1� ≤
�M�M�. Then M = A1 ⊕ A2 ⊕M2 = L+ �M2 ⊕ A2�.

Assume M2 ∩ �L+ A2� = 0. Since L ∩ A2 ≤ A2 and A2 is �M -semiperfect,
A2 has a decomposition A2 = C1 ⊕ C2 such that C1 ≤ L ∩ A2 and L ∩ A2 ∩
C2 = L ∩ C2 ≤ �M�M1�. Then M = �A1 ⊕ C1�⊕ �C2 ⊕M2� = L+ �C2 +M2�. Since
M is self-projective, there exists L′ ≤ L such that M = L′ ⊕ C2 ⊕M2. Since M2 ∩
�L+ A2� = 0, we have L ∩ �C2 ⊕M2� = L ∩ C2 ≤ �M�M1�.

Assume M2 ∩ �L+ A2� 	= 0. Then M2 has a decomposition M2 = B1 ⊕ B2 such
that B1 ≤ M2 ∩ �L+ A2� and B2 ∩ �L+ A2� ≤ �M�M2�. Then M = L+ �A2 + B2� =
�A1 ⊕ B1�⊕ �A2 ⊕ B2�. Since M is self-projective, there exists L′ ≤ L such that
M = L′ ⊕ A2 ⊕ B2.

To show that L ∩ �A2 ⊕ B2� ≤ �M�M�, take 0 	= l = a+ b ∈ L ∩ �A2 ⊕ B2�,
where l ∈ L� a ∈ A2� b ∈ B2. Then l− b = a ∈ A2 ∩ �L+M2� ≤ �M�M� and l− a =
b ∈ B2 ∩ �L+ A2� ≤ �M�M� and so l ∈ �M�M�. Hence M is �M -semiperfect in ��M�.

�

Corollary 2.11. Let M be projective in ��M�. Then M is �M -semiperfect in ��M� if
and only if every finitely M-generated projective module is �M -semiperfect in ��M�.

Proof. Let N be a finitely M-generated projective module. Then N is isomorphic
to a summand of a finite direct sum of copies of M . Since Theorem 2.10 holds for
any finite direct sum of modules, N is �M -semiperfect. �

Hence for an ideal I of R, R is left I-semiperfect if and only if every finitely
generated projective module M is IM-semiperfect. In particular, a ring R is left
Z- (Soc-, �-) semiperfect if and only if every finitely generated projective module is
Z- (respectively Soc-, �-) semiperfect (see also Yousif and Zhou, 2002, Theorems 2.3
and 2.5).

From now on we consider some well-known preradicals and we obtain some
results by using their own properties. First we start with the M-singular preradical.

Theorem 2.12. Let M be projective in ��M� and Rad�M� � M . Then the following
are equivalent:

(1) M is ZM -semiperfect in ��M�;
(2) M is semiperfect in ��M� and Rad�M� = ZM�M�.

If M is finitely generated this is also equivalent to:

(3) For any maximal submodule K of M , K = A⊕ B such that A is a projective
summand of M in ��M� and B ≤ ZM�M�.

Proof. �1� ⇒ �2� Since M is ZM -semiregular in ��M� and since every cyclic
submodule of Rad�M� is small in M , it can be seen that Rad�M� ≤ ZM�M�. For
the converse, let x ∈ ZM�M�. To show that x ∈ Rad�M�, let L ≤ M be such that
M = Rx + L. By (1), L has a decomposition L = P ⊕ S, where P is a projective
summand of M in ��M�, and S is M-singular. Then Rx+ S≤ZM�M�. M =Rx+ S+P
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and then M/P is M-singular. Since M is projective in ��M� and P ≤⊕ M , M/P is
projective in ��M�. But this implies that M = P. Hence M = L and so Rx � M .
Since Rad�M� � M , M is semiperfect in ��M�.

�2� ⇒ �1� and �2� ⇒ �3� are obvious.

�3� ⇒ �2� Assume M is finitely generated and projective in ��M�. First we
claim that M/ZM�M� is semisimple. Let K/ZM�M� be a maximal submodule of
M/ZM�M�. Then there is a decomposition M = A⊕ C such that A is projective
in ��M�, A ≤ K and K ∩ C ≤ ZM�M�. Then K = A⊕ �K ∩ C� and K ∩ C =
ZM�C�. Since K ∩ �C + ZM�M�� = K ∩ �C + ZM�A�� = ZM�A�+ �K ∩ C� = ZM�A�+
ZM�C� = ZM�M�, K/ZM�M� is a summand of M/ZM�M�. So M/ZM�M� is semisimple.
It follows that Rad�M� ≤ ZM�M�.

Now if Rad�M� 	= ZM�M�, then there exists an element x ∈ ZM�M� such that
x 	∈ Rad�M�. Then there exists a maximal submodule K of M such that x 	∈ K. This
implies that M = Rx + K. By (3), K = A⊕ B such that A is a projective summand
of M in ��M� and B ≤ ZM�M�. Then M = Rx + A+ ZM�M� = A+ ZM�M�. Let C
be a submodule of M such that M = A⊕ C. Then C � M/A � ZM�M�/ZM�A� is
M-singular and projective in ��M�. Hence M = A, a contradiction. So Rad�M� =
ZM�M�.

To see that M is semiperfect in ��M�, let K be a maximal submodule of M .
Then M has a decomposition M = A⊕ B such that A ≤ K and K ∩ B ≤ ZM�M� =
Rad�M� � M . This implies that M = K + B and K ∩ B � B. By Wisbauer (1991,
41.6(1) and 42.3(1)), M is semiperfect in ��M�.

�

The next proposition is proven in Zhou (2000, Corollary 1.7) when
N = M = R.

Proposition 2.13. Let N ∈ ��M� be a projective module in ��M�. Then

Rad�N/Soc�N�� = �M�N�/Soc�N�

In particular, �M�N� = N if and only if N is semisimple.

Proof. Since N is projective in ��M�, �M�N� is the intersection of all essential
maximal submodules of N . Then Soc�N� ≤ �M�N�. Let n ∈ Rad�N/Soc�N��. If
n 	∈ �M�N�, then there exists an essential maximal submodule K of N such
that n 	∈ K. But n ∈ K/Soc�N�, a contradiction. Conversely, let n ∈ �M�N�/Soc�N�
and assume that n 	∈ Rad�N/Soc�N��. Then there exists a maximal submodule
L/Soc�N� ≤ N/Soc�N� such that n 	∈ L/Soc�N� and so n 	∈ L. Then N = L+ Rn with
Rn ≤ �M�N�. So Rn ��M

N . By Lemma 2.4, N = L⊕ Y , where Y ≤ Rn is semisimple.
Since Soc�N� ≤ L, it must be that Y = 0. So L = N , a contradiction. �

Note that there exists a module M and N ∈ ��M� such that N is not projective
in ��M� and Soc�N� is not contained in �M�N�. For example, let M = � and N = �p

where p is prime.
Let N ∈ ��M�. A homomorphism f 
 P → N is called a projective �-cover in

��M� of the module N if P ∈ ��M� is projective in ��M� and f is an epimorphism
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with Ker�f� ��M
P. If ��M� = R-Mod, then f is called a projective �-cover (Zhou,

2000).
By a proof similar to Zhou (2000, Lemma 2.4), we have the following lemma.

Lemma 2.14. Let N ∈ ��M� be a projective module in ��M� and K ≤ N . Then the
following are equivalent:

(1) N/K has a projective �-cover in ��M�;
(2) N = N1 ⊕ N2 for some N1 and N2 with N1 ≤ K and N2 ∩ K ��M

N .

Now we need to prove some propositions to give a characterization of �M -
semiperfect modules in ��M�.

Proposition 2.15. If S is a simple module in ��M� which has a projective �-cover in
��M�, then S is N -projective for every module N in ��M/�M�M��.

Proof. Let f 
 P → S be a projective �-cover of S in ��M�. Then Ker�f� ≤
�M�P� and is a maximal submodule of P. If �M�P� = P, then P is semisimple by
Proposition 2.13. This implies that P/Ker�f� � S is projective in ��M� and hence
projective in ��M/�M�M��.

If Ker�f� = �M�P�, then P/�M�P� � S. Now we claim that P/�M�P� is
M/�M�M�-projective. Let T ≤ M/�M�M� and � 
 P/�M�P� → �M/�M�M��/T be a
homomorphism and � 
 M/�M�M� → �M/�M�M��/T be the canonical epimorphism.
Since P is M/�M�M�-projective, there exists � 
 P → M/�M�M� such that �� = �	
where 	 
 P → P/�M�P� is the canonical epimorphism. Since �M�M/�M�M�� = 0,
�M�P� ≤ Ker���. Now define � 
 P/�M�P� → M/�M�M� such that ��p+ �M�P�� =
��p�, where p ∈ P. Then ��	 = �� = �	. Since 	 is epic, �� = �. Hence P/�M�P� is
M/�M�M�-projective. Since P/�M�P� is finitely generated, it is N -projective for every
module N in ��M/�M�M��. �

Proposition 2.16. Let N ∈ ��M�. If every factor module of N has a projective �-cover
in ��M�, then every proper submodule of N is contained in a maximal submodule.

Proof. Let U be a proper submodule of N and f 
 P → N/U a projective �-cover
of N/U in ��M�. If �M�P� 	= P, then P has an essential maximal submodule V . Then
Ker�f� ≤ �M�P� ≤ V . This implies that f�V� is a maximal submodule of N/U . If
�M�P� = P, P and hence N/U is semisimple. It follows that N/U has a maximal
submodule. �

Let N be an M-generated module. Then there exists an epimorphism M��� →N
for a suitable index set �. This induces an epimorphism �M/�M�M����� → N/�M�N�.
It follows that N/�M�N� ∈ ��M/�M�M��.

Proposition 2.17. Let N be an M-generated module. If every proper submodule of
N is contained in a maximal submodule and every simple factor module of N has a
projective �-cover in ��M� then N/�M�N� is semisimple.

Proof. Let N = N/�M�N� and C = Soc�N�. If C 	= N , then there exists a maximal
submodule D of N such that C ≤ D ≤ N . Then N/D is a simple factor module of
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N whence of N , therefore, has a projective �-cover in ��M�. Since N ∈ ��M/�M�M��,
N/D is projective in ��M/�M�M�� by Proposition 2.15. Then D is a summand of N .
So N = D⊕D′ for some D′. This implies that D′ ≤ C ≤ D, a contradiction. �

Proposition 2.18. Let N be an M-generated and a finitely generated module. If every
simple factor module of N has a projective �-cover in ��M�, then every factor module
of N has a projective �-cover in ��M�.

Proof. By Proposition 2.17, N = N/�M�N� is semisimple. Then it is a finite direct
sum of simple modules Si, i = 1�    � n. Let fi 
 Pi → Si be a projective �-cover of
Si in ��M�. Then f 
= ⊕n

i=1 fi 

⊕n

i=1 Pi → N is a projective �-cover of N in ��M� by
a proof similar to Lemma 2.3(b). Let P = ⊕n

i=1 Pi. Let g 
 N → N be the canonical
epimorphism. Since P is projective in ��M�, there exists a homomorphism h 
 P → N
such that gh = f . Then we have that N = h�P�+ �M�N�. Since �M�N� ��M

N , there
exists a semisimple projective submodule X in ��M� such that N = h�P�⊕ X by
Lemma 2.4. Then h 
 P → h�P� is a projective �-cover in ��M�. This implies that N
has a projective �-cover in ��M�. The hypotheses of the theorem are also satisfied for
any factor module of N . Hence every factor module of N has a projective �-cover
in ��M�. �

The following theorem characterizes �M -semiperfect modules in ��M� and also
we will use it to give a characterization of Soc-semiperfect modules.

Theorem 2.19. Let N ∈ ��M� be projective in ��M� and �M�N� ��M
N . Then the

following are equivalent:

(1) N is �M -semiperfect in ��M�;
(2) Every factor module of N has a projective �-cover in ��M�.

If N is finitely generated, this is also equivalent to:

(3) For every countably generated submodule L of N , N/L has a projective �-cover
in ��M�.

If N is finitely generated and M-generated, this is also equivalent to:

(4) Every simple factor module of N has a projective �-cover in ��M�.

Proof. By Lemma 2.14 and Proposition 2.18, (1) ⇔ (2) ⇔ (4) ⇒ (3).

(3) ⇒ (1) By Lemma 2.14, N is �M -semiregular in ��M�. Now we show that
N = N/�M�N� is Noetherian. Assume not. Then there exists a strict ascending chain
K1 ⊂ K2 ⊂ · · · of N . Let a1 ∈ K1, a2 ∈ K2\Ra1, a3 ∈ K3\�Ra1 + Ra2��    . Then
there exists a strict ascending chain Ra1 ⊂ Ra1 + Ra2 ⊂ · · · of N . Let Nk = Ra1 +
· · · + Rak �k ≥ 1�. Since every finitely generated submodule of N is a summand,
Ni ≤⊕ Ni+1 for all i ≥ 1. Let L = Ra1 + Ra2 + · · · . Then by Lemma 2.14, L = E ⊕D,
where E is a summand of N and D ≤ �M�N�. Since N is finitely generated, there
exists k ≥ 1 such that E ≤ Ra1 + · · · + Rak. Then we have Nk+1 ≤ E = Nk = L. This
gives a contradiction. Hence N/�M�N� is Noetherian. By Alkan and Özcan (2004,
Corollary 2.13), N is �M -semiperfect in ��M�. �
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Let N be an R-module in ��M�. We call a homomorphism f 
 P → N a
projective Soc-cover of N in ��M� if P is projective in ��M� and f is an epimorphism
with Ker�f� ≤ Soc�P�. If ��M� = R-Mod, then f is called projective Soc-cover of N .
Then we have

Lemma 2.20. Let N ∈ ��M� be such that N = ⊕
i∈K Ni. If each fi 
 Pi → Ni �i ∈ K�

is a projective Soc-cover in ��M�, then
⊕

i∈K fi 

⊕

i∈K Pi → N is a projective Soc-cover
in ��M�.

Although the proof of the following lemma is very similar to the proof of
Zhou (2000, Lemma 2.3) it is given for completeness.

Lemma 2.21. Let N ∈ ��M� and f 
 Q → N a projective Soc-cover in ��M�. If P ∈
��M� is a projective module in ��M� and g 
 P → N is an epimorphism, then there exist
decompositions Q = A⊕ B and P = X ⊕ Y such that

(1) A � X,
(2) f�A 
 A → N is a projective Soc-cover in ��M�,
(3) g�X 
 X → N is a projective Soc-cover in ��M�,
(4) B is a projective semisimple module in ��M� with B ⊆ Ker�f� and Y ⊆ Ker�g�.

Proof. Since P is projective in ��M�, there exists h 
 P → Q such that g = fh. Thus
fh�P� = N = f�Q� and so Q = h�P�+ Ker�f�. Let A = h�P�. Since Ker�f� ⊆ Soc�Q�,
there exists a submodule B in Ker�f� such that Q = A⊕ B. Thus B is a projective
semisimple submodule in ��M�. f�Q� = f�A� = N and Ker�f�A� = A ∩ Ker�f� ⊆ A ∩
Soc�Q� = Soc�A�. Thus f�A 
 A → N is a projective Soc-cover in ��M�. Since A is
projective in ��M�, there exists a homomorphism � 
 A → P such that h� = 1A.
Thus P = X ⊕ Y with Y = Ker�h� and X = ��A�. This gives X � A. On the other
hand, Ker�g�X� = ��Ker�f�A�� and so Ker�g�X� ⊆ X ∩ Soc�P� = Soc�X� Also g�X� =
fh�X� = fh�X + Y� = fh�P� = g�P� = N . Thus g�X 
 X → N is a projective Soc-cover
in ��M�. �

Lemma 2.22. Let P ∈ ��M� be a projective module in ��M� and N ≤ P. Then the
following are equivalent:

(1) P/N has a projective Soc-cover in ��M�;
(2) P = P1 ⊕ P2 for some P1 and P2 with P1 ⊆ N and P2 ∩ N ⊆ Soc�P�.

Proof. �1� ⇒ �2� Consider a projective Soc-cover f 
 Q → P/N in ��M�. Let
g 
 P → P/N be the canonical epimorphism. By Lemma 2.21, there exists a
decomposition P = X ⊕ Y such that g�X 
 X → P/N is a projective Soc-cover in ��M�
and Y ⊆ Ker g = N . Thus X ∩ N = Ker�g�X� ⊆ Soc�X� ⊆ Soc�P�. Let P1 = Y and
P2 = X.

�2� ⇒ �1� This is obvious. �

Theorem 2.23. Let N ∈ ��M� be projective in ��M�. Then the following are
equivalent:

(1) N is Soc-semiperfect in ��M�;
(2) Every factor module of N has a projective Soc-cover in ��M�.
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If N is finitely generated, this is equivalent to:

(3) For every countably generated submodule L of N , N/L has a projective Soc-cover
in ��M�.

If N is finitely generated and M-generated, this is equivalent to:

(4) Every simple factor module of N has a projective Soc-cover in ��M�.

Proof. �1� ⇔ �2� is by Lemma 2.22. �2� ⇒ �4� and �2� ⇒ �3� are obvious.

�3� ⇒ �1� Assume N is finitely generated and projective in ��M�. By
hypothesis, N is Soc-semiregular in ��M�. By Alkan and Özcan (2004, Theorem
2.12), every finitely generated submodule of N/Soc�N� is a summand. Then Soc�N� =
�M�N� by Proposition 2.13. Since N is finitely generated, the claim follows from
Theorem 2.19.

�4� ⇒ �1� Assume N is finitely generated, M-generated and projective in
��M�. First we claim that N/Soc�N� is semisimple. Let K/Soc�N� be a maximal
submodule of N/Soc�N�. Then N = A⊕ B such that A ≤ K is projective in ��M�
and K ∩ B ≤ Soc�N� by Lemma 2.22. This implies that K/Soc�N� is a summand of
N/Soc�N�. Hence N/Soc�N� is semisimple. By Proposition 2.13, �M�N� = Soc�N�. On
the other hand, every simple factor module of N has a projective �-cover in ��M�
by Lemma 2.14. Hence N is Soc-semiperfect in ��M� by Theorem 2.19. �

By Lemma 2.22 and Theorem 2.23, we have a characterization of Soc-
semiperfect rings. The proof of (2) ⇒ (3) of the following corollary is similar to that
of Zhou (2000, Theorem 3.6 (1⇒2)).

Corollary 2.24. The following are equivalent for a ring R:

(1) R is left Soc-semiperfect;
(2) Every simple R-module has a projective Soc-cover;
(3) Every R-module has a projective Soc-cover;
(4) Every projective R-module is Soc-semiperfect;
(5) For every countably generated left ideal I , R/I has a projective Soc-cover.

Baccella (2002) proved that for any ring R, every idempotent modulo Soc�RR�

can be lifted to R. We will prove this result for modules under some conditions and
give other characterization of Soc-semiperfect modules.

Proposition 2.25. Let N be a module in ��M� with N/Soc�N� semisimple. Then
Soc�N� is projective in ��M� if and only if ZM�N� = 0.

Proof. Since N/Soc�N� is semisimple, we have Soc�N� ≤e N . So ZM�N� = 0 if and
only if ZM�N� ∩ Soc�N� = 0, if and only if ZM�Soc�N�� = 0, if and only if Soc�N� is
non-M-singular, if and only if Soc�N� is projective in ��M�. �
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Theorem 2.26. Let N ∈ ��M� be M-generated and finitely generated. If N and
Soc�N� are projective in ��M�, then the following are equivalent:

(1) N is Soc-semiperfect in ��M�;
(2) N/Soc�N� is semisimple.

Proof. (2) ⇒ (1) We show that every simple factor module of N has a projective
Soc-cover in ��M�. Then by Theorem 2.23, N is Soc-semiperfect in ��M�. Let A be a
maximal submodule of N . We have two cases:

(i) If Soc�N� 	⊆ A, then there exists a simple submodule S such that
A⊕ S = N . Then N/A is projective in ��M� and so has a projective Soc-cover
in ��M�.

(ii) If Soc�N� ⊆ A, then by (2), there exists a submodule B of N such
that A+ B = N and A ∩ B = Soc�N�. Consider the homomorphism � 
 A⊕B→N
with ��a� b� = a+ b. Then � is an epimorphism and also Ker��� = ��a�−a� 
 a ∈
A ∩ B� � A ∩ B = Soc�N�. Then A⊕ B � N ⊕ Soc�N� is projective in ��M�. Let
f 
 B → N/A with f�b� = b + A. Then Ker�f� = A ∩ B = Soc�N� = Soc�B�. Thus B
is a projective Soc-cover of N/A in ��M�. �

3. EVERY MODULE IN ��M� IS �M-SEMIPERFECT IN ��M�

In this section, we characterize modules M for which every module in ��M� is
�M , Soc, ZM -semiperfect in ��M�.

Let M be a module. A preradical �M on ��M� is called a left exact preradical if
for any submodule K of N ∈ ��M�, �M�K� = K ∩ �M�N� (see Stenström, 1975).

For example, Soc and ZM are left exact preradicals on ��M�.

Lemma 3.1. Let �M be a left exact preradical on ��M�. Then the following are
equivalent:

(1) In ��M�, every injective module is �M -semiperfect in ��M�;
(2) In ��M�, every module is �M -semiperfect in ��M�.

Proof. (2) ⇒ (1) is obvious.

(1) ⇒ (2) Let N be a module in ��M� and K ≤ N . Since N̂ , the M-injective
hull of N , is �M -semiperfect by (1), there is a decomposition K = A⊕ B such that A is
a projective summand of N̂ in ��M� and B ≤ �M�N̂ �. Then A is a projective summand
of N in ��M� and B ≤ N ∩ �M�N̂ � = �M�N�. So N is �M -semiperfect in ��M�. �

Now we recall some definitions. A module M is called extending (or CS, or
(C1)) if every submodule is essential in a summand of M . M is called

∑
-extending if

every direct sum of copies of M is extending. M is called lifting (or �D1�) if for every
submodule N of M , there exists a decomposition M = A⊕ B such that A ≤ N and
N ∩ B � M . A module N in ��M� is called an M-small module if N � N̂ . Following
Oshiro (1984), a ring R is called a left H-ring (in honour of Harada) if every
injective left R-module is lifting. For a module M , Harada modules are considered
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by Jayaraman and Vanaja. They call M a Harada module if every injective module
in ��M� is lifting. M is a Harada module if and only if every module in ��M� is a
direct sum of an injective in ��M� and an M-small module (Jayaraman and Vanaja,
2000, Theorem 2.8).

Oshiro defines a ring R a left co-H-ring if every projective left R-module is
extending. Jayaraman and Vanaja call a module M a co-Harada module if it is
projective in ��M� and is

∑
-extending. If M is finitely generated and self-projective,

then M is a co-Harada module if and only if every M-generated module is a
direct sum of a module in AddM and an M-singular module, where AddM is
the full subcategory of ��M� whose objects are summands of direct sum of copies
of M (Dung et al., 1994, Corollary 11.11). Note that AddR is just the class of all
projective R-modules.

If for any injective module E in ��M�, Rad�E� � E, then any direct sum of M-
small modules is M-small. For, let N = ⊕

i∈I Ni where each Ni is M-small. Then Ni ≤
Rad�N̂i� for each i. It follows that N = ⊕

i∈I Ni ≤
⊕

i∈I Rad�N̂i� = Rad�
⊕

i∈I N̂i� ≤
Rad�N̂ � (Rayar, 1982).

Theorem 3.2. Let M be finitely generated and self-projective. If every module in ��M�
is Soc-semiperfect in ��M�, then M is a co-Harada-module and a Harada-module.

Proof. Let N be an M-generated module in ��M�. By hypothesis, N is a direct
sum of a projective module in ��M� and an M-singular module. Since N is M-
generated, N is a direct sum of a module in AddM and an M-singular module.
Hence M is a co-Harada module. Since M/Soc�M� is semisimple by Corollary 2.7,
M is Noetherian by Dung et al. (1994, 5.15 and 18.7).

Now we claim that M is a Harada module. Let N ∈ ��M�. Since N̂ is Soc-
semiperfect in ��M�, N has a decomposition N = A⊕ B such that A is a summand
of N̂ which is projective in ��M� and B ≤ Soc�N̂ �. Any simple module is either M-
injective or M-small. Then B has a decomposition B = B1 ⊕ B2 where B1 is a direct
sum of injective simple modules in ��M�, and B2 is a direct sum of M-small simple
modules. Since M is Noetherian, B1 is injective in ��M�. Since M is perfect in ��M�,
B2 is M-small. Hence by Jayaraman and Vanaja (2000, Theorem 2.8), M is a Harada
module. �

Oshiro (1983) proved that R is a left H-ring if and only if R is a right
co-H-ring. Then we have

Corollary 3.3. Let R be a ring. If every R-module is Soc-semiperfect then R is a
(right and left) co-H-ring and a (right and left) H-ring.

If M is a Noetherian injective cogenerator in ��M�, then it is called a Noetherian
Quasi-Frobenius or QF-module (Wisbauer, 1991). For a finitely generated self-
projective module M , M is a Noetherian QF-module if and only if every injective
module in ��M� is projective in ��M� (Wisbauer, 1991, 48.14). A module M is
called a self-generator if it generates all its submodules. Note that a projective self-
generator in ��M� is a generator in ��M�. For a finitely generated self-projective
module M which is self-generator, M is a Noetherian QF-module if and only if M



854 ÖZCAN AND ALKAN

is a Harada (co-Harada) module with ZM�M� = Rad�M� (Jayaraman and Vanaja,
2000, Theorem 3.11).

Theorem 3.4. Let M be a finitely generated self-projective module which is a self-
generator in ��M�. Then the following are equivalent:

(1) M is a Noetherian QF-module with Rad�M� ≤ Soc�M�;
(2) Rad�M� ≤ ZM�M� and every module in ��M� is Soc-semiperfect in ��M�.

Proof. (1) ⇒ (2) Let N be an injective module in ��M�. Then N is projective in
��M� (Wisbauer, 1991). By Jayaraman and Vanaja (2000, Theorem 3.11) and �1�,
ZM�M� = Rad�M� ≤ Soc�M�. Since N is M-generated and projective in ��M�, N is
isomorphic to a summand of M��� for an index set �. This implies that ZM�N� =
Rad�N� ≤ Soc�N�. Since M is perfect in ��M�, N is semiperfect in ��M� by Wisbauer
(1991, 43.2). Hence N is Soc-semiperfect in ��M�.

(2) ⇒ (1) If every module in ��M� is Soc-semiperfect in ��M�, then M is a
co-Harada module by Theorem 3.2. Since M is Soc-semiperfect in ��M�, ZM�M� ≤
Soc�M� by the definition. Let S be a simple M-singular submodule of M . If S 	⊆
Rad�M�, then S is a summand of M . This is a contradiction. So ZM�M� ≤ Rad�M�.
By (2), ZM�M� = Rad�M�. Hence M is a Noetherian QF-module. �

Corollary 3.5. The following are equivalent for a ring R:

(1) R is a QF-ring with J�R�2 = 0;
(2) J�R� ≤ Z�RR� and every R-module is Soc-semiperfect.

The following example shows that the assumption “J�R� ≤ Z�RR�” in
Corollary 3.5 is not removable.

Example 3.6. There exists a ring R such that every R-module is Soc-semiperfect
but J�R� 	⊆ Z�RR�.

Proof. Let R = [
F F
0 F

]
where F is a field. Then J�R� = [

0 F
0 0

]
, Soc�RR� =

[
F F
0 0

]
and Z�RR� = Z�RR� = 0. So J�R� 	⊆ Z�RR�. Since R is an Artinian serial ring with
J�R�2 = 0, R is a co-H-ring and an H-ring by Oshiro (1984, Theorem 4.5). Now we
claim that every R-module is Soc-semiperfect. Let M be an R-module and N ≤ M .
Since R is an Artinian serial ring with J�R�2 = 0, M is lifting by Vanaja and Purav
(1992). Then there exists a decomposition M = A⊕ B such that A ≤ N and N ∩
B � M . So N = A⊕ �N ∩ B�. Since J�R� ≤ Soc�RR�, N ∩ B ≤ Rad�M� = J�R�M ≤
Soc�RR�M ≤ Soc�M�. Since R is a co-H-ring, A has a decomposition A = A1 ⊕ A2

such that A1 is projective and A2 is singular. By Dung et al. (1994, 13.6 and 7.16),
every singular R-module is semisimple. Let C 
= A2 ⊕ �N ∩ B�. Hence N = A1 ⊕ C,
where A1 is projective summand of M and C ≤ Soc�M�. �

Also note that there exists a QF-ring R such that J�R� 	⊆ Soc�RR�. For
example, let R = �8. Then J�R� = 2R and Soc�RR� = 4R. Hence over a QF-ring not
every R-module need to be Soc-semiperfect.
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Theorem 3.7. Let M be a finitely generated self-projective module which is a self-
generator in ��M�. Then the following are equivalent:

(1) M is a Noetherian QF-module;
(2) Every module in ��M� is ZM -semiperfect in ��M�.

Proof. (1) ⇒ (2) Let N ∈ ��M� be injective in ��M�. Then N is projective in ��M�.
By the proof of Theorem 3.4 (1 ⇒ 2), ZM�N� = Rad�N�. Since M is perfect in ��M�
we have that N is ZM -semiperfect in ��M�. By Lemma 3.1, every module in ��M� is
ZM -semiperfect in ��M�.

(2) ⇒ (1) By (2), every module in ��M� is a direct sum of a projective module
in ��M� and an M-singular module. Hence M is a co-Harada module by Dung et al.
(1994, Corollary 11.11). By Theorem 2.12, ZM�M� = Rad�M�. Hence (1) holds by
Jayaraman and Vanaja (2000, Theorem 3.1). �

Corollary 3.8. The following are equivalent for a ring R:

(1) R is a QF-ring;
(2) Every R-module is Z-semiperfect.

Theorem 3.9. Let M be a module. The following are equivalent:

(1) M is semisimple;
(2) Every module in ��M� is �M -semiperfect in ��M�;
(3) Every module in ��M� is �M -semiregular in ��M�.

Proof. If M is semisimple, then every module N in ��M� is semisimple and
projective in ��M�. Hence (1) ⇒ (2). (2) ⇒ (3) is obvious.

(3) ⇒ (1) By the proof of Alkan and Özcan (2004, Theorem 4.2), in
��M� every simple module is projective. Hence M is semisimple by Wisbauer
(1991, 20.3). �

Corollary 3.10. The following are equivalent for a ring R:

(1) R is semisimple;
(2) Every R-module is �-semiperfect;
(3) Every R-module is �-semiregular.
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