The Torsion Theory Generated By M-Small Modules

A. Çiğdem Ozcan and Abdullah Harmancı Hacettepe University, Department of Mathematics 06532 Beytepe, Ankara TURKEY E-mail: ozcan@hacettepe.edu.tr E-mail: harmanci@hacettepe.edu.tr

Abstract

Let M be a right R-module and \mathcal{M} the class of all M-small modules. We consider the torsion theories $\tau_{\mathcal{M}} = (\mathcal{T}_M, \mathcal{F}_M), \tau_V = (\mathcal{T}_V, \mathcal{F}_V)$ and $\tau_P = (\mathcal{T}_P, \mathcal{F}_P)$ in $\sigma[M]$ where $\tau_{\mathcal{M}}$ is the torsion theory generated by \mathcal{M}, τ_V is the torsion theory cogenerated by \mathcal{M} and τ_P is the dual Lambek torsion theory where P denotes a projective cover of M in $\sigma[M]$. We study some conditions for $\tau_{\mathcal{M}}$ to be cohereditary, stable or split, and we prove that $\operatorname{Rej}(M, \mathcal{M}) = M \Leftrightarrow \mathcal{F}_P = \mathcal{M}(=\mathcal{T}_{\mathcal{M}} = \mathcal{F}_V) \Leftrightarrow \mathcal{T}_P = \mathcal{T}_V \Leftrightarrow \operatorname{Gen}_M(P) \subseteq \mathcal{T}_V.$

1991 Mathematics Subject Classification: 16S90 **Key words:** hereditary torsion theory, small module.

Introduction

Let R be an associative ring with identity and M a right R-module. An R-module N is subgenerated by M if N is isomorphic to a submodule of an M-generated module. $\sigma[M]$ denotes the full subcategory of Mod-R whose objects are all R-modules subgenerated by M. Let $N \in \sigma[M]$. An injective module E in $\sigma[M]$ together with an essential monomorphism $\varepsilon : N \to E$ is called an injective hull of N in $\sigma[M]$ or an M-injective hull of N and is usually denoted by \widehat{N} . E(M) is the R-injective hull of M. (see [17] or [4])

We use the notation $N \leq_e M$ for an essential submodule N of M. A module N in $\sigma[M]$ is called *M*-singular (or singular in $\sigma[M]$) if $N \cong L/K$ for an $L \in \sigma[M]$ and $K \leq_e L$ (see [4]). In case M = R, instead of *R*-singular, we just say singular. Every module $N \in \sigma[M]$ contains a largest *M*-singular submodule which is denoted by $Z_M(N)$. Simple modules are *M*-singular or *M*-projective.

Let K be a submodule of M. K is called *small* in M if $K + L \neq M$ holds for every proper submodule L of M and denoted by $K \ll M$. We write RadM, which is the sum of all small submodules in M, for the radical of M. An R-module N in $\sigma[M]$ is called M-small (or small in $\sigma[M]$) if $N \cong K \ll L$ for $K, L \in \sigma[M]$. In case M = R, instead of R-small, we just say small. We denote the class of all M-small modules by \mathcal{M} . An R-module N is M-small if and only if $N \ll \widehat{N}$. Every simple R-module is M-injective or M-small [7, 5.1.4]. \mathcal{M} is closed under submodules, factor modules and finite direct sums [7].

Let M be a module and \mathcal{C} a class of modules in $\sigma[M]$ closed under isomorphisms and submodules. For any $N \in \sigma[M]$ the *trace* of \mathcal{C} in N is denoted by $\operatorname{Tr}(\mathcal{C}, N) = \sum \{\operatorname{Im} f : f \in \operatorname{Hom}(C, N), C \in \mathcal{C}\}$. Let

 $\mathcal{F} = \{F \in \sigma[M] : \forall C \in \mathcal{C}, \operatorname{Hom}(C, F) = 0\}$

 $\mathcal{T} = \{ T \in \sigma[M] : \forall F \in \mathcal{F}, \operatorname{Hom}(T, F) = 0 \}.$

Then $\tau = (\mathcal{T}, \mathcal{F})$ is a torsion theory generated by \mathcal{C} . Also it can be seen that $\mathcal{F} = \{F \in \sigma[M] : \operatorname{Tr}(\mathcal{C}, F) = 0\}$

 $\mathcal{T} = \{T \in \sigma[M] : \forall U < V \le T, \operatorname{Tr}(\mathcal{C}, V/U) \neq 0\}.$

Since \mathcal{C} is closed under isomorphisms and submodules, τ is a hereditary torsion theory (see [3, II 1.3]). τ is called *stable* if \mathcal{T} is closed under essential extensions in $\sigma[M]$, i.e. if every essential extension $E \in \sigma[M]$ of a torsion module $N \in \sigma[M]$ is again torsion. τ is *splitting* if every *R*-module *N* has a decomposition $N = N_1 \oplus N_2$ such that $N_1 \in \mathcal{T}$ and $N_2 \in \mathcal{F}$. $\tau_{\mathcal{C}}(N) = \text{Tr}(\mathcal{T}, N)$ is a torsion radical and $\text{Tr}(\mathcal{C}, N) \leq_e \tau_{\mathcal{C}}(N)$. Also $\tau_{\mathcal{C}}(N) = \sum\{K \leq N : \forall U \leq V \leq K, V/U \notin \mathcal{F}\}$ [6].

Small modules are dual of singular modules. In this respect the dual of the Goldie torsion theory is the torsion theory generated by small modules which is introduced by Ramamurthi [14]. In [11] and [8] instances are given where this torsion theory is cohereditary or stable or splits.

In this paper we consider the dual Goldie torsion theory in $\sigma[M]$, the torsion theory generated by *M*-small modules for a right *R*-module *M*. We give some equivalent conditions for this torsion theory to be cohereditary, stable or split and investigate the coincidence of this torsion theory and the torsion theory cogenerated by *M*-small modules which is studied by Talebi and Vanaja [16]. Also we consider the dual Lambek torsion theory in $\sigma[M]$ for a module *M* having projective cover. Finally we give equivalent conditions for a module *M* to be a GCO-module which is a generalization of a GV-module.

Now define $Z_M^*(N) = \{n \in N : nR \text{ is an } M\text{-small module}\}\$ for an R-module M and $N \in \sigma[M]$. In case M = R, we write $Z^*(N)$ instead of $Z_R^*(N)$ which is studied in [5], [11] and [12]. Let $N \in \sigma[M]$. Then $\operatorname{Rad} N \leq Z_M^*(N) \leq Z^*(N)$ and $Z_M^*(N) = \operatorname{Rad} \widehat{N} \cap N$. For any submodule $K \leq N$, $Z_M^*(K) = K \cap Z_M^*(N)$. If $f: N \to K$ is a homomorphism of modules N, K in $\sigma[M]$, then $f(Z_M^*(N)) \leq Z_M^*(K)$. Let N_i $(i \in I)$ be any collection of modules in $\sigma[M]$. Then $Z_M^*(\oplus_{i \in I} N_i) = \bigoplus_{i \in I} Z_M^*(N_i)$. If M is semisimple, then $Z_M^*(N) = 0$ for any $N \in \sigma[M]$. [13]

It is easy to see that

$$\mathcal{Z}^*_M(N) = \operatorname{Tr}(\mathcal{M}, N).$$

Then the torsion theory in $\sigma[M]$ generated by \mathcal{M} is $\tau_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}})$ where $\mathcal{T}_{\mathcal{M}} = \{N \in \sigma[M] : \forall U < V \leq N, Z_M^*(V/U) \neq 0\}$ $\mathcal{F}_{\mathcal{M}} = \{N \in \sigma[M] : Z_M^*(N) = 0\}.$

Since \mathcal{M} is closed under isomorphisms and submodules, $\tau_{\mathcal{M}}$ is a hereditary torsion theory. If M is semisimple, then $\mathcal{F}_{\mathcal{M}} = \sigma[M]$ and $\mathcal{T}_{\mathcal{M}} = \{0\}$.

Note that for $N \in \sigma[M]$, $Z_M^*(N) \leq_e \tau_{\mathcal{M}}(N)$.

Let $\tau_{dG} = (\mathcal{T}_{dG}, \mathcal{F}_{dG})$ be the Dual Goldie Torsion Theory in Mod-*R*. It is easy to see that

$$\mathcal{T}_{\mathcal{M}} \subseteq \mathcal{T}_{dG} \text{ and } \mathcal{F}_{dG} \cap \sigma[M] \subseteq \mathcal{F}_{\mathcal{M}}.$$

Let \mathcal{C} be a class of modules in $\sigma[M]$. For any N in $\sigma[M]$ the reject of \mathcal{C} in N is denoted by $\operatorname{Rej}(N, \mathcal{C}) = \bigcap \{\operatorname{Ker} g \mid g \in \operatorname{Hom}(N, \mathbb{C}), \ \mathbb{C} \in \mathcal{C}\}$. The torsion theory cogenerated by a class \mathcal{C} of modules in $\sigma[M]$ is $\tau_c = (\mathcal{T}_c, \mathcal{F}_c)$ where

 $\mathcal{T}_c = \{ T \in \sigma[M] : \forall C \in \mathcal{C}, \operatorname{Hom}(T, C) = 0 \}$ $\mathcal{F}_c = \{ F \in \sigma[M] : \forall T \in \mathcal{T}_c, \operatorname{Hom}(T, F) = 0 \}.$

If \mathcal{C} is closed under isomorphisms and submodules then

 $\mathcal{T}_c = \{T \in \sigma[M] : \operatorname{Rej}(T, \mathcal{C}) = T\}$ $\mathcal{F}_c = \{F \in \sigma[M] : \forall 0 \neq U \leq F, \operatorname{Rej}(U, \mathcal{C}) \neq U\}.$

When is $\tau_{\mathcal{M}}$ Stable or Splitting?

Proposition 1 Let M be a module. $\tau_{\mathcal{M}}$ is stable if and only if every M-injective module N in $\sigma[M]$ has a decomposition $N = N_1 \oplus N_2$ such that $N_1 \in \mathcal{T}_{\mathcal{M}}$ and $N_2 \in \mathcal{F}_{\mathcal{M}}$.

Proof (\Rightarrow) Assume that $\tau_{\mathcal{M}}$ is stable. Let N be an M-injective module. Then $N = \widehat{N}$. Let K be a submodule of N such that $N = \tau_{\mathcal{M}}(N) \oplus K$. By assumption $\tau_{\mathcal{M}}(N) \in \mathcal{T}_{\mathcal{M}}$. Since $\tau_{\mathcal{M}}(N) = \tau_{\mathcal{M}}(N)$, $K \in \mathcal{F}_{\mathcal{M}}$. (\Leftarrow) Let $N \in \mathcal{T}_{\mathcal{M}}$. It is enough to show that $\widehat{N} \in \mathcal{T}_{\mathcal{M}}$. Let $\widehat{N} = N_1 \oplus N_2$ where $N_1 \in \mathcal{T}_{\mathcal{M}}, N_2 \in \mathcal{F}_{\mathcal{M}}$. $N_2 \cap N \in \mathcal{T}_{\mathcal{M}} \cap \mathcal{F}_{\mathcal{M}} = 0$ implies that $N_2 = 0$. So $\widehat{N} \in \mathcal{T}_{\mathcal{M}}$.

Hence if $\tau_{\mathcal{M}}$ is splitting then it is stable. Note that for a module M if N/RadN is semisimple then $N/\mathbb{Z}_M^*(N)$ and hence $N/\tau_{\mathcal{M}}(N)$ is semisimple for any $N \in \sigma[M]$.

Proposition 2 Let M be a module and $N \in \sigma[M]$ be such that $N/\tau_{\mathcal{M}}(N)$ is semisimple. Then every $\mathcal{F}_{\mathcal{M}}$ -module is N-injective.

Proof By [6, Corollary 2.3].

Proposition 3 Let M be a module. If $M/\tau_{\mathcal{M}}(M)$ is semisimple, then every $\mathcal{F}_{\mathcal{M}}$ -module is semisimple and M-injective.

Proof Let $K \in \mathcal{F}_{\mathcal{M}}$. By Proposition 2, K is M-injective, i.e. injective in $\sigma[M]$. Let $X \leq K$. Then $X \in \mathcal{F}_{\mathcal{M}}$ and by Proposition 2 X is M-injective. Since $K \in \sigma[M]$, X is K-injective. Hence X is a direct summand of K. This implies that K is semisimple. \Box

Proposition 4 Let M be a module such that $M/\tau_{\mathcal{M}}(M)$ is semisimple. Then every module N in $\sigma[M]$ has a decomposition $N = N_1 \oplus N_2$ such that $N_1 \in \mathcal{F}_{\mathcal{M}}$ and $\tau_{\mathcal{M}}(N_2) \leq_e N_2$.

Proof Let $N \in \sigma[M]$ and N_1 a submodule maximal with respect to $N_1 \cap \tau_{\mathcal{M}}(N) = 0$. Then $N_1 \oplus \tau_{\mathcal{M}}(N) \leq_e N$ and $\tau_{\mathcal{M}}(N_1) = N_1 \cap \tau_{\mathcal{M}}(N) = 0$, i.e. $N_1 \in \mathcal{F}_{\mathcal{M}}$. By hypothesis N_1 is M-injective and then N-injective. So there exists a submodule N_2 such that $N = N_1 \oplus N_2$. Since $\tau_{\mathcal{M}}(N_1) = 0$, $\tau_{\mathcal{M}}(N) = \tau_{\mathcal{M}}(N_2)$. Then $(N_1 \oplus \tau_{\mathcal{M}}(N_2)) \cap N_2 \leq_e N_2$. This implies that $\tau_{\mathcal{M}}(N_2) \leq_e N_2$.

Let M be a module. A module N is said to be M-generated (resp. Mcogenerated) if there exist an index set I and an epimorphism from $M^{(I)}$ to N(resp. a monomorphism from N to $\prod_{\Lambda}^{M} M_{\lambda}, M_{\lambda} = M$, a direct product of copies of M in $\sigma[M]$ [17, 15.1]). For any $N \in \sigma[M]$, the class of all objects in $\sigma[M]$ which are generated (resp. cogenerated) by N is denoted by $\text{Gen}_{M}(N)$ (resp. $\text{Cog}_{M}(N)$).

Theorem 5 Let M be a module such that $M/\tau_{\mathcal{M}}(M)$ is semisimple. Consider the following conditions.

- (1) $\tau_{\mathcal{M}}$ is splitting,
- (2) $\tau_{\mathcal{M}}$ is stable,
- (3) every $\mathcal{F}_{\mathcal{M}}$ -module is projective in $\sigma[M]$,

(4) every module $N \in \sigma[M]$ has a decomposition $N_1 \oplus N_2$ such that N_1 is a $\mathcal{T}_{\mathcal{M}}$ -module and N_2 is semisimple,

- (5) every simple M-injective module in $\sigma[M]$ is projective in $\sigma[M]$,
- (6) every M-singular module in $\sigma[M]$ is a $\mathcal{T}_{\mathcal{M}}$ -module,
- (7) M cogenerates all M-injective simple modules in $\sigma[M]$.

Then (1)-(6) are all equivalent, $(5) \Rightarrow (7)$ and if M is projective in $\sigma[M]$, then $(7) \Rightarrow (5)$.

Proof $(1 \Rightarrow 2)$ By Proposition 1.

 $(2 \Rightarrow 1)$ By Proposition 4.

 $(2 \Rightarrow 3)$ Assume that $\tau_{\mathcal{M}}$ is stable. Let $N \in \mathcal{F}_{\mathcal{M}}$. By hypothesis N is semisimple M-injective. Let S be a simple M-singular submodule of N. Then $S \cong K/L$ where $L \leq_e K \in \sigma[M]$. Let $H := \tau_{\mathcal{M}}(K)$. Since $H + L/L \leq \tau_{\mathcal{M}}(K/L) = 0$, $H \leq L$. Let X be a submodule of K maximal with respect to $H \cap X = 0 = \tau_{\mathcal{M}}(X)$. Then $H \oplus X \leq_e K$. Now $\widehat{H} \oplus X = \widehat{K}$ and then $K = X \oplus (\widehat{H} \cap K)$. Since $\mathcal{T}_{\mathcal{M}}$ is closed under essential extensions, $K \cap \widehat{H} \in \mathcal{T}_{\mathcal{M}}$. This implies that $H = K \cap \widehat{H}$. Then $K = X \oplus H$ and so $L = (X \cap L) \oplus H$. Since X is semisimple, $X = (X \cap L) \oplus T$ for some T. Hence $K = X \oplus H = (X \cap L) \oplus T \oplus H = L \oplus T$. This is a contradiction to that $L \leq_e K$. Now S is M-projective, that is projective in $\sigma[M]$. It follows that N is projective in $\sigma[M]$.

 $(3 \Rightarrow 1)$ Let $N \in \sigma[M]$. Since $N/\tau_{\mathcal{M}}(N) \in \mathcal{F}_{\mathcal{M}}$, it is projective. Let K be a submodule of N such that $N = \tau_{\mathcal{M}}(N) \oplus K$. Then $\tau_{\mathcal{M}}(N) \cap K = \tau_{\mathcal{M}}(K) = 0$, i.e. $K \in \mathcal{F}_{\mathcal{M}}$.

 $(1 \Rightarrow 4)$ Clear by Proposition 3.

 $(4 \Rightarrow 3)$ Let N be an $\mathcal{F}_{\mathcal{M}}$ -module. To show that N is projective consider the epimorphism $f: X \to N$ where $X \in \sigma[M]$. Let $X = X_1 \oplus X_2$ where X_1 is a $\mathcal{T}_{\mathcal{M}}$ -module and X_2 is semisimple. Then $X_1/X_1 \cap \operatorname{Ker} f \cong X_1 + \operatorname{Ker} f/\operatorname{Ker} f \leq X/\operatorname{Ker} f \cong N$ implies that $X_1/X_1 \cap \operatorname{Ker} f \in \mathcal{T}_{\mathcal{M}} \cap \mathcal{F}_{\mathcal{M}} = 0$. Then $X_1 \leq \operatorname{Ker} f \leq X$. Now $\operatorname{Ker} f = X_1 \oplus (X_2 \cap \operatorname{Ker} f)$, and $X_2 = L \oplus (X_2 \cap \operatorname{Ker} f)$ for some $L \leq X_2$. Then $X = \operatorname{Ker} f \oplus L$. Hence $\operatorname{Ker} f$ is a direct summand of X, i.e. f splits. This implies that N is projective in $\sigma[M]$.

 $(3 \Rightarrow 5)$ Simple *M*-injective modules are $\mathcal{F}_{\mathcal{M}}$ -module.

 $(5 \Rightarrow 3)$ Let $N \in \mathcal{F}_{\mathcal{M}}$. Then N is semisimple M-injective by Proposition 3. Since every simple summand of N is projective by (5), N is projective.

 $(3 \Rightarrow 6)$ Let N be an M-singular module in $\sigma[M]$. To show that $N \in \mathcal{T}_{\mathcal{M}}$, let $F \in \mathcal{F}_{\mathcal{M}}$ and $f: N \to F$ a homomorphism. Then $N/\ker f \cong f(N) \leq F \in \mathcal{F}_{\mathcal{M}}$. By hypothesis, $N/\ker f$ is projective in $\sigma[M]$. Since $N/\ker f$ is M-singular, we have that f = 0.

 $(6 \Rightarrow 5)$ Let N be a simple M-injective module in $\sigma[M]$. Then $N \in \mathcal{F}_{\mathcal{M}}$. The simple module N is M-singular or M-projective. If N is M-singular, then N is a $\mathcal{T}_{\mathcal{M}}$ -module, a contradiction. So N is M-projective. Since N is finitely generated, N is projective in $\sigma[M]$.

 $(5 \Rightarrow 7)$ Let N be a simple M-injective module in $\sigma[M]$. By (5) N is projective. Then N is a submodule of a direct sum of copies of M by [17, 18.4]. Since N is simple, N is isomorphic to a submodule of M.

 $(7 \Rightarrow 5)$ Assume that M is projective in $\sigma[M]$. Let $N \in \sigma[M]$ be a simple M-injective module. Since N is cogenerated by M, N is isomorphic to a direct summand of M. Hence N is projective in $\sigma[M]$.

A module M is called a *V*-module (or co-semisimple) if every simple module (in $\sigma[M]$) is *M*-injective. M is a V-module if and only if $\operatorname{Rad}(M/K) = 0$ for every $K \leq M$.

A module M is called a *Kasch module* if \widehat{M} is an (injective) cogenerator in $\sigma[M]$, i.e. if every module in $\sigma[M]$ is \widehat{M} -cogenerated, [1]. M is a Kasch module if and only if any simple module in $\sigma[M]$ is cogenerated by M [1, Proposition 2.6].

Theorem 6 Let M be a module. Then $\tau_{\mathcal{M}}$ is splitting if one of the following holds.

(1) M is a V-module,

(2) Every $\mathcal{F}_{\mathcal{M}}$ -module is projective in $\sigma[M]$.

(3) M is local and every simple module in $\sigma[M]$ is M-generated.

(4) M is a projective Kasch module and $M/\tau_{\mathcal{M}}(M)$ is semisimple.

Proof (1) M is a V-module if and only if $\mathcal{F}_{\mathcal{M}} = \sigma[M]$ by [13, Theorem 3].

(2) By the proof of Theorem 5.

(3) If $M/\operatorname{Rad} M$ is M-small simple, then $M \in \mathcal{T}_{\mathcal{M}}$. Hence every module N in $\sigma[M]$ is in $\mathcal{T}_{\mathcal{M}}$, i.e. $\mathcal{T}_{\mathcal{M}} = \sigma[M]$.

Assume that $M/\operatorname{Rad} M$ is simple M-injective. Now we show that M is a V-module. Let N be a simple module in $\sigma[M]$. Let f be an epimorphism $M^{(\Lambda)} \to N$. Then $M^{(\Lambda)}/\operatorname{Ker} f \cong N$ is simple. It follows that $\operatorname{Rad} M \leq \operatorname{Ker} f$. Since $(M + \operatorname{Ker} f)/\operatorname{Ker} f$ is a homomorphic image of $M/\operatorname{Rad} M$ which is M-injective simple, $(M + \operatorname{Ker} f)/\operatorname{Ker} f$ is simple M-injective. Since $M^{(\Lambda)}/\operatorname{Ker} f$ is simple, $(M + \operatorname{Ker} f)/\operatorname{Ker} f = M^{(\Lambda)}/\operatorname{Ker} f$. This implies that N is M-injective. Hence M is a V-module and then M is simple. So under the assumptions of (3) either M is simple or $\mathcal{T}_{\mathcal{M}} = \sigma[M]$ (compare with [8, Proposition 3.8]). (4) It is clear by Theorem 5 (7).

Proposition 7 Let M be a module. If $M/\tau_{\mathcal{M}}(M)$ is semisimple then $\tau_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}})$ is the same as the torsion theory cogenerated by simple M-injective modules.

Proof By definitions and Proposition 3.

Is $\tau_{\mathcal{M}}$ Cohereditary?

 $\tau_{\mathcal{M}}$ is not *cohereditary*, i.e. $\mathcal{F}_{\mathcal{M}}$ is not closed under factor modules in general:

Example 8 There exist a module M which is not semisimple, $N \in \sigma[M]$ and $L \leq N$ such that $Z_M^*(N) = 0$ and $Z_M^*(N/L) \neq 0$.

Proof Let R be the full ring of linear transformations on a vector space V_F of dimension \aleph over a field F. Suppose that \aleph is infinite and $|F| \leq 2^{\aleph_0}$. Then R is a regular right self-injective ring and any simple injective right R-module is isomorphic to a right ideal of R [10, Theorem 2].

Since R is not semiprime Artinian, there exists a proper essential right ideal E of R. Let L be a maximal right ideal of R such that $E \leq L$. Then R/L is a simple non-injective right R-module [12, Example 2.10]. So $Z^*(R_R) = \text{Rad}R_R = 0$ but $Z^*(R/L) = R/L$.

If M is a V-module then $\tau_{\mathcal{M}}$ is cohereditary. And if $M/\tau_{\mathcal{M}}(M)$ is semisimple for a module M, then $\tau_{\mathcal{M}}$ is cohereditary by Proposition 3.

Let \mathcal{C} be a class of modules in $\sigma[M]$ such that it is closed under direct sums and factor modules. A module $N \in \sigma[M]$ is called (M, \mathcal{C}) -injective if N is injective with respect to every exact sequence $0 \to K \to L$ in $\sigma[M]$ with $L/K \in \mathcal{C}$. If $(\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory in $\sigma[M]$, then $N \in \sigma[M]$ is (M, \mathcal{T}) -injective if and only if $\widehat{N}/N \in \mathcal{F}$; [18, 9.11]. The corresponding proposition to the following result in Mod-R is Proposition 4.5 in [8].

Proposition 9 Let M be a module. The following are equivalent.

- (1) $\tau_{\mathcal{M}}$ is cohereditary,
- (2) every $\mathcal{F}_{\mathcal{M}}$ -module is $(M, \mathcal{T}_{\mathcal{M}})$ -injective,
- (3) for every $N \in \mathcal{F}_{\mathcal{M}}, \ \widehat{N}/N \in \mathcal{F}_{\mathcal{M}}$.

If one of the above conditions holds then every $\mathcal{F}_{\mathcal{M}}$ -module is a V-module.

Proof $(2 \Leftrightarrow 3)$ By [18, 9.11]. $(1 \Rightarrow 3)$ It is clear. $(3 \Rightarrow 1)$ Let $N \in \mathcal{F}_{\mathcal{M}}$ and $K \leq N$. Consider the exact sequence

$$0 \to \widehat{K}/K \to \widehat{N}/K \to \widehat{N}/\widehat{K} \to 0.$$

Let T be a submodule of \widehat{N} such that $\widehat{N} = \widehat{K} \oplus T$. Since $\mathbb{Z}_M^*(X) = 0 \Leftrightarrow \operatorname{Rad} \widehat{X} = 0$ for any $X \in \sigma[M]$, \mathcal{F}_M is closed under essential extensions. Then $T \in \mathcal{F}_M$, i.e. $\widehat{N}/\widehat{K} \in \mathcal{F}_M$. On the other hand by (3) $\widehat{K}/K \in \mathcal{F}_M$. Since \mathcal{F}_M is closed under extensions, $\widehat{N}/K \in \mathcal{F}_M$. This implies that $N/K \in \mathcal{F}_M$.

Let M be a module and consider the torsion theory $\tau_V = (\mathcal{T}_V, \mathcal{F}_V)$ cogenerated by \mathcal{M} . This torsion theory is investigated by Talebi and Vanaja [16]. They denoted $\overline{Z}_M(N) := \operatorname{Rej}(N, \mathcal{M})$. Then

$$\mathcal{T}_{V} = \{ A \in \sigma[M] : \overline{Z}_{M}(A) = A \}$$

$$\mathcal{F}_{V} = \{ B \in \sigma[M] : \forall 0 \neq K \leq B, \ \overline{Z}_{M}(K) \neq K \}.$$

 $\mathcal{M} \subseteq \mathcal{F}_V$ and τ_V is not necessarily hereditary [16].

Proposition 10 $\mathcal{F}_{\mathcal{M}} = \mathcal{T}_{V}$ if and only if $\tau_{\mathcal{M}}$ is cohereditary and τ_{V} is hereditary.

Proof It is clear by definitions, and compare with [8, Lemma 2.2].

When Is $\mathcal{T}_{\mathcal{M}}$ Equal To $\{N \in \sigma[M] : \mathbf{Z}_{\mathcal{M}}^*(N) = N\}$?

Let M be a module. A module $N \in \sigma[M]$ is called *hereditary* if every submodule of N is projective in $\sigma[M]$. Then a hereditary module in $\sigma[M]$ is itself projective in $\sigma[M]$.

Proposition 11 Let M be a module. If M is hereditary, then

$$\mathcal{T}_{\mathcal{M}} = \{ N \in \sigma[M] : Z^*_{\mathcal{M}}(N) = N \}.$$

Proof It is clear that the given class is a subclass of $\mathcal{T}_{\mathcal{M}}$. For the converse, let $N \in \mathcal{T}_{\mathcal{M}}$ and $n \in N \setminus \mathbb{Z}_{\mathcal{M}}^*(N)$. Then nR is not small in \widehat{nR} . Let L be a submodule of \widehat{nR} such that $\widehat{nR} = nR + L$. Then $\widehat{nR}/L \cong nR/nR \cap L$ is injective by [17, 39.6]. Let $K/nR \cap L$ be a maximal submodule of $nR/nR \cap L$. Then nR/K is simple injective, i.e. $nR/K \in \mathcal{F}_{\mathcal{M}}$. Since $\mathcal{T}_{\mathcal{M}}$ is closed under submodules and factor modules, $nR/K \in \mathcal{T}_{\mathcal{M}} \cap \mathcal{F}_{\mathcal{M}} = \{0\}$. This contradicts to that $K \neq nR$. \Box

Let M be a module. Assume that M has a projective cover P in $\sigma[M]$ and consider the torsion theory generated by P, $\tau_P = (\mathcal{T}_P, \mathcal{F}_P)$ where

 $\mathcal{F}_P = \{F \in \sigma[M] : \operatorname{Hom}(P, F) = 0\}$ $\mathcal{T}_P = \{T \in \sigma[M] : \forall F \in \mathcal{F}_P, \operatorname{Hom}(T, F) = 0\}.$

This is cohereditary and the dual Lambek torsion theory in $\sigma[M]$ (see [1]). Since $P \in \mathcal{T}_P$, $\text{Gen}_M(P) \subseteq \mathcal{T}_P$. And

$$\mathcal{M} \subseteq \mathcal{F}_V, \quad \mathcal{T}_V \subseteq \mathcal{T}_P.$$

Proposition 12 is proved in [7].

Proposition 12 Assume that M has a projective cover P in $\sigma[M]$. Then 1) $\mathcal{F}_P \subseteq \mathcal{M}$. 2) If $\overline{Z}_M(M) = M$ then $\overline{Z}_M(P) = P$, $\mathcal{F}_P = \mathcal{M}$ and \mathcal{M} is closed under direct sums.

Theorem 15 gives the relations between torsion theories $\tau_{\mathcal{M}}, \tau_{V}$ and τ_{P} . First we give the following lemma.

Lemma 13 Let $N \in \sigma[M]$ be such that $\overline{Z}_M(N) = N$. Then $Z_M^*(N) = Rad(N)$.

Proof Let $n \in \mathbb{Z}_{M}^{*}(N)$. Then nR is an *M*-small submodule of *N*. By [16, Lemma 2.3(1)] $nR \ll N$. Hence $\mathbb{Z}_{M}^{*}(N) \leq \operatorname{Rad}(N)$.

Example 14 The converse of Lemma 13 is not true in general: Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/4\mathbb{Z}$. Then M is M-injective and it can be seen that $Z_M^*(M) = \text{Rad}(M) = \overline{Z}_M(M) = 2\mathbb{Z}/4\mathbb{Z}$.

Theorem 15 Let M be a module and assume that P is a projective cover of M in $\sigma[M]$. Then the following are equivalent.

 $(1) \ \overline{Z}_M(M) = M,$

(2) $\mathcal{F}_P = \mathcal{M},$

(3) $T_P = T_V$,

(4) $Gen_M(P) \subseteq \mathcal{T}_V$.

In this case $\mathcal{M} = \mathcal{F}_V = \mathcal{T}_{\mathcal{M}} = \{N \in \sigma[M] : Z^*_M(N) = N\} = \{N \in \sigma[M] : \overline{Z}_M(N) = 0\}.$

Proof $(1 \Rightarrow 2)$ By Proposition 12.

 $(2 \Rightarrow 3)$ Let $T \in \mathcal{T}_P$ and C be an M-small module. Then $C \in \mathcal{F}_P$ implies that $\operatorname{Hom}(T, C) = 0$, i.e. $T \in \mathcal{T}_V$.

 $(3 \Rightarrow 4) \operatorname{Gen}_M(P) \subseteq \mathcal{T}_P = \mathcal{T}_V.$

 $(4 \Rightarrow 1)$ Since $M \in \operatorname{Gen}_M(P)$, $M \in \mathcal{T}_V$ and hence $\overline{Z}_M(M) = M$.

For the last part assume that $\mathcal{F}_P = \mathcal{M}$. It is clear that if N is an M-small module in $\sigma[M]$, then $N \in \mathcal{F}_V \cap \mathcal{T}_M$, $Z_M^*(N) = N$ and $\overline{Z}_M(N) = 0$.

Now let $N \in \mathcal{F}_V$ and $f : P \to N$ be a homomorphism. Then $P/\operatorname{Ker} f \cong$ Im $f \leq N \in \mathcal{F}_V$. Since $\overline{Z}_M(P) = P$ by Proposition 12, $P \in \mathcal{T}_V$. This implies that $P/\operatorname{Ker} f \in \mathcal{F}_V \cap \mathcal{T}_V = 0$, i.e. f = 0. Hence $\mathcal{F}_V \subseteq \mathcal{M}$.

Let $\mu = \{N \in \sigma[M] : \mathbb{Z}_{M}^{*}(N) = N\}$. Since for an *R*-module *L*, $\operatorname{Tr}(\mathcal{M}, L) = L$ if and only if *L* is \mathcal{M} -generated [17, 13.5], $\mu = \operatorname{Gen}_{M}(\mathcal{M}) = \operatorname{Gen}(\mathcal{M}) \cap \sigma[M]$. Let $N \in \mu$. Then there exists an epimorphism from a direct sum of *M*-small modules to *N*. Any direct sum of *M*-small modules is *M*-small by Proposition 12. It follows that *N* is *M*-small.

Let $\beta = \{N \in \sigma[M] : \overline{Z}_M(N) = 0\}$. Since $\beta \subseteq \mathcal{F}_V$, by above $\beta \subseteq \mathcal{M}$.

Let $N \in \mathcal{T}_{\mathcal{M}}$ and $f : P \to N$ a homomorphism. Let $K := P/\operatorname{Ker} f$. Since $\overline{Z}_M(P) = P, \overline{Z}_M(K) = K$ by [16, Proposition 2.4], and by Lemma 13 $Z_M^*(K) = \operatorname{Rad}(K)$. If $Z_M^*(K) = K$, we have seen that K is M-small. Since $\overline{Z}_M(K) = K$, f = 0. If $Z_M^*(K) \neq K$, there is a cyclic submodule C that is not small in K. Therefore K has a cyclic factor module and hence a simple factor module, say K/X. Then $\overline{Z}_M(K/X) = K/X$. Again by Lemma 13 $Z_M^*(K/X) = \operatorname{Rad}(K/X) = 0$. Hence $K/X \in \mathcal{F}_M \cap \mathcal{T}_M = 0$, a contradiction. So $N \in \mathcal{F}_P$.

Let M be a module. A module N in $\sigma[M]$ is called *semiperfect* in $\sigma[M]$ if every factor module of N has a projective cover in $\sigma[M]$ [17]. Then if M is semiperfect in $\sigma[M]$, M has a projective cover in $\sigma[M]$.

Corollary 16 Let M be a module. If M is hereditary or semiperfect, then the result of Theorem 15 holds.

Note that if M is a hereditary module then for every injective module N in $\sigma[M], \overline{Z}_M(N) = N$ by [16, Proposition 2.7].

Proposition 17 Let M be a module and assume that P is a projective cover of M. Then P is a generator $\Leftrightarrow \mathcal{F}_P = \{0\} \Leftrightarrow \mathcal{T}_P = Gen_M(P) = \sigma[M]$.

Proof Assume that P is a generator. Let $F \in \mathcal{F}_P$. Since F is P-generated there exists an epimorphism $P^{(\Lambda)} \to F$ for some index set Λ . This yields a homomorphism from P to F which is zero. This implies that F = 0.

Now assume that $\mathcal{F}_P = \{0\}$. Let E be a simple module in $\sigma[M]$. If $\operatorname{Hom}(P, E) = 0$ then $E \in \mathcal{F}_P$ which is a contradiction. Hence by [17, 18.5] P is a generator. The last part is clear now.

Corollary 18 Let M be a module and assume that P is a projective cover of M. If $\overline{Z}_M(M) = M$ and P is a generator, then M is a V-module. In this case $\mathcal{T}_P = \mathcal{F}_M = \sigma[M]$.

Proof Let S be a simple module in $\sigma[M]$. Since P generates S by [17, 18.5], we have that $\overline{Z}_M(S) = S$ by [16, Proposition 1.3]. Then S can not be M-small. Hence M is a V-module. Then $\mathcal{M} = \{0\}$. By Theorem 15 $\mathcal{F}_{\mathcal{M}} = \sigma[M]$. By Proposition 17 $\mathcal{T}_P = \sigma[M]$.

About $\mathbf{Z}_{M}^{* n}(.)$

Let N be a submodule of a module M. N is called a *weak supplement* of L in M if N + L = M and $N \cap L \ll M$. N is called a *weak supplement* in M if there exists a submodule L such that N is a weak supplement of L in M. M is called *weakly supplemented* if every submodule N of M has a weak supplement (see [19]). If M is weakly supplemented then M/RadM is semisimple. For if $\text{Rad}M \leq K \leq M$, by hypothesis M = K + L and $K \cap L \ll M$ for some L. Then $K \cap L \leq \text{Rad}M$ and so $M/\text{Rad}M = K/\text{Rad}M \oplus (L + \text{Rad}M)/\text{Rad}M$.

Lemma 19 Let $N \in \sigma[M]$. If \widehat{N} is weakly supplemented, then $N/Z_M^*(N)$ is semisimple.

Proof Let $N \in \sigma[M]$. Then $\widehat{N}/\operatorname{Rad}(\widehat{N}) = \widehat{N}/\operatorname{Z}_{M}^{*}(\widehat{N})$ is semisimple. Then $N/\operatorname{Z}_{M}^{*}(N) = N/N \cap \operatorname{Z}_{M}^{*}(\widehat{N}) \cong N + \operatorname{Z}_{M}^{*}(\widehat{N})/\operatorname{Z}_{M}^{*}(\widehat{N}) \leq \widehat{N}/\operatorname{Z}_{M}^{*}(\widehat{N})$ and hence $N/\operatorname{Z}_{M}^{*}(N)$ is semisimple.

Now we denote the submodules $Z_M^{*,n}(N)$ of a module $N \in \sigma[M]$ as follows. $Z_M^{*,1}(N) = Z_M^{*}(N), Z_M^{*}(N/Z_M^{*,n-1}(N)) = Z_M^{*,n}(N)/Z_M^{*,n-1}(N)(n = 2, 3, ...)$. It is not known whether $Z_M^{*,2}(N) = Z_M^{*,3}(N) = ...$ But since $Z_M^{*,2}(N)/Z_M^{*}(N) \in \mathcal{T}_{\mathcal{M}}$ and $Z_M^{*}(N) \in \mathcal{T}_{\mathcal{M}}, Z_M^{*,2}(N) \in \mathcal{T}_{\mathcal{M}}$. By the same argument we have that $Z_M^{*,n}(N) \in \mathcal{T}_{\mathcal{M}}$ for all n. Hence $Z_M^{*,2}(N) \leq Z_M^{*,2}(N) \leq Z_M^{*,3}(N) \leq ... \leq \tau_{\mathcal{M}}(N)$. **Lemma 20** Let $N \in \sigma[M]$. If $N/Z_M^*(N)$ is semisimple then $Z_M^{*2}(N) = Z_M^{*3}(N)$ and $N/Z_M^{*2}(N)$ is N-injective.

Proof Let $N/\mathbb{Z}_M^*(N) = N_1 \oplus N_2$ where N_1 is a direct sum of simple M-injective modules and N_2 is a direct sum of simple M-small modules. Then $\mathbb{Z}_M^*(N/\mathbb{Z}_M^*(N)) = N_2$. On the other hand $N/\mathbb{Z}_M^{*\,2}(N) \cong (N/\mathbb{Z}_M^*(N))/N_2 \cong N_1$. Hence $\mathbb{Z}_M^*(N/\mathbb{Z}_M^{*\,2}(N)) = 0$, i.e. $\mathbb{Z}_M^{*\,2}(N) = \mathbb{Z}_M^{*\,3}(N)$. By Proposition 2, $N/\mathbb{Z}_M^{*\,2}(N)$ is N-injective.

Proposition 21 If every injective module in $\sigma[M]$ is weakly supplemented, then 1) $\mathcal{F}_{\mathcal{M}} = \{N \in \sigma[M] : Z_{M}^{*2}(N) = 0\}$ 2) $\mathcal{T}_{\mathcal{M}} = \{N \in \sigma[M] : Z_{M}^{*2}(N) = N\}$ 3) $\tau_{\mathcal{M}}(N) = Z_{M}^{*2}(N).$ 4) $\tau_{\mathcal{M}}$ is cohereditary.

Proof 1) Let $\gamma = \{N \in \sigma[M] : \mathbb{Z}_{M}^{*2}(N) = 0\}$ and $N \in \mathcal{F}_{\mathcal{M}}$. Then $\mathbb{Z}_{M}^{*}(N) = 0$ and $\mathbb{Z}_{M}^{*}(N/\mathbb{Z}_{M}^{*}(N)) = \mathbb{Z}_{M}^{*2}(N)/\mathbb{Z}_{M}^{*}(N) = 0$ implies $\mathbb{Z}_{M}^{*2}(N) = 0$. Hence $N \in \gamma$ and so $\mathcal{F}_{\mathcal{M}} \subseteq \gamma$. Let $N \in \gamma$. Then $\mathbb{Z}_{M}^{*2}(N) = 0$. Since $\mathbb{Z}_{M}^{*}(N) \leq \mathbb{Z}_{M}^{*2}(N)$, $N \in \mathcal{F}_{\mathcal{M}}$. Hence $\gamma \leq \mathcal{F}_{\mathcal{M}}$.

2) Let $N \in \sigma[M]$ be such that $Z_M^*{}^2(N) = N$. Then $Z_M^*(N/Z_M^*(N)) = N/Z_M^*(N) \in \mathcal{T}_M$ and it follows that $N \in \mathcal{T}_M$. For the converse let $N \in \mathcal{T}_M$. $N/Z_M^*(N)$ is semisimple by Lemma 19. Then $N/Z_M^*(N)$ is the sum of simple *M*-small modules. This implies that $Z_M^*{}^2(N) = N$. Now (3) and (4) are clear.

Every $\mathcal{T}_{\mathcal{M}}$ -module is *M*-projective

A module M is called a GCO-module if every simple singular module is M-projective or M-injective. M is a GCO-module if and only if every simple M-singular module is M-injective. [4]

Theorem 22 The following are equivalent for a module M.

- (1) M is a GCO-module,
- (2) every M-small module in $\sigma[M]$ is M-projective,
- (3) every $T_{\mathcal{M}}$ -module is M-projective,
- (4) every simple $\mathcal{T}_{\mathcal{M}}$ -module is M-projective.

Proof $(1 \Leftrightarrow 2)$ By [13, Theorem 5].

 $(1 \Rightarrow 3)$ Let $N \in \mathcal{T}_{\mathcal{M}}$ and $x \in N$. If K is a maximal submodule of xR, xR/K is *M*-injective or *M*-projective. Since $N \in \mathcal{T}_{\mathcal{M}}$, xR/K can not be *M*-injective. Then xR/K is *M*-projective. It follows that K is a direct summand of xR. Hence xR, and then N is semisimple. Again by hypothesis N is *M*-projective.

 $(3 \Rightarrow 4)$ Clear.

 $(4 \Rightarrow 1)$ Let N be a simple module in $\sigma[M]$. If N is M-small, then N is M-projective by hypothesis. Hence N is M-injective or M-projective.

Acknowledgement The authors would like to express their gratitudes to the referee for his valuable comments.

References

- T. Albu, R. Wisbauer, Kasch modules, Advances in ring theory (Granville, OH, 1996) *Trends Math.*, Boston, (1997) 1-16.
- [2] F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, NewYork, 1974.
- [3] L. Bican, T.Kepka and P.Nemec, *Rings Modules and Preradicals*, Marcel Dekker, New York, 1982.
- [4] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, *Extending Modules*, Pitman RN Mathematics 313, Longman, Harlow, 1994.
- [5] M. Harada, Non-small modules and non-cosmall modules, In Ring Theory: Proceedings of the 1978 Antwerp Conference, F.Van Oystaeyen, ed. Marcel Dekker, New York, 669-690, 1970.
- [6] A. Harmanci and P.F. Smith, Relative injectivity and module classes, Comm. Alg. 20 (9) (1992) 2471-2501.
- [7] C. Lomp, On dual goldie dimensions, M.Sc. Thesis, *Glasgow Univ.*, 1996.
- [8] C. Lomp, On the splitting of the dual Goldie torsion theory, Algebra and its Applications (Athens, OH, 1999), *Contemporary Mathematics* 259, Amer. Math. Soc., (2000) 377-386.
- [9] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, London Math.Soc. LN.147, Cambridge University Press, NewYork Sydney, 1990.
- [10] B. Osofsky, Cyclic injective modules of full linear rings, Proc. Amer. Math. Soc., 17 (1966) 247-253.
- [11] A.Ç. Ozcan and A. Harmancı, Characterization of some rings by functor Z*(.), Turkish J.Math., 21(3) (1997) 325-331.
- [12] A.Ç. Ozcan, Modules with a zero radical of their injective hull, *Hacettepe Bull. of Natural Sci. and Eng.*, Series B, 27 (1998) 45-49.

- [13] A.C. Özcan, On V-modules and M-small modules, (2000) preprint.
- [14] V.S. Ramamurthi, The smallest left exact radical containing the Jacobson radical, Annales de la Societe Scientifique de Bruxelles, T.96, IV (1982) 201-206.
- [15] B. Stenström, Rings of Quotients, Springer Verlag, Berlin, 1975.
- [16] Y.Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm.Alg., to appear.
- [17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
- [18] R. Wisbauer, Modules and Algebras: bimodule structure and group action on algebras, Longman, Harlow, 1996.
- [19] H. Zöschinger, Minimax-Moduln, J. Algebra, 102 (1986) 1-32.