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Abstract

A module M has the property (V) if for every K ≤ M, K 6= M and
m ∈ M −K, any submodule L maximal with respect to the property that
it contains K but does not contain the element m is maximal in M . It has
the property (Ve) if (V) holds for every essential proper submodule K and
m ∈ M −K. It is shown that M is a V-module if and only if M has the
property (V). M/SocM is a V-module if and only if M has the property
(Ve). Some further characterizations of V-rings and GV-rings are given.

All rings considered are associative, have an identity and all modules are uni-
tary right modules. Let R be a ring and M a module. We write RadM,Z(M),
SocM and E(M) for the radical, the singular submodule, the socle and the in-
jective envelope of M respectively. Let M and N be modules. N is called M-
injective if for each submodule K of M every homomorphism from K into N can
be extended to an R-homomorphism from M into N . M is called a V-module by
Hirano in [6] (or cosemisimple by Fuller [2]) if every proper submodule of M is an
intersection of maximal submodules. R is called a V-ring if the right module RR

is a V-module. M is a V-module if and only if every simple module is M -injective.
Following Hirano [6], M is called a generalized V-module or a GV-module if every
simple singular module is M -injective. If the module RR is a GV-module R is
called a GV-ring.

In this note we give some characterizations of V-modules and GV-modules in
terms of certain maximal submodules.

We write N ≤ M for N is a submodule of M . A right R-module M is said to
have property (V), (Ve) respectively if
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(V) For every K ≤ M, K 6= M and m ∈ M −K, any submodule L maximal
with respect to the property that it contains K but does not contain the element
m is maximal in M .

(Ve) (V) holds for every essential proper submodule K and m ∈ M −K.

1. Modules with Properties (V) and (Ve)

In [8] it is proved that R is a right V-ring if and only if the right R-module R
has the property (V).

Theorem 1. Let M be a module. Then the following are equivalent.
(1) M is a V-module.
(2) M has the property (V).

Proof. (1)=⇒ (2) Let K ≤ M, K 6= M , m ∈ M − K and let L be a max-
imal submodule with respect to the property that it contains K but does not
contain the element m. Then (mR + L)/L is a simple R-module. By (1) it is
M -injective and so M/L-injective. Also (mR + L)/L is an essential submodule
of M/L. Hence (mR + L)/L = M/L. Thus L is a maximal submodule of M .
(2)=⇒ (1) Let X be a simple module, N an essential proper submodule of
M , f a non-zero homomorphism from N to X and let x ∈ N − kerf . Let L
be a submodule of M maximal with respect to x /∈ L and kerf ≤ L. Then
xR + L = M = N + L by (2). Hence N ∩ L is maximal in N . Since kerf is a
maximal submodule of N , then N ∩ L = kerf . Thus f extends to M .

Theorem 2. Let M be a module. Then the following are equivalent.
(1) M/SocM is a V-module.
(2) M has the property (Ve).

Proof. (1)=⇒ (2) Let m ∈ M and let N be an essential submodule of M
maximal with respect to m /∈ N . Then (mR + N)/N is a simple module and
essential in M/N . By (1) it is M/SocM -injective. Since SocM ≤ N , then
(mR + N)/N is M/N -injective. Thus M = mR + N . This implies that N is a
maximal submodule of M .
(2)=⇒ (1) Let X be any simple module. To prove X is M/SocM -injective, let
N/SocM be an essential submodule of M/SocM and f a non-zero homomor-
phism from N/SocM to X. Set Kerf = K/SocM for some K ≤ M . Then N is
essential submodule of M and K is a maximal submodule of N . We consider two
cases: Assume K is essential in N . Then K is essential in M . Let x ∈ N −K
and let L be a submodule of M maximal with respect to x /∈ L and K ≤ L.
Since K is essential in M , then L is essential in M . By (Ve), L is a maximal
submodule of M , and so M = xR + L = N + L. Then N ∩ L is maximal in
N . Hence K = N ∩ L. Thus K/SocM = (N/SocM) ∩ (L/SocM), which is the
kernel of f . It follows that f extends to a homomorphism from M/SocM to X.
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If K is not essential in N , then K is a direct summand of N and N = K ⊕ T for
some T ≤ N . Hence N/K, T and X are isomorphic simple modules. It follows
that T ≤SocM . Since SocM ≤ K, then T = 0. This is a contradiction which
completes the proof.

2. Co-singular Submodule Z∗(M) and V-Rings

A submodule N of M is called small in M if whenever N + L = M for some
submodule L of M we have M = L. A module M is said to be small if M is
small in E(M) [7]. Let M be an R-module. We set Z∗(M) = {m ∈ M : mR is
small }. We call Z∗(M) a co-singular submodule of M . In this note we consider
the classes X = {R-module M : Z∗(M) = 0}, X∗ = {R-module M : whenever
Q ≤ P ≤ M, P/Q ∈ X implies P/Q = 0}, following [5]. Submodules and homo-
morphic images of small modules are small [7] and X is closed under submodules,
direct products, direct sums, essential extensions and module extensions. X∗ is
closed under submodules, homomorphic images and direct sums. Any member of
X is called an X-module. X ∩X∗ = 0, and since RadM is the sum of all small
submodules of M , RadM ≤Z∗(M) and Z∗(M) = M∩RadE(M). Z∗(E) =RadE
for any injective module E. In general Z∗(M) 6=RadM [e.g. Example 11].

Lemma 3. Let M be a module and N ≤ M . Then (Z∗(M) + N)/N is a
submodule of Z∗(M/N) .

Proof. Let m ∈Z∗(M). Then mR is small in E(mR) so that (mR + N)/N
is small in (E(mR) + N)/N . Hence (m + N)R = (mR + N)/N is small. Thus
m + N ∈Z∗(M/N).

Lemma 4. Let M be a module. Then
(1) If M is small then Z∗(M) = M ,
(2) If Z∗(M) = M then M ∈ X∗,
(3) If M is semisimple injective then M ∈ X .

Proof.(1) Clear from the definitions.
(2) Let M be a module and Q ≤ P ≤ M be such that Z∗(M) = M and P/Q ∈ X.
Let x ∈ P . Then xR and (xR + Q)/Q are small and (xR + Q)/Q ∈ X. By (1)
(xR + Q)/Q ∈ X∗. Hence xR + Q = Q and x ∈ Q. Thus M ∈ X∗.
(3) Assume M is semisimple injective. Since X is closed under direct sums,
without loss of generality we may assume M is simple injective. If Z∗(M) = M
then M is small in M . This is a contradiction. Hence Z∗(M) = 0 and so M ∈ X.
This completes the proof.

Lemma 5. For any module M , Z∗(M) = 0 if and only if RadE(M) = 0 .

Proof. M is essential in E(M).
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Proposition 6. Let R be a ring such that R/J(R) is right Artinian. Then
Z∗(M) = 0 if and only if M is semisimple injective.

Proof. Sufficiency is clear from Lemma 4(3). Conversely, suppose that Z∗(M) =
0. Then 0 =RadE(M) =E(M)J(R). Hence E(M) is semisimple and so M =E(M).
Thus M is semisimple injective.

Example 7. Let R be a prime right Goldie ring which is not right primitive
(e.g. a commutative domain which is not a field). Then Z∗(R) = R.

Proof. Let r ∈ R and E =E(rR). Suppose that E = rR + L for some L ≤ E.
If r is not in L, then E/L is non-zero and a cyclic module so that there exists
a maximal submodule P of E with L contained in P . The module U = E/P
is simple, and if I is its annihilator in R we know that I is a non-zero ideal of
R by our hypothesis. But in this case I contains a non-zero divisor by Goldie’s
Theorem [4, Proposition 5.9] and then E = EI by [9, Proposition 2.6] so that
E = P , a contradiction. Hence r ∈ L and so E = L and rR is small. Thus
Z∗(R) = R.

Lemma 8. Let R be a ring such that Z∗(R) = R. Then for every module
M , Z∗(M) = M .

Proof. Let M be a module and m ∈ M . Let r(m) denote the right annihi-
lator of m in R. Then mR ∼= R/r(m) and Z∗(R) = R imply that mR is small,
and so m ∈Z∗(M).

We combine Example 7 and Lemma 8

Corollary 9. Let R be a prime right Goldie ring which is not a right primi-
tive ring. Then for every module M , Z∗(M) = M .

Theorem 10.Let R be a ring. Then the following are equivalent.
(1) R is a right GV-ring,
(2) Every X∗-module is projective,
(3) Every simple X∗-module is projective,
(4) For every R-module M with Z∗(M) 6= 0, Z∗(M) is projective,
(5) Every small module is projective,
(6) For every R-module M with Z∗(M) = M , M contains a non-zero projective
submodule,
(7) For every R-module M , Z(M)∩Z∗(M) = 0,
(8) For every right ideal I of R, Z(R/I)∩Z∗(R/I) = 0,
(9) For every R-module M with Z(M) essential in M , Z∗(M) = 0,
(10) R/SocR is a V-module and Z(R)∩Z∗(R) = 0,
(11) Every proper essential right ideal of R is an intersection of maximal right
ideals and Z(R)∩Z∗(R) = 0,
(12) For every essential right ideal K of R, Z∗(R/K) = 0 and Z(R)∩Z∗(R) = 0.
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Proof. (1)=⇒ (2) Let M ∈ X∗ and m ∈ M, m 6= 0. Let K be a maximal
submodule of mR. Then mR/K is injective or projective. If mR/K is injective,
then by Lemma 4(3) mR/K ∈ X. Hence mR/K = 0. Thus it is projective. It
follows that K is a direct summand of mR, and so mR is semisimple and so too
is M . As before it can be shown that every simple submodule of M is projective.
(2)=⇒ (3) Clear.
(3)=⇒ (4) Since Z∗(M) is in X∗ by Lemma 4(2) and every simple module is
injective or small; the proof is the same as that of (1=⇒ 2).
(4)=⇒ (5) Let M be a non-zero small module. Then Z∗(M) = M by Lemma
4(1). Thus M is projective by (4).
(5)=⇒ (6) Let M be a module with Z∗(M) = M . Let m ∈ M,m 6= 0. Since mR
is small, then mR is projective by (5).
(6)=⇒ (7) Let m ∈Z(M)∩Z∗(M) . Then Z∗(mR) = mR. Assume m 6= 0. Then
by (6), mR contains a non-zero projective submodule L. Hence L is isomorphic
to I/r(m) for some right ideal I of R. Thus r(m) is a direct summand of I. But,
since m ∈Z(M), r(m) is essential in R, and so in I, then L = 0. A contradiction.
(7)=⇒ (8) Clear.
(8)=⇒ (9) Let M be a module with Z(M) essential in M . Let x ∈Z∗(M). As-
sume x 6= 0. There exists a non-zero m ∈ xR∩Z(M). Then mR ≤Z∗(M)∩Z(M).
Hence mR ∼= R/r(m) ≤Z∗(R/r(m))∩Z(R/r(m)) which is zero by (8). This is a
contradiction.
(9)=⇒ (10) Let X be a simple module, I/SocR a right ideal of R/SocR and f a
non-zero homomorphism from I/SocR to X. Set Kerf = K/SocR for some right
ideal K of R. Then K is a maximal right ideal of I. If K is not essential in I then
I = K ⊕ T for some T ≤ I. Hence T ≤SocR ≤ K. This is a contradiction. It
follows that K is essential in I, and so I/K is singular. By (9) Z∗(I/K) = 0, and
then Z∗(X) = 0. Since X is simple then X is injective and so R/SocR-injective.
It follows that f extends to R/SocR.
(10)⇐⇒ (11) R/SocR is a V-module if and only if every proper essential right
ideal of R is an intersection of maximal right ideals [10].
(11)=⇒ (12) Let K be an essential right ideal of R Let 0 6= x + K ∈Z∗(R/K).
By (11) there exists a maximal right ideal L of R such that x 6∈ L and K ≤ L.
Then (xR + L)/L is small and a singular module. Next we prove (xR + L)/L
is an injective module. Let I be an essential right ideal of R and f a non-zero
homomorphism from I to (xR + L)/L. Set T = Kerf . Assume T is essential in
I. Then T is an essential right ideal in R. By (11) we may find a maximal right
ideal J of R so that T ≤ J and I 6≤ J . Hence R = I + J . Since T ≤ I ∩ J ≤ I
and I 6≤ J , then T = I ∩ J , and so f extends. If T is not an essential right ideal
in I, then I = T ⊕ U for some right ideal U of R. Hence U is a simple singular
and small module. Thus U ≤Z(R)∩Z∗(R) that is zero. This is a contradiction for
f a non-zero mapping. It follows that (xR + L)/L is an injective module. This
is a contradiction for (xR + L)/L is a small module. Hence Z∗(R/K) = 0.
(12)=⇒ (1) Let X be a simple singular module and I an essential right ideal of
R. Let f be a non-zero homomorphism from I to X with kernel K. Then K is
a maximal submodule of I. If K is not essential in I then I = K ⊕ L for some
L ≤ I. Then L is a simple singular right ideal of R. Hence L2 = 0 or L = eR for
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some idempotent e of R. Assume L = eR. Then r(e) = (1 − e)R is essential in
R. This is a contradiction. Hence L2 = 0, and so L ≤RadR. Since L is singular
then L ≤Z(R). Since RadR ≤Z∗(R), then by (12), L = 0. Hence K is essential
in I and so too in R. By (12), Z∗(R/K) = 0 and so Z∗(I/K) = 0. This and I/K
simple imply I/K is injective. Since X ∼= I/K, X is injective. This completes
the proof.

Example 11. Let R =

[
F 0
F F

]
be lower triangular matrices over a field F .

J(R) =

[
0 0
F 0

]
, Soc(RR) =

[
F 0
F 0

]
and by [1, Example 4.b] R is a right and

left GV-ring and not a V-ring. Z∗(R) is semisimple by the proof of Theorem

10(1⇒ 2) and J(R) ≤Z∗(R) ≤SocR. Set K =

[
0 0
F F

]
and L =

[
F 0
0 0

]
. By [3,

Exercise 3.B.20-21] K is an injective right ideal and every injective right ideal of
R is contained in K. Since the simple right ideal L is injective or small, and L is
not in K, then L is small. Hence Z∗(R) =Soc(RR) and J(R) 6=Z∗(R).

Theorem 12. Let R be a ring. Then the following are equivalent.
(1) R is a right V-ring.
(2) For every R-module M , Z∗(M) = 0.
(3) For every simple R-module M , Z∗(M) = 0.

Proof.(1)=⇒ (2) By (1), RadE(M) = 0. Hence Z∗(M) = 0.
(2)=⇒ (3) Clear.
(3)=⇒ (1) Let M be a simple module. By (3), Z∗(M) = 0. Since M is simple,
then M is injective or small. Assume M is small, then by Lemma 4, M ∈ X∗.
This is a contradiction. Hence M is injective.

We combine Theorem 1 and Theorem 12

Corollary 13. Let R be a ring. Then, RR has the property (V) if and only
if Z∗(M) = 0 for every R-module M .
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