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Abstract

Let M be a right R-module and M the class of all M -small mod-
ules. We consider the torsion theories τM = (TM ,FM), τV = (TV ,FV ) and
τP = (TP ,FP ) in σ[M ] where τM is the torsion theory generated by M, τV

is the torsion theory cogenerated by M and τP is the dual Lambek torsion
theory where P denotes a projective cover of M in σ[M ]. We study some
conditions for τM to be cohereditary, stable or split, and we prove that
Rej(M,M) = M ⇔ FP = M(= TM = FV ) ⇔ TP = TV ⇔ GenM (P ) ⊆
TV .
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Introduction

Let R be an associative ring with identity and M a right R-module. An

R-module N is subgenerated by M if N is isomorphic to a submodule of an M -

generated module. σ[M ] denotes the full subcategory of Mod-R whose objects

are all R-modules subgenerated by M . Let N ∈ σ[M ]. An injective module E in

σ[M ] together with an essential monomorphism ε : N → E is called an injective

hull of N in σ[M ] or an M-injective hull of N and is usually denoted by N̂ . E(M)

is the R-injective hull of M . (see [17] or [4])

We use the notation N ≤e M for an essential submodule N of M . A module

N in σ[M ] is called M-singular (or singular in σ[M ]) if N ∼= L/K for an L ∈ σ[M ]

and K ≤e L (see [4]). In case M = R, instead of R-singular, we just say

singular. Every module N ∈ σ[M ] contains a largest M -singular submodule

which is denoted by ZM(N). Simple modules are M -singular or M -projective.
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Let K be a submodule of M . K is called small in M if K + L 6= M holds for

every proper submodule L of M and denoted by K ¿ M . We write RadM , which

is the sum of all small submodules in M , for the radical of M . An R-module N

in σ[M ] is called M-small (or small in σ[M ]) if N ∼= K ¿ L for K, L ∈ σ[M ].

In case M = R, instead of R-small, we just say small. We denote the class of

all M -small modules by M. An R-module N is M -small if and only if N ¿ N̂ .

Every simple R-module is M -injective or M -small [7, 5.1.4]. M is closed under

submodules, factor modules and finite direct sums [7].

Let M be a module and C a class of modules in σ[M ] closed under isomor-

phisms and submodules. For any N ∈ σ[M ] the trace of C in N is denoted by

Tr(C, N) =
∑{Imf : f ∈ Hom(C,N), C ∈ C}. Let

F = {F ∈ σ[M ] : ∀C ∈ C, Hom(C, F ) = 0}
T = {T ∈ σ[M ] : ∀F ∈ F , Hom(T, F ) = 0}.

Then τ = (T ,F) is a torsion theory generated by C. Also it can be seen that

F = {F ∈ σ[M ] : Tr(C, F ) = 0}
T = {T ∈ σ[M ] : ∀U < V ≤ T, Tr(C, V/U) 6= 0}.
Since C is closed under isomorphisms and submodules, τ is a hereditary torsion

theory (see [3, II 1.3]). τ is called stable if T is closed under essential extensions in

σ[M ] , i.e. if every essential extension E ∈ σ[M ] of a torsion module N ∈ σ[M ] is

again torsion. τ is splitting if every R-module N has a decomposition N = N1⊕N2

such that N1 ∈ T and N2 ∈ F . τC(N) = Tr(T , N) is a torsion radical and

Tr(C, N) ≤e τC(N). Also τC(N) =
∑{K ≤ N : ∀U ≤ V ≤ K,V/U 6∈ F} [6].

Small modules are dual of singular modules. In this respect the dual of the

Goldie torsion theory is the torsion theory generated by small modules which is

introduced by Ramamurthi [14]. In [11] and [8] instances are given where this

torsion theory is cohereditary or stable or splits.

In this paper we consider the dual Goldie torsion theory in σ[M ], the torsion

theory generated by M -small modules for a right R-module M . We give some

equivalent conditions for this torsion theory to be cohereditary, stable or split

and investigate the coincidence of this torsion theory and the torsion theory

cogenerated by M -small modules which is studied by Talebi and Vanaja [16].

Also we consider the dual Lambek torsion theory in σ[M ] for a module M having

projective cover. Finally we give equivalent conditions for a module M to be a

GCO-module which is a generalization of a GV-module.

Now define Z∗M(N) = {n ∈ N : nR is an M -small module} for an R-module

M and N ∈ σ[M ]. In case M = R, we write Z∗(N) instead of Z∗R(N) which is

studied in [5], [11] and [12]. Let N ∈ σ[M ]. Then RadN ≤ Z∗M(N) ≤ Z∗(N)

and Z∗M(N) = RadN̂ ∩ N . For any submodule K ≤ N , Z∗M(K) = K ∩ Z∗M(N).

If f : N → K is a homomorphism of modules N, K in σ[M ], then f(Z∗M(N)) ≤
Z∗M(K). Let Ni (i ∈ I) be any collection of modules in σ[M ]. Then Z∗M(⊕i∈INi) =

⊕i∈IZ
∗
M(Ni). If M is semisimple, then Z∗M(N) = 0 for any N ∈ σ[M ]. [13]
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It is easy to see that

Z∗M(N) = Tr(M, N).

Then the torsion theory in σ[M ] generated by M is τM = (TM,FM) where

TM = {N ∈ σ[M ] : ∀U < V ≤ N, Z∗M(V/U) 6= 0}
FM = {N ∈ σ[M ] : Z∗M(N) = 0}.

Since M is closed under isomorphisms and submodules, τM is a hereditary

torsion theory. If M is semisimple, then FM = σ[M ] and TM = {0}.
Note that for N ∈ σ[M ], Z∗M(N) ≤e τM(N).

Let τdG = (TdG,FdG) be the Dual Goldie Torsion Theory in Mod-R. It is easy

to see that

TM ⊆ TdG and FdG ∩ σ[M ] ⊆ FM.

Let C be a class of modules in σ[M ]. For any N in σ[M ] the reject of C in N is

denoted by Rej(N, C) = ∩{Kerg | g ∈ Hom(N,C), C ∈ C}. The torsion theory

cogenerated by a class C of modules in σ[M ] is τc = (Tc,Fc) where

Tc = {T ∈ σ[M ] : ∀C ∈ C, Hom(T, C) = 0}
Fc = {F ∈ σ[M ] : ∀T ∈ Tc, Hom(T, F ) = 0}.

If C is closed under isomorphisms and submodules then

Tc = {T ∈ σ[M ] : Rej(T, C) = T}
Fc = {F ∈ σ[M ] : ∀0 6= U ≤ F, Rej(U, C) 6= U}.

When is τM Stable or Splitting?

Proposition 1 Let M be a module. τM is stable if and only if every M-injective

module N in σ[M ] has a decomposition N = N1 ⊕ N2 such that N1 ∈ TM and

N2 ∈ FM.

Proof (⇒) Assume that τM is stable. Let N be an M -injective module. Then

N = N̂ . Let K be a submodule of N such that N = ̂τM(N)⊕K. By assumption
̂τM(N) ∈ TM. Since τM(N) = ̂τM(N), K ∈ FM.

(⇐) Let N ∈ TM. It is enough to show that N̂ ∈ TM. Let N̂ = N1 ⊕N2 where

N1 ∈ TM, N2 ∈ FM. N2 ∩N ∈ TM ∩ FM = 0 implies that N2 = 0. So N̂ ∈ TM.

2

Hence if τM is splitting then it is stable. Note that for a module M if N/RadN

is semisimple then N/Z∗M(N) and hence N/τM(N) is semisimple for any N ∈
σ[M ].

Proposition 2 Let M be a module and N ∈ σ[M ] be such that N/τM(N) is

semisimple. Then every FM-module is N-injective.
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Proof By [6, Corollary 2.3]. 2

Proposition 3 Let M be a module. If M/τM(M) is semisimple, then every

FM-module is semisimple and M-injective.

Proof Let K ∈ FM. By Proposition 2, K is M -injective, i.e. injective in

σ[M ]. Let X ≤ K. Then X ∈ FM and by Proposition 2 X is M -injective. Since

K ∈ σ[M ], X is K-injective. Hence X is a direct summand of K. This implies

that K is semisimple. 2

Proposition 4 Let M be a module such that M/τM(M) is semisimple. Then

every module N in σ[M ] has a decomposition N = N1 ⊕N2 such that N1 ∈ FM
and τM(N2) ≤e N2.

Proof Let N ∈ σ[M ] and N1 a submodule maximal with respect to N1 ∩
τM(N) = 0. Then N1 ⊕ τM(N) ≤e N and τM(N1) = N1 ∩ τM(N) = 0, i.e.

N1 ∈ FM. By hypothesis N1 is M -injective and then N -injective. So there exists

a submodule N2 such that N = N1 ⊕N2. Since τM(N1) = 0, τM(N) = τM(N2).

Then (N1 ⊕ τM(N2)) ∩N2 ≤e N2. This implies that τM(N2) ≤e N2. 2

Let M be a module. A module N is said to be M-generated (resp. M-

cogenerated) if there exist an index set I and an epimorphism from M (I) to N

(resp. a monomorphism from N to
∏M

Λ Mλ,Mλ = M , a direct product of copies

of M in σ[M ] [17, 15.1]). For any N ∈ σ[M ], the class of all objects in σ[M ]

which are generated (resp. cogenerated) by N is denoted by GenM(N) (resp.

CogM(N)).

Theorem 5 Let M be a module such that M/τM(M) is semisimple. Consider

the following conditions.

(1) τM is splitting,

(2) τM is stable,

(3) every FM-module is projective in σ[M ],

(4) every module N ∈ σ[M ] has a decomposition N1 ⊕N2 such that N1 is a TM-

module and N2 is semisimple,

(5) every simple M-injective module in σ[M ] is projective in σ[M ],

(6) every M-singular module in σ[M ] is a TM-module,

(7) M cogenerates all M-injective simple modules in σ[M ].

Then (1)-(6) are all equivalent, (5)⇒(7) and if M is projective in σ[M ], then

(7)⇒(5).
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Proof (1 ⇒ 2) By Proposition 1.

(2 ⇒ 1) By Proposition 4.

(2 ⇒ 3) Assume that τM is stable. Let N ∈ FM. By hypothesis N is semisimple

M -injective. Let S be a simple M -singular submodule of N . Then S ∼= K/L

where L ≤e K ∈ σ[M ]. Let H := τM(K). Since H + L/L ≤ τM(K/L) = 0,

H ≤ L. Let X be a submodule of K maximal with respect to H∩X = 0 = τM(X).

Then H ⊕X ≤e K. Now Ĥ ⊕X = K̂ and then K = X ⊕ (Ĥ ∩K). Since TM is

closed under essential extensions, K ∩ Ĥ ∈ TM. This implies that H = K ∩ Ĥ.

Then K = X⊕H and so L = (X∩L)⊕H. Since X is semisimple, X = (X∩L)⊕T

for some T . Hence K = X⊕H = (X∩L)⊕T⊕H = L⊕T . This is a contradiction

to that L ≤e K. Now S is M -projective, that is projective in σ[M ]. It follows

that N is projective in σ[M ].

(3 ⇒ 1) Let N ∈ σ[M ]. Since N/τM(N) ∈ FM, it is projective. Let K be a

submodule of N such that N = τM(N) ⊕K. Then τM(N) ∩K = τM(K) = 0,

i.e. K ∈ FM.

(1 ⇒ 4) Clear by Proposition 3.

(4 ⇒ 3) Let N be an FM-module. To show that N is projective consider the

epimorphism f : X → N where X ∈ σ[M ]. Let X = X1 ⊕ X2 where X1 is a

TM-module and X2 is semisimple. Then X1/X1 ∩ Kerf ∼= X1 + Kerf/Kerf ≤
X/Kerf ∼= N implies that X1/X1∩Kerf ∈ TM∩FM = 0. Then X1 ≤ Kerf ≤ X.

Now Kerf = X1 ⊕ (X2 ∩ Kerf), and X2 = L ⊕ (X2 ∩ Kerf) for some L ≤ X2.

Then X = Kerf ⊕ L. Hence Kerf is a direct summand of X, i.e. f splits. This

implies that N is projective in σ[M ].

(3 ⇒ 5) Simple M -injective modules are FM-module.

(5 ⇒ 3) Let N ∈ FM. Then N is semisimple M -injective by Proposition 3. Since

every simple summand of N is projective by (5), N is projective.

(3 ⇒ 6) Let N be an M -singular module in σ[M ]. To show that N ∈ TM, let

F ∈ FM and f : N → F a homomorphism. Then N/kerf ∼= f(N) ≤ F ∈ FM.

By hypothesis, N/kerf is projective in σ[M ]. Since N/kerf is M -singular, we

have that f = 0.

(6 ⇒ 5) Let N be a simple M -injective module in σ[M ]. Then N ∈ FM. The

simple module N is M -singular or M -projective. If N is M -singular, then N is a

TM-module, a contradiction. So N is M -projective. Since N is finitely generated,

N is projective in σ[M ].

(5 ⇒ 7) Let N be a simple M -injective module in σ[M ]. By (5) N is projective.

Then N is a submodule of a direct sum of copies of M by [17, 18.4]. Since N is

simple, N is isomorphic to a submodule of M .

(7 ⇒ 5) Assume that M is projective in σ[M ]. Let N ∈ σ[M ] be a simple

M -injective module. Since N is cogenerated by M , N is isomorphic to a direct

summand of M . Hence N is projective in σ[M ]. 2
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A module M is called a V-module (or co-semisimple) if every simple module

(in σ[M ]) is M -injective. M is a V-module if and only if Rad(M/K) = 0 for

every K ≤ M .

A module M is called a Kasch module if M̂ is an (injective) cogenerator in

σ[M ], i.e. if every module in σ[M ] is M̂ -cogenerated, [1]. M is a Kasch module if

and only if any simple module in σ[M ] is cogenerated by M [1, Proposition 2.6].

Theorem 6 Let M be a module. Then τM is splitting if one of the following

holds.

(1) M is a V-module,

(2) Every FM-module is projective in σ[M ].

(3) M is local and every simple module in σ[M ] is M-generated.

(4) M is a projective Kasch module and M/τM(M) is semisimple.

Proof (1) M is a V-module if and only if FM = σ[M ] by [13, Theorem 3].

(2) By the proof of Theorem 5.

(3) If M/RadM is M -small simple, then M ∈ TM. Hence every module N in

σ[M ] is in TM, i.e. TM = σ[M ].

Assume that M/RadM is simple M -injective. Now we show that M is a V-

module. Let N be a simple module in σ[M ]. Let f be an epimorphism M (Λ) →
N . Then M (Λ)/Kerf ∼= N is simple. It follows that RadM ≤ Kerf . Since

(M + Kerf)/Kerf is a homomorphic image of M/RadM which is M -injective

simple, (M + Kerf)/Kerf is simple M -injective. Since M (Λ)/Kerf is simple,

(M + Kerf)/Kerf = M (Λ)/Kerf . This implies that N is M -injective. Hence M

is a V-module and then M is simple. So under the assumptions of (3) either M

is simple or TM = σ[M ] (compare with [8, Proposition 3.8]).

(4) It is clear by Theorem 5 (7). 2

Proposition 7 Let M be a module. If M/τM(M) is semisimple then τM =

(TM,FM) is the same as the torsion theory cogenerated by simple M-injective

modules.

Proof By definitions and Proposition 3. 2

Is τM Cohereditary?

τM is not cohereditary, i.e. FM is not closed under factor modules in general:

Example 8 There exist a module M which is not semisimple, N ∈ σ[M ] and

L ≤ N such that Z∗M(N) = 0 and Z∗M(N/L) 6= 0.
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Proof Let R be the full ring of linear transformations on a vector space VF of

dimension ℵ over a field F . Suppose that ℵ is infinite and |F | ≤ 2ℵ0 . Then R

is a regular right self-injective ring and any simple injective right R-module is

isomorphic to a right ideal of R [10, Theorem 2].

Since R is not semiprime Artinian, there exists a proper essential right ideal E

of R. Let L be a maximal right ideal of R such that E ≤ L. Then R/L is a simple

non-injective right R-module [12, Example 2.10]. So Z∗(RR) = RadRR = 0 but

Z∗(R/L) = R/L. 2

If M is a V-module then τM is cohereditary. And if M/τM(M) is semisimple

for a module M , then τM is cohereditary by Proposition 3.

Let C be a class of modules in σ[M ] such that it is closed under direct sums and

factor modules. A module N ∈ σ[M ] is called (M, C)-injective if N is injective

with respect to every exact sequence 0 → K → L in σ[M ] with L/K ∈ C. If

(T ,F) is a hereditary torsion theory in σ[M ], then N ∈ σ[M ] is (M, T )-injective

if and only if N̂/N ∈ F ; [18, 9.11]. The corresponding proposition to the following

result in Mod-R is Proposition 4.5 in [8].

Proposition 9 Let M be a module. The following are equivalent.

(1) τM is cohereditary,

(2) every FM-module is (M, TM)-injective,

(3) for every N ∈ FM, N̂/N ∈ FM.

If one of the above conditions holds then every FM-module is a V-module.

Proof (2 ⇔ 3) By [18, 9.11]. (1 ⇒ 3) It is clear.

(3 ⇒ 1) Let N ∈ FM and K ≤ N . Consider the exact sequence

0 → K̂/K → N̂/K → N̂/K̂ → 0.

Let T be a submodule of N̂ such that N̂ = K̂⊕T . Since Z∗M(X) = 0 ⇔ RadX̂ = 0

for any X ∈ σ[M ], FM is closed under essential extensions. Then T ∈ FM, i.e.

N̂/K̂ ∈ FM. On the other hand by (3) K̂/K ∈ FM. Since FM is closed under

extensions, N̂/K ∈ FM. This implies that N/K ∈ FM. 2

Let M be a module and consider the torsion theory τV = (TV ,FV ) cogener-

ated by M. This torsion theory is investigated by Talebi and Vanaja [16]. They

denoted ZM(N) := Rej(N,M). Then

TV = {A ∈ σ[M ] : ZM(A) = A}
FV = {B ∈ σ[M ] : ∀0 6= K ≤ B, ZM(K) 6= K}.

M⊆ FV and τV is not necessarily hereditary [16].

Proposition 10 FM = TV if and only if τM is cohereditary and τV is hereditary.
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Proof It is clear by definitions, and compare with [8, Lemma 2.2]. 2

When Is TM Equal To {N ∈ σ[M ] : Z∗M(N) = N}?

Let M be a module. A module N ∈ σ[M ] is called hereditary if every sub-

module of N is projective in σ[M ]. Then a hereditary module in σ[M ] is itself

projective in σ[M ].

Proposition 11 Let M be a module. If M is hereditary, then

TM = {N ∈ σ[M ] : Z∗M(N) = N}.

Proof It is clear that the given class is a subclass of TM. For the converse, let

N ∈ TM and n ∈ N \Z∗M(N). Then nR is not small in n̂R. Let L be a submodule

of n̂R such that n̂R = nR + L. Then n̂R/L ∼= nR/nR ∩ L is injective by [17,

39.6]. Let K/nR ∩ L be a maximal submodule of nR/nR ∩ L. Then nR/K is

simple injective, i.e. nR/K ∈ FM. Since TM is closed under submodules and

factor modules, nR/K ∈ TM ∩ FM = {0}. This contradicts to that K 6= nR. 2

Let M be a module. Assume that M has a projective cover P in σ[M ] and

consider the torsion theory generated by P , τP = (TP ,FP ) where

FP = {F ∈ σ[M ] : Hom(P, F ) = 0}
TP = {T ∈ σ[M ] : ∀F ∈ FP , Hom(T, F ) = 0}.

This is cohereditary and the dual Lambek torsion theory in σ[M ] (see [1]).

Since P ∈ TP , GenM(P ) ⊆ TP . And

M⊆ FV , TV ⊆ TP .

Proposition 12 is proved in [7].

Proposition 12 Assume that M has a projective cover P in σ[M ]. Then

1) FP ⊆M.

2) If ZM(M) = M then ZM(P ) = P , FP = M and M is closed under direct

sums.

Theorem 15 gives the relations between torsion theories τM, τV and τP . First

we give the following lemma.

Lemma 13 Let N ∈ σ[M ] be such that ZM(N) = N . Then Z∗M(N) = Rad(N).

Proof Let n ∈ Z∗M(N). Then nR is an M -small submodule of N . By [16,

Lemma 2.3(1)] nR ¿ N . Hence Z∗M(N) ≤ Rad(N). 2
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Example 14 The converse of Lemma 13 is not true in general: Let R = Z and

M = Z/4Z. Then M is M -injective and it can be seen that Z∗M(M) = Rad(M) =

ZM(M) = 2Z/4Z.

Theorem 15 Let M be a module and assume that P is a projective cover of M

in σ[M ]. Then the following are equivalent.

(1) ZM(M) = M ,

(2) FP = M,

(3) TP = TV ,

(4) GenM(P ) ⊆ TV .

In this case M = FV = TM = {N ∈ σ[M ] : Z∗M(N) = N} = {N ∈ σ[M ] :

ZM(N) = 0}.
Proof (1 ⇒ 2) By Proposition 12.

(2 ⇒ 3) Let T ∈ TP and C be an M -small module. Then C ∈ FP implies that

Hom(T, C) = 0, i.e. T ∈ TV .

(3 ⇒ 4) GenM(P ) ⊆ TP = TV .

(4 ⇒ 1) Since M ∈GenM(P ), M ∈ TV and hence ZM(M) = M .

For the last part assume that FP = M. It is clear that if N is an M -small

module in σ[M ], then N ∈ FV ∩ TM, Z∗M(N) = N and ZM(N) = 0.

Now let N ∈ FV and f : P → N be a homomorphism. Then P/Kerf ∼=
Imf ≤ N ∈ FV . Since ZM(P ) = P by Proposition 12, P ∈ TV . This implies that

P/Kerf ∈ FV ∩ TV = 0, i.e. f = 0. Hence FV ⊆M.

Let µ = {N ∈ σ[M ] : Z∗M(N) = N}. Since for an R-module L, Tr(M, L) = L

if and only if L is M-generated [17, 13.5], µ =GenM(M) =Gen(M)∩ σ[M ]. Let

N ∈ µ. Then there exists an epimorphism from a direct sum of M -small modules

to N . Any direct sum of M -small modules is M -small by Proposition 12. It

follows that N is M -small.

Let β = {N ∈ σ[M ] : ZM(N) = 0}. Since β ⊆ FV , by above β ⊆M.

Let N ∈ TM and f : P → N a homomorphism. Let K := P/Kerf . Since

ZM(P ) = P , ZM(K) = K by [16, Proposition 2.4], and by Lemma 13 Z∗M(K) =

Rad(K). If Z∗M(K) = K, we have seen that K is M -small. Since ZM(K) = K,

f = 0. If Z∗M(K) 6= K, there is a cyclic submodule C that is not small in K.

Therefore K has a cyclic factor module and hence a simple factor module, say

K/X. Then ZM(K/X) = K/X. Again by Lemma 13 Z∗M(K/X) = Rad(K/X) =

0. Hence K/X ∈ FM ∩ TM = 0, a contradiction. So N ∈ FP . 2

Let M be a module. A module N in σ[M ] is called semiperfect in σ[M ] if every

factor module of N has a projective cover in σ[M ] [17]. Then if M is semiperfect

in σ[M ], M has a projective cover in σ[M ].

Corollary 16 Let M be a module. If M is hereditary or semiperfect, then the

result of Theorem 15 holds.
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Note that if M is a hereditary module then for every injective module N in

σ[M ], ZM(N) = N by [16, Proposition 2.7].

Proposition 17 Let M be a module and assume that P is a projective cover of

M . Then P is a generator ⇔ FP = {0} ⇔ TP =GenM(P ) = σ[M ].

Proof Assume that P is a generator. Let F ∈ FP . Since F is P -generated

there exists an epimorphism P (Λ) → F for some index set Λ. This yields a

homomorphism from P to F which is zero. This implies that F = 0.

Now assume that FP = {0}. Let E be a simple module in σ[M ]. If Hom(P, E) =

0 then E ∈ FP which is a contradiction. Hence by [17, 18.5] P is a generator.

The last part is clear now. 2

Corollary 18 Let M be a module and assume that P is a projective cover of

M . If ZM(M) = M and P is a generator, then M is a V-module. In this case

TP = FM = σ[M ].

Proof Let S be a simple module in σ[M ]. Since P generates S by [17, 18.5],

we have that ZM(S) = S by [16, Proposition 1.3]. Then S can not be M -small.

Hence M is a V-module. Then M = {0}. By Theorem 15 FM = σ[M ]. By

Proposition 17 TP = σ[M ]. 2

About Z∗M
n(.)

Let N be a submodule of a module M . N is called a weak supplement of L

in M if N + L = M and N ∩ L ¿ M . N is called a weak supplement in M if

there exists a submodule L such that N is a weak supplement of L in M . M is

called weakly supplemented if every submodule N of M has a weak supplement

(see [19]). If M is weakly supplemented then M/RadM is semisimple. For if

RadM ≤ K ≤ M , by hypothesis M = K + L and K ∩L ¿ M for some L. Then

K ∩ L ≤ RadM and so M/RadM = K/RadM ⊕ (L + RadM)/RadM .

Lemma 19 Let N ∈ σ[M ]. If N̂ is weakly supplemented, then N/Z∗M(N) is

semisimple.

Proof Let N ∈ σ[M ]. Then N̂/Rad(N̂) = N̂/Z∗M(N̂) is semisimple. Then

N/Z∗M(N) = N/N ∩ Z∗M(N̂) ∼= N + Z∗M(N̂)/Z∗M(N̂) ≤ N̂/Z∗M(N̂) and hence

N/Z∗M(N) is semisimple. 2

Now we denote the submodules Z∗M
n(N) of a module N ∈ σ[M ] as follows.

Z∗M
1(N) = Z∗M(N), Z∗M(N/Z∗M

n−1(N)) = Z∗M
n(N)/Z∗M

n−1(N)(n = 2, 3, . . .). It

is not known whether Z∗M
2(N) = Z∗M

3(N) = . . .. But since Z∗M
2(N)/Z∗M(N) ∈

TM and Z∗M(N) ∈ TM, Z∗M
2(N) ∈ TM. By the same argument we have that

Z∗M
n(N) ∈ TM for all n. Hence Z∗M(N) ≤ Z∗M

2(N) ≤ Z∗M
3(N) ≤ . . . ≤ τM(N).
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Lemma 20 Let N ∈ σ[M ]. If N/Z∗M(N) is semisimple then Z∗M
2(N) = Z∗M

3(N)

and N/Z∗M
2(N) is N-injective.

Proof Let N/Z∗M(N) = N1 ⊕ N2 where N1 is a direct sum of simple M -

injective modules and N2 is a direct sum of simple M -small modules. Then

Z∗M(N/Z∗M(N)) = N2. On the other hand N/Z∗M
2(N) ∼= (N/Z∗M(N))/N2

∼=
N1. Hence Z∗M(N/Z∗M

2(N)) = 0, i.e. Z∗M
2(N) = Z∗M

3(N). By Proposition 2,

N/Z∗M
2(N) is N -injective. 2

Proposition 21 If every injective module in σ[M ] is weakly supplemented, then

1) FM = {N ∈ σ[M ] : Z∗M
2(N) = 0 }

2) TM = {N ∈ σ[M ] : Z∗M
2(N) = N }

3) τM(N) = Z∗M
2(N).

4) τM is cohereditary.

Proof 1) Let γ = {N ∈ σ[M ] : Z∗M
2(N) = 0 } and N ∈ FM. Then Z∗M(N) = 0

and Z∗M(N/Z∗M(N)) = Z∗M
2(N)/Z∗M(N) = 0 implies Z∗M

2(N) = 0. Hence N ∈ γ

and so FM ⊆ γ. Let N ∈ γ. Then Z∗M
2(N) = 0. Since Z∗M(N) ≤ Z∗M

2(N),

N ∈ FM. Hence γ ≤ FM.

2) Let N ∈ σ[M ] be such that Z∗M
2(N) = N . Then Z∗M(N/Z∗M(N)) = N/Z∗M(N) ∈

TM and it follows that N ∈ TM. For the converse let N ∈ TM. N/Z∗M(N) is

semisimple by Lemma 19. Then N/Z∗M(N) is the sum of simple M -small modules.

This implies that Z∗M
2(N) = N . Now (3) and (4) are clear. 2

Every TM-module is M-projective

A module M is called a GCO-module if every simple singular module is M -

projective or M -injective. M is a GCO-module if and only if every simple M -

singular module is M -injective. [4]

Theorem 22 The following are equivalent for a module M .

(1) M is a GCO-module,

(2) every M-small module in σ[M ] is M-projective,

(3) every TM-module is M-projective,

(4) every simple TM-module is M-projective.

Proof (1 ⇔ 2) By [13, Theorem 5].

(1 ⇒ 3) Let N ∈ TM and x ∈ N . If K is a maximal submodule of xR, xR/K

is M -injective or M -projective. Since N ∈ TM, xR/K can not be M -injective.

Then xR/K is M -projective. It follows that K is a direct summand of xR. Hence

xR, and then N is semisimple. Again by hypothesis N is M -projective.
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(3 ⇒ 4) Clear.

(4 ⇒ 1) Let N be a simple module in σ[M ]. If N is M -small, then N is M -

projective by hypothesis. Hence N is M -injective or M -projective. 2

Acknowledgement The authors would like to express their gratitudes to the

referee for his valuable comments.
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