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Abstract

Let M be a right R-module and M the class of all M-small mod-
ules. We consider the torsion theories Tor = (7ps, Fm), 7v = (Zv, Fy) and
7p = (Tp, Fp) in o[M] where T4 is the torsion theory generated by M, 1y
is the torsion theory cogenerated by M and 7p is the dual Lambek torsion
theory where P denotes a projective cover of M in o[M]. We study some
conditions for 7p¢ to be cohereditary, stable or split, and we prove that
Rej(M,M) =M<E Fp = ./\/l(: TM = .7:\/) &S TIp =Ty & GenM(P) -
Tv.
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Introduction

Let R be an associative ring with identity and M a right R-module. An
R-module N is subgenerated by M if N is isomorphic to a submodule of an M-
generated module. o[M] denotes the full subcategory of Mod-R whose objects
are all R-modules subgenerated by M. Let N € ¢[M]. An injective module E in
o[M] together with an essential monomorphism ¢ : N — F is called an injective
hull of N in o[ M] or an M -injective hull of N and is usually denoted by N. E(M)
is the R-injective hull of M. (see [17] or [4])

We use the notation N <. M for an essential submodule N of M. A module
N in o[M] is called M -singular (or singular in o[M]) if N =2 L/K for an L € o[M]|
and K <, L (see [4]). In case M = R, instead of R-singular, we just say
singular. Every module N € o[M] contains a largest M-singular submodule
which is denoted by Zy;(N). Simple modules are M-singular or M-projective.
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Let K be a submodule of M. K is called smallin M if K 4+ L # M holds for
every proper submodule L of M and denoted by K < M. We write Rad M, which
is the sum of all small submodules in M, for the radical of M. An R-module N
in o[M] is called M-small (or small in c[M]) if N 2 K < L for K, L € o[M].
In case M = R, instead of R-small, we just say small. We denote the class of
all M-small modules by M. An R-module N is M-small if and only if N < N.
Every simple R-module is M-injective or M-small [7, 5.1.4]. M is closed under
submodules, factor modules and finite direct sums [7].

Let M be a module and C a class of modules in o[M] closed under isomor-
phisms and submodules. For any N € o[M] the trace of C in N is denoted by
Tr(C,N) =>{Imf : f € Hom(C,N),C € C}. Let

F ={F € o[M]:VC € C,Hom(C, F) = 0}

T ={T € o[M]:VF € F,Hom(T, F') = 0}.

Then 7 = (7, F) is a torsion theory generated by C. Also it can be seen that

F={Fe€oM|:Tx(C,F)=0}

T ={T€o[M]:YU <V T, Tr(C,V/U) # 0}.

Since C is closed under isomorphisms and submodules, 7 is a hereditary torsion
theory (see [3, IT 1.3]). 7 is called stable if T is closed under essential extensions in
o[M] , i.e. if every essential extension E € o[M] of a torsion module N € ¢[M] is
again torsion. 7 is splitting if every R-module N has a decomposition N = N;® Ny
such that Ny € 7 and Ny € F. 1¢(N) = Tr(7,N) is a torsion radical and
Tr(C,N) <. 1¢(N). Also 7¢(N) =Y{K < N: VU <V <K, V/U & F} [6].

Small modules are dual of singular modules. In this respect the dual of the
Goldie torsion theory is the torsion theory generated by small modules which is
introduced by Ramamurthi [14]. In [11] and [8] instances are given where this
torsion theory is cohereditary or stable or splits.

In this paper we consider the dual Goldie torsion theory in o[M], the torsion
theory generated by AM-small modules for a right R-module M. We give some
equivalent conditions for this torsion theory to be cohereditary, stable or split
and investigate the coincidence of this torsion theory and the torsion theory
cogenerated by M-small modules which is studied by Talebi and Vanaja [16].
Also we consider the dual Lambek torsion theory in o[M] for a module M having
projective cover. Finally we give equivalent conditions for a module M to be a
GCO-module which is a generalization of a GV-module.

Now define Z3,;(N) = {n € N : nR is an M-small module} for an R-module
M and N € o[M]. In case M = R, we write Z*(N) instead of Z}(N) which is
studied in [5], [11] and [12]. Let N € o[M]. Then RadN < Z},(N) < Z*(N)
and Z%,(N) = RadN N N. For any submodule K < N, Z3,(K) = K N Z;,(N).
If f: N — K is a homomorphism of modules N, K in o[M], then f(Z},(N)) <
Z3/(K). Let N; (i € I) be any collection of modules in o[M]. Then Z},(®icrV;) =
@icrZh(N;). If M is semisimple, then Z3,(N) = 0 for any N € o[M]. [13]



It is easy to see that
23 (N)=Tr(M,N).

Then the torsion theory in o[M] generated by M is 7y = (7, Fa) where
Tu={N €o[M] VYU <V <N,Z,(V/U) # 0}
Fm={N € o[M]:7Z,(N)=0}.

Since M is closed under isomorphisms and submodules, 7, is a hereditary
torsion theory. If M is semisimple, then Fpy = o[M] and 7T = {0}.

Note that for N € o[M], Z},(N) <. Tm(N).

Let 746 = (Tac, Fac) be the Dual Goldie Torsion Theory in Mod-R. It is easy
to see that

TM g’];lg and fdgﬂU[M] ng

Let C be a class of modules in o[M]. For any N in o[M] the reject of C in N is
denoted by Rej(N,C) = Nn{Kerg | g € Hom(N,C'), C € C}. The torsion theory
cogenerated by a class C of modules in o[M] is 7. = (7., F.) where

7. ={T € o[M] :VC € C,Hom(T,C) = 0}

F.={F €o[M]:VT € 7T.,Hom(T, F') = 0}.

If C is closed under isomorphisms and submodules then
T.={T € o[M] : Rej(T,C) =T}
F.={F €0[M]:Y0#£U < F, Rej(U,C) # U}.

When is 7, Stable or Splitting?

Proposition 1 Let M be a module. Tpq is stable if and only if every M -injective
module N in o[M] has a decomposition N = Ny @ Ny such that Ny € Ty and
Ny € Fuq.

Proof (=) Assume that 7o is stable. Let N be an M-injective module. Then
N = N. Let K be a submodule of N such that N = TM/(\N) @ K. By assumption
TM/(\N) € Ty Since TM(N) = TM/(\N), K e Fu.

(<) Let N € Ty It is enough to show that N € Ty Let N = Ny & N, where
Ny € Tot, No € Frq. NoN'N € Ty N Fag = 0 implies that Ny = 0. So N € Tiy.
(|

Hence if 7,4 is splitting then it is stable. Note that for a module M if N/Rad N
is semisimple then N/Z3,(N) and hence N/7p(N) is semisimple for any N €
o[M].

Proposition 2 Let M be a module and N € o[M] be such that N/ty(N) is
semusimple. Then every Fa-module is N -injective.



Proof By [6, Corollary 2.3]. a

Proposition 3 Let M be a module. If M/Tp(M) is semisimple, then every
Fr-module is semisimple and M -injective.

Proof Let K € Fu. By Proposition 2, K is M-injective, i.e. injective in
o[M]. Let X < K. Then X € F and by Proposition 2 X is M-injective. Since
K € o[M], X is K-injective. Hence X is a direct summand of K. This implies
that K is semisimple. a

Proposition 4 Let M be a module such that Mty (M) is semisimple. Then
every module N in o[M] has a decomposition N = Ny @ Ny such that Ny € Fp
and T (N) <. N,

Proof Let N € o[M] and N; a submodule maximal with respect to N; N
Tm(N) = 0. Then Ny & 7(N) <. N and 7p(N1) = Ny N7yy(N) = 0, ie.
Ny € Faq. By hypothesis Ny is M-injective and then N-injective. So there exists
a submodule Ny such that N = Ny @ Na. Since 7 (N1) = 0, T (V) = Taq(NVa).
Then (N7 @ 7A(N3)) N Ny <. Ny. This implies that To(Na) < Na. a

Let M be a module. A module N is said to be M-generated (resp. M-
cogenerated) if there exist an index set I and an epimorphism from M@ to N
(resp. a monomorphism from N to [TA My, My = M, a direct product of copies
of M in o[M] [17, 15.1]). For any N € o[M], the class of all objects in o[M]
which are generated (resp. cogenerated) by N is denoted by Geny (N) (resp.

Cogp (N)).

Theorem 5 Let M be a module such that M/Tpm(M) is semisimple. Consider
the following conditions.
(1) Tam is splitting,
(2) Tr is stable,
(3) every Fa-module is projective in o[M],
(4) every module N € o[M] has a decomposition Ny ® Ny such that Ny is a Ty-
module and Ny 15 semisimple,
(5) every simple M -injective module in o[M] is projective in o[M],
(6) every M -singular module in o[M] is a Ty-module,
(7) M cogenerates all M -injective simple modules in o[M].
Then (1)-(6) are all equivalent, (5)=(7) and if M is projective in o[M], then
(7)=(5).



Proof (1 = 2) By Proposition 1.

(2 = 1) By Proposition 4.

(2 = 3) Assume that 7, is stable. Let N € F. By hypothesis N is semisimple
M-injective. Let S be a simple M-singular submodule of N. Then S = K/L
where L <, K € o[M]. Let H := Tp(K). Since H + L/L < 7p(K/L) = 0,
H < L. Let X be asubmodule of K maximal with respect to HNX = 0 = 7((X).
Then H® X <, K. Now H@® X = K and then K = X & (H N K). Since Ty is
closed under essential extensions, K N He Tr. This implies that H = K N H.
Then K = X®H andso L = (XNL)&H. Since X is semisimple, X = (XNL)&T
for some T'. Hence K = X@&H = (XNL)&T®H = LeT. This is a contradiction
to that L <, K. Now S is M-projective, that is projective in o[M]. It follows
that N is projective in o[M].

(3 = 1) Let N € o[M]. Since N/Tm(N) € Fu, it is projective. Let K be a
submodule of N such that N = 7(N) & K. Then 7(N)N K = 7m(K) = 0,
ie. K € Fp.

(1 = 4) Clear by Proposition 3.

(4 = 3) Let N be an Fp-module. To show that N is projective consider the
epimorphism f : X — N where X € o[M]. Let X = X; & X, where X is a
Trm-module and X, is semisimple. Then X;/X; NKerf =2 X + Kerf/Kerf <
X/Kerf = N implies that X;/X;NKerf € TyyNFr = 0. Then X; < Kerf < X.
Now Kerf = X; @ (Xo NKerf), and Xo = L & (X, N Kerf) for some L < Xj.
Then X = Kerf & L. Hence Kerf is a direct summand of X, i.e. f splits. This
implies that N is projective in o[M].

(3 = 5) Simple M-injective modules are F-module.

(5= 3) Let N € Fpq. Then N is semisimple M-injective by Proposition 3. Since
every simple summand of N is projective by (5), N is projective.

(3 = 6) Let N be an M-singular module in o[M]. To show that N € Ty, let
F € Fypyand f @ N — F a homomorphism. Then N/kerf = f(N) < F € Fu.
By hypothesis, N/kerf is projective in o[M]. Since N/kerf is M-singular, we
have that f = 0.

(6 = 5) Let N be a simple M-injective module in o[M]. Then N € Fu. The
simple module N is M-singular or M-projective. If N is M-singular, then N is a
Tym-module, a contradiction. So N is M-projective. Since N is finitely generated,
N is projective in o[M].

(5 = T7) Let N be a simple M-injective module in o[M]. By (5) N is projective.
Then N is a submodule of a direct sum of copies of M by [17, 18.4]. Since N is
simple, IV is isomorphic to a submodule of M.

(7 = 5) Assume that M is projective in o[M]|. Let N € o[M] be a simple
M-injective module. Since N is cogenerated by M, N is isomorphic to a direct
summand of M. Hence N is projective in o[M]. O



A module M is called a V-module (or co-semisimple) if every simple module
(in o[M]) is M-injective. M is a V-module if and only if Rad(M/K) = 0 for
every K < M.

A module M is called a Kasch module if M is an (injective) cogenerator in
o[M], i.e. if every module in o[M] is M-cogenerated, [1]. M is a Kasch module if
and only if any simple module in o[M] is cogenerated by M [1, Proposition 2.6].

Theorem 6 Let M be a module. Then T, is splitting if one of the following
holds.

(1) M is a V-module,

(2) Every Fa-module is projective in o|M].

(3) M is local and every simple module in o[M] is M-generated.

(4) M is a projective Kasch module and M /7Ty M) is semisimple.

Proof (1) M is a V-module if and only if Fyq = o[M] by [13, Theorem 3].

(2) By the proof of Theorem 5.

(3) If M/RadM is M-small simple, then M € Ty,. Hence every module N in
o[M] is in Ty, i.e. Ty = o[M].

Assume that M/RadM is simple M-injective. Now we show that M is a V-
module. Let N be a simple module in ¢[M]. Let f be an epimorphism M®) —
N. Then MW /Kerf = N is simple. It follows that RadM < Kerf. Since
(M + Kerf)/Kerf is a homomorphic image of M/RadM which is M-injective
simple, (M + Kerf)/Kerf is simple M-injective. Since M® /Kerf is simple,
(M + Kerf)/Kerf = M®™ /Kerf. This implies that N is M-injective. Hence M
is a V-module and then M is simple. So under the assumptions of (3) either M
is simple or 7y = ¢[M] (compare with [8, Proposition 3.8]).

(4) It is clear by Theorem 5 (7). O

Proposition 7 Let M be a module. If M/myp(M) is semisimple then Ty =
(Tpm, Fam) is the same as the torsion theory cogenerated by simple M -injective
modules.

Proof By definitions and Proposition 3. a

Is 7,y Cohereditary?
Tm is not cohereditary, i.e. Faq is not closed under factor modules in general:

Example 8 There exist a module M which is not semisimple, N € o[M] and
L < N such that Z3;(N) =0 and Zy;(N/L) # 0.



Proof Let R be the full ring of linear transformations on a vector space Vg of
dimension X over a field F. Suppose that X is infinite and |F| < 2%. Then R
is a regular right self-injective ring and any simple injective right R-module is
isomorphic to a right ideal of R [10, Theorem 2].

Since R is not semiprime Artinian, there exists a proper essential right ideal E
of R. Let L be a maximal right ideal of R such that £ < L. Then R/L is a simple
non-injective right R-module [12, Example 2.10]. So Z*(Rg) = RadRr = 0 but
Z*(R/L)=R/L. O

If M is a V-module then 7, is cohereditary. And if M/7r(M) is semisimple
for a module M, then 7, is cohereditary by Proposition 3.

Let C be a class of modules in o[M] such that it is closed under direct sums and
factor modules. A module N € o[M] is called (M,C)-injective if N is injective
with respect to every exact sequence 0 — K — L in o[M] with L/K € C. If
(7, F) is a hereditary torsion theory in o[M], then N € o[M] is (M, T )-injective
if and only if N /N € F;[18,9.11]. The corresponding proposition to the following
result in Mod-R is Proposition 4.5 in [§].

Proposition 9 Let M be a module. The following are equivalent.
(1) Tr is cohereditary,
(2) every Fr-module is (M, Ty )-injective,
(3) for every N € Fpy, ]/V\/N € Fum.
If one of the above conditions holds then every Fa-module is a V-module.

Proof (2 & 3) By [18, 9.11]. (1 = 3) It is clear.
(3= 1) Let N € Fp and K < N. Consider the exact sequence

0—K/K—N/K—N/K — 0.

Let T be a submodule of N such that N = K®T. Since Z5,(X) = 0 < RadX =0
for any X € o[M], Fp is closed under essential extensions. Then T' € Fyy, i.e.
N/K € Fp. On the other hand by (3) K/K € Fp. Since Fyq is closed under
extensions, N/K € Fy. This implies that N/K € F. O

Let M be a module and consider the torsion theory 7 = (7, Fy) cogener-
ated by M. This torsion theory is investigated by Talebi and Vanaja [16]. They
denoted Z;(N) := Rej(N, M). Then

TV = {AE O'[M] : ZM(A> :A}
Fy={Be€o[M]:V0#K < B, Zy(K)+#K}.

M C Fy and 7y is not necessarily hereditary [16].

Proposition 10 Fy, = 7y if and only if Trq is cohereditary and 7 is hereditary.



Proof It is clear by definitions, and compare with [8, Lemma 2.2]. a

When Is 7, Equal To {N € o[M]:Z},(N)=N}?

Let M be a module. A module N € o[M] is called hereditary if every sub-
module of N is projective in o[M]. Then a hereditary module in o[M] is itself
projective in o[M].

Proposition 11 Let M be a module. If M 1is hereditary, then
Tm={N €o[M]: Z,,(N)=N}.

Proof It is clear that the given class is a subclass of 7y,. For the converse, let
N € Ty and n € N\ Z%,(N). Then nR is not small in nR. Let L be a submodule
of nR such that nR = nR + L. Then nR/L =~ nR/nR N L is injective by [17,
39.6]. Let K/nR N L be a maximal submodule of nR/nR N L. Then nR/K is
simple injective, i.e. nR/K € Fyy. Since Ty is closed under submodules and
factor modules, nR/K € Ty N Fpq = {0}. This contradicts to that K # nR. O

Let M be a module. Assume that M has a projective cover P in o[M] and
consider the torsion theory generated by P, 7p = (7p, Fp) where

Fp={F € o[M]: Hom(P, F') = 0}

Tp ={T € o[M] :VF € Fp, Hom(T\, F) = 0}.

This is cohereditary and the dual Lambek torsion theory in o[M] (see [1]).
Since P € Tp, GenM(P) - TP. And
MCFy, Ty CTp.

Proposition 12 is proved in [7].

Proposition 12 Assume that M has a projective cover P in o[M]. Then
1) Fp C M.
2) If Zy (M) = M then Zy(P) = P, Fp = M and M is closed under direct

sums.

Theorem 15 gives the relations between torsion theories 7, 7 and 7p. First
we give the following lemma.

Lemma 13 Let N € o[M] be such that Zy(N) = N. Then Zi;(N) = Rad(N).

Proof Let n € Z}3,(N). Then nR is an M-small submodule of N. By [16,
Lemma 2.3(1)] nR < N. Hence Z3;(N) < Rad(N). O



Example 14 The converse of Lemma 13 is not true in general: Let R = Z and
M = 7/47. Then M is M-injective and it can be seen that Z},(M) = Rad(M) =
Zn(M) = 27/47.

Theorem 15 Let M be a module and assume that P is a projective cover of M
in a[M]. Then the following are equivalent.
(1) Zn(M) = M,
(2) Fp =M,
(3) Tp = Ty,
(4) Genp (P) C Ty
In this case M = Fy = Tyy = {N € o[M] : Z;;(N) = N} = {N € o[M] :
Zu(N) = 0}.

Proof (1 = 2) By Proposition 12.

(2 = 3) Let T € 7p and C be an M-small module. Then C' € Fp implies that
Hom(7,C) =0, ie. T € Ty.

(3=4) Geny (P) C7Tp =Ty.

(4 = 1) Since M € Genyy(P), M € Ty, and hence Z (M) = M.

For the last part assume that Fp = M. It is clear that if N is an M-small
module in o[M], then N € Fy N Ty, Zi,(N) = N and Zp(N) = 0.

Now let N € Fy and f : P — N be a homomorphism. Then P/Kerf =
Imf < N € Fy. Since Z(P) = P by Proposition 12, P € Ty,. This implies that
P/Kerf € Fy N Ty =0,i.e. f=0. Hence F, C M.

Let w ={N € o[M]: Z};,(N) = N}. Since for an R-module L, Tr(M,L) = L
if and only if L is M-generated [17, 13.5], u =Genp (M) =Gen(M) No[M]. Let
N € p. Then there exists an epimorphism from a direct sum of M-small modules
to N. Any direct sum of M-small modules is M-small by Proposition 12. It
follows that N is M-small.

Let 3 ={N € o[M]: Zy(N)=0}. Since 8 C Fy, by above 3 C M.

Let N € Ty and f : P — N a homomorphism. Let K := P/Kerf. Since
Zu(P) =P, Zy(K) = K by [16, Proposition 2.4], and by Lemma 13 Z3,(K) =
Rad(K). If Z;,;(K) = K, we have seen that K is M-small. Since Zy/(K) = K,
f=0.1If Z3,(K) # K, there is a cyclic submodule C' that is not small in K.
Therefore K has a cyclic factor module and hence a simple factor module, say
K/X. Then Zy(K/X) = K/X. Again by Lemma 13 Z3,(K/X) = Rad(K/X) =
0. Hence K/X € Fap N7y =0, a contradiction. So N € Fp. O

Let M be amodule. A module N in o[M] is called semiperfectin o[M] if every
factor module of N has a projective cover in o[M] [17]. Then if M is semiperfect
in o[M], M has a projective cover in o[M].

Corollary 16 Let M be a module. If M is hereditary or semiperfect, then the
result of Theorem 15 holds.
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Note that if M is a hereditary module then for every injective module N in
o[M], Zy(N) = N by [16, Proposition 2.7].

Proposition 17 Let M be a module and assume that P is a projective cover of
M. Then P is a generator < Fp = {0} & Tp =Geny (P) = o[M].

Proof Assume that P is a generator. Let F' € Fp. Since F is P-generated

(A) — F for some index set A. This yields a

there exists an epimorphism P
homomorphism from P to F' which is zero. This implies that F' = 0.

Now assume that Fp = {0}. Let E be a simple module in ¢[M]. If Hom(P, E) =
0 then E € Fp which is a contradiction. Hence by [17, 18.5] P is a generator.

The last part is clear now. O

Corollary 18 Let M be a module and assume that P is a projective cover of
M. If Zy (M) = M and P is a generator, then M is a V-module. In this case
TP = fM = O'[M]

Proof Let S be a simple module in o[M]. Since P generates S by [17, 18.5],
we have that Z,/(S) = S by [16, Proposition 1.3]. Then S can not be M-small.
Hence M is a V-module. Then M = {0}. By Theorem 15 Fps = o[M]. By
Proposition 17 7p = o[M]. O

About Z3,"(.)

Let N be a submodule of a module M. N is called a weak supplement of L
in Mit N+ L=Mand NNL <« M. N is called a weak supplement in M if
there exists a submodule L such that N is a weak supplement of L in M. M is
called weakly supplemented if every submodule N of M has a weak supplement
(see [19]). If M is weakly supplemented then M/RadM is semisimple. For if
RadM < K < M, by hypothesis M = K + L and K N L < M for some L. Then
KN L <RadM and so M/RadM = K/RadM & (L + RadM)/RadM.

Lemma 19 Let N € o[M]. If N is weakly supplemented, then N/Zi,(N) is
semistmple.

Proof Let N € o[M]. Then N/Rad(N) = N/Zi,(N) is semisimple. Then
N/Z3,(N) = N/JNNZy(N) =2 N+ Zy(N)/Z3(N) < N/Z}3;(N) and hence
N/Z4,(N) is semisimple. O

Now we denote the submodules Z3," (V) of a module N € o[M] as follows.
73, (N) = Z,(N), 3, (N/Z5," (V) = 23" (N) /23" (V) (n = 2,3,..). Tt
is not known whether Z%,*(N) = Z%,*(N) = .... But since Z%,*(N)/Z%,(N) €
T and Z45,(N) € Ty, Z3,°(N) € Ty By the same argument we have that
74" (N) € Ty for all n. Hence Z3,(N) < Z4,2(N) < Z3,*(N) < ... < 7(N).



Lemma 20 Let N € o[M]. If N/Zi,;(N) is semisimple then Zi,*(N) = Z;,*(N)
and N/ Z;,*(N) is N-injective.

Proof Let N/Z%,(N) = N; @& Ny where N; is a direct sum of simple M-
injective modules and N, is a direct sum of simple M-small modules. Then
74/(N/Z%,(N)) = N,. On the other hand N/Z},*(N) = (N/Z%,(N))/Ny =
Ny. Hence Z4,(N/Z:,*(N)) = 0, i.e. Z4,*(N) = Z4,*(N). By Proposition 2,
N/Z32(N) is N-injective. O

Proposition 21 If every injective module in o[ M| is weakly supplemented, then
1) Fmy={N e€o[M]: Z;*(N) =0}

2) Ty ={N €olM]: Z;,*(N) =N}

9) Tm(N) = Z32(N),

4) Tam is cohereditary.

Proof 1) Let vy = {N € o[M]:Z}*(N) =0} and N € Fy. Then Z},(N) =0
and Z4,(N/Z3,(N)) = Z3,*(N)/Z4,(N) = 0 implies Z3,(N) = 0. Hence N € v
and so Fuy € 7. Let N € 4. Then Z},*(N) = 0. Since Z%,(N) < Z3,%(N),
N € Fprq. Hence v < Fuy.

2) Let N € o[M] be such that Z%,*(N) = N. Then Z},(N/Z%,(N)) = N/Z};(N) €
Tam and it follows that N € Ty, For the converse let N € Ty N/Zj;(N) is
semisimple by Lemma 19. Then N/Z3,(N) is the sum of simple M-small modules.
This implies that Z3,(N) = N. Now (3) and (4) are clear. O

Every 7y,-module is M-projective

A module M is called a GCO-module if every simple singular module is M-
projective or M-injective. M is a GCO-module if and only if every simple M-
singular module is M-injective. [4]

Theorem 22 The following are equivalent for a module M.
(1) M is a GCO-module,

(2) every M-small module in o|[M] is M -projective,

(3) every Ty-module is M -projective,

(4) every simple Tri-module is M -projective.

Proof (1 < 2) By [13, Theorem 5.

(1 = 3) Let N € Tyy and z € N. If K is a maximal submodule of zR, zR/K
is M-injective or M-projective. Since N € 7Ty, R/K can not be M-injective.
Then 2R/ K is M-projective. It follows that K is a direct summand of xR. Hence
xR, and then N is semisimple. Again by hypothesis N is M-projective.
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(3 = 4) Clear.
(4 = 1) Let N be a simple module in o[M]. If N is M-small, then N is M-
projective by hypothesis. Hence N is M-injective or M-projective. a
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