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ABSTRACT

Given a ring R, we investigate a subfunctor Z* of the identity
functor on the category of all right R-modules which is
defined by Z*(M) = {m € M : mR is a small module}, for any
R-module M. We prove that if the ring R satisfies the des-
cending chain condition for right annihilators and R/P is an
Artinian ring for every primitive ideal P then Z*(M) =
{m € M : mS = 0} for every right R-module M, where S is the
left socle of R. Moreover the ring R is semiprime Artinian if
and only if R is right bounded, R satisfies the descending
chain condition for right annihilators and Z*(M) =0 for
some faithful right R-module M.
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4916 OZCAN AND SMITH
1 INTRODUCTION AND NOTATION

Throughout this note all rings are associative with identity and all
modules are unital right modules unless specified otherwise. For any module
M, E(M) will denote the injective hull of M, Soc M the socle of M and
Rad M the radical of M (see!!! for more information). A submodule N of a
module M is called small (in M), written N < M, if M # N + K for every
proper submodule K of M. Recall that Rad M is the sum of all small sub-
modules of M (see[l’ Proposition 9.13])'

Let R be any ring. An R-module M is called small if there exists an
R-module M’ and a monomorphism ¢ : M — M’ such that ¢(M) < M'.
Leonard?® Theerem 11 nroved that the module M is small if and only if
M < E(M). Recall that an R-module M is singular if and only if there exists
a (projective) R-module P and an epimorphism ¢ : P — M such that the
kernel of ¢ is an essential submodule of P (see, for example,* *%). Thus,
small modules can be thought of as a dual to singular modules. Singular
modules have been extensively studied, but small modules less so.

For any R-module M, the singular submodule Z(M) of M can be
defined as follows: Z(M) = {m € M : mR is a singular module}. In"* %I (see
also™), a subfunctor Z* of the identity functor on the category of all
R-modules is defined as follows: Z*(M) = {m € M : mR is a small module},
for any R-module M. There are some interesting correspondences between
Z(M) and Z*(M) for a given module M, as we shall see later. In view of the
importance of the functor Z for Module Theory it seems worthwhile to
study the functor Z*.

It is not difficult to establish the following facts (see!

Lemma 1.1. For any module M, Rad M C Z*(M) = M N Rad(E(M)).
Corollary 1.2. Let M be any module. Then

(i) Z*(M) = Rad M if M is an injective module.
(i) Z*(M) = M if M is a small module.
(i) Z*(M) =0 if and only if Rad(E(M)) = 0.

s, p.671])

Proof. By Lemma 1.1. [

In general, the converse of Corollary 1.2(i) is false. Let R be a com-
mutative domain which is not Dedekind. Byl® Theorem 4231 ' there exists an
R-module M which is divisible (i.e., M = Mc for all 0 # ¢ € R) but which is
not injective. It follows that M does not contain a maximal submodule.
Hence M =RadM C Z*(M) C M, ie., Z*(M) = Rad M, by Lemma 1.1.
More generally, Ozcan!”> Th°™ 131 hag proved that a prime ring R satisfying
a polynomial identity (i.e., a prime Pl-ring) has the property that every
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R-module with Z*(M) = Rad M is injective if and only if R is an hereditary
Noetherian ring.

Lemma 1.3. Let M be a module. Then

(1) Z*(M) = XZ*(N) where the sum is taken over all finitely generated
(cyclic) submodules of M.
(i) If M =@,.; M; is a direct sum of submodules M;(i € I) then
Z'(M) = @, 2" (M),
(i) Z*(N) = NN Z*(M) for any submodule N of M.

Proof. (i), (iii) By the definition of Z*. U
(i1) By (i).

Let R be a ring and let M be an R-module. For any non-empty subset
X of R we define

rr(X) ={re R:xr=0forall x € X}, and
Iy (X) ={me M :mx =0 for all x € X}.

Note that rg(X) is a right ideal of R and such a right ideal is called a right
annihilator. The left socle Soc(xR) of the ring R is the socle of the left
R-module R and the right socle Soc(Rg) of R is the socle of the right R-
module R. We mentioned above that there are various correspondences
between the functors Z and Z*.

Proposition 1.4. Let R be a right Artinian ring. Then Z(M) = 1(Soc(Rg))
and Z*(M) = 1y(Soc(xR)) for any right R-module M.

Proof. Let M be any R-module. Because Soc(Rpg) is an essential right ideal
of R,[l’ Proposition 9.7] gives that

Z(M) ={m e M : mA = 0 for some essential right ideal 4 of R}
={m e M : m(Soc(Rgr)) = 0} =13/(Soc(Rg)).

On the other hand, Z*(M) = I/(Soc(;R)) by!® Theorem 31,

If a ring R is right hereditary then we can describe Z*(M) for any R-
module M, as follows.

Theorem 1.5. Let R be a right hereditary ring and let M be any right R-
module. Then Z*(M) = ({N : N is a maximal submodule of M and M /N is a
simple injective R-module}.
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Proof. Let m € Z*(M). Let N be a maximal submodule of M such that
M/N is a simple injective R-module. If E = E(M) then M/N is a direct
summand of E/N, so that E = K + M for some submodule K of £ such that
KN M = N.Note that E/K = M /N and hence K is a maximal submodule of
E. Tt follows that m € K and hence m € KN M = N. Thus Z*(M) C ({N:
N is a maximal submodule of M and M/N is a simple injective R-module}.

Now suppose that m € M\Z*(M). By Lemma 1.1, there exists a
maximal submodule L of E such that m ¢ L. In this case, E= L + mR and
M = (LN M)+ mR. Note that E= L+ M and M/(LN M) = E/L, so that
LN M is a maximal submodule of M. Moreover, byl P15 - 100 the module
M/(L N M) is simple injective. Clearly m ¢ L N M. The result follows. [

Next in this section we shall consider some examples. Let & be a field of
characteristic 0 and let 4 (k) be the first Weyl algebra over k. That is, 4(k) is
the k-algebra with generators x, y subject to the relation xy — yx = 1. By
Theorems 1.3.5 and 7.5.8] = 4(k) is a simple hereditary Noetherian domain.
Moreover, no simple 4 (k)-moduleis injective by!'* -*m™m4 341 By Theorem 1.5,
Z*(M) = M for every A(k)-module M.

A ring R is called a right V-ring if every simple right R-module is
injective. In,!'"! Cozzens gives examples of simple principal right and left
ideal domains R which are right V-rings, and for such a ring R, Z*(M) =0
for every R-module M byl!2. Theorem 12]

In'"*! Osofsky considers twisted polynomial rings R = F] [x; 6], where F
is a field of characteristic p > 0 and ¢ : F — Fis the endomorphism given by
o(a) = a (a € F). The ring R consists of all polynomials

ap + xa, + X>ar + - - + x"ay,

where n is a non-negative integer, a; € F(0 < i < n), and multiplication is
given by the relation

ax = xo(a) (a € F).

Note that R is a principal right ideal domain (see!'* P>°")). Let 4 denote the
ideal xR of R. Clearly A is a maximal right ideal of R and the R-module R/ 4
is not injective because R/A4 # (R/A)x (seel® Proposition 2.6ly ‘1 [13. Proposition
%1 Osofsky gives an example of a field F such that the R-module R/sR is
injective for all s € R\xR. Thus some simple R-modules are injective and
some are not. In particular, for the principal right ideal domain R,
Z*(My) = M, and Z*(M;) = 0 for some simple R-modules M; and M,. In
this case, Z* (M, & M) = M, &0 # 0, M, & M,, by Lemma 1.3(ii).

Next we wish to note some information about annihilators. In what
follows we shall be interested in rings which satisfy the descending chain
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condition (dcc) for right annihilators. It is well known that a ring R satisfies
dcc for right annihilators if and only if R satisfies the ascending chain
condition (acc) for left annihilators (see, for example,'* P-?)). In particular,
left Noetherian rings satisfy dcc for right annihilators and, more generally,
so too do left Goldie rings. If a ring R satisfies dcc for right annihilators then
it is easy to check that so too does any subring of R. Thus any subring of a
left Goldie ring or a right Artinian ring satisfies dcc for right annihilators.
Note the following result of Faith.!!> corollary 20.2B]

Lemma 1.6. A ring R satisfies dcc for right annihilators if and only if, for each
left ideal L of R, there exists a finitely generated left ideal L' of R such that
L - L and l'R(L) = l'R(L/).

In this paper, a left ideal L of a ring R will be called almost finitely
generated if rgr(L) =rg(L’) for some finitely generated left ideal L' C L.
Clearly any finitely generated left ideal is almost finitely generated. However
any left ideal L such that rg(Rc) =0 for some element ¢ in L is almost
finitely generated because rg(L) = rg(Rc), but L need not be finitely gen-
erated. Note that Lemma 1.6 can be restated thus: a ring R satisfies dcc for
right annihilators if and only if every left ideal of R is almost finitely gen-
erated. The next result is probably known but we do not have a reference.

Lemma 1.7. Let R be a left nonsingular ring and let L be a left ideal of R such
that the left R-module L has finite uniform dimension. Then L is almost finitely
generated.

Proof. Byl Femma 191 there exists a finitely generated left ideal L' of R
such that L’ is an essential submodule of the left R-module L. Let r € rg(L').
For any x € L, there exists an essential left ideal 4 of R such that Ax C L’
(seel! Lemma LI “ oo that Axr =0 and hence xr=0. It follows that
rr(L") Crr(L), and hence rg(L) =rg(L’). O

The main result of §2 concerns rings R such that every right primitive
ideal is an almost finitely generated left ideal and R/ P is an Artinian ring for
every right or left primitive ideal P (see Theorem 2.9). Recall that an ideal P
of an arbitrary ring R is called right primitive if P = rg(U) for some simple
R-module U. The ring R is right primitive if its zero ideal is right primitive.
There are analogous definitions for left primitive ideals and left primitive
rings. Examples are known of right primitive ideals which are not left pri-
mitive (see,!!6718]).

As we mentioned above, we are interested in rings R such that R/P is
an Artinian ring for each right (or left) primitive ideal P. For example, if R is
a ring with Jacobson radical J such that R/J is an Artinian ring (in parti-
cular if R is a semiperfect ring) then every right (or left) primitive image of
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R is Artinian. Moreover, Kaplansky’s Theorem states that if R is a ring
satisfying a polynomial identity (i.e., a PI-ring) then R/P is an Artinian ring
for every right (or left) primitive ideal P (see, for example,?> Theorem 13.3.8])

Following Chatters and Hajarnavis,'" a ring R is called right bounded
if every essential right ideal contains an ideal which is essential as a right
ideal. A ring R is called right fully bounded if every prime factor ring of R is
right bounded. It can be shown that every right fully bounded semiprime
ring which has only a finite number of minimal prime ideals is right
bounded. Clearly right Artinian rings are fully right (and left) bounded and
semiprime Artinian rings are right (and left) bounded. Moreover Pl-rings
are fully right (and left) bounded by Corollary 13-6.61 A ring R is called a right
FBN ring if R is a right fully bounded right Noetherian ring. If R is a right
FBN ring then R/P is an Artinian ring for every right primitive ideal P of R
(See[l9, Proposition 8.4]).

Another interesting class of rings R such that every primitive image is
Artinian is provided by group rings. A group G is polycyclic-by-finite if there
exist a positive integer n and a chain G =Gy O G; D --- DO G, = 1 of sub-
groups G;(0 < i < n) of G such that G; is a normal subgroup of G;_; and the
group G;_1/G;iscyclicor finite foreach 1 < i < n. Aring Riscalled a Jacobson
ring if every prime factor ring of R has zero Jacobson radical, i.e., every prime
ideal of R is an intersection of right primitive ideals. Let S be a commutative
Noetherian Jacobson ring such that, for each maximal ideal P of S, the field
S/ P is an algebraic extension of a finite field. For example, S could be the ring
7. of rational integers or a finite field. Let G be a polycyclic-by-finite group and
let R be the group ring S[G]. Roseblade?* “r!ay 4 proved that for every
simple R-module U there exists a maximal ideal P of S'such that UP = 0 and U
is a finite dimensional vector space over the field S/ P. In particular, this means
that the ring R/Q is Artinian for every right (or left) primitive ideal Q.

If a ring R is von Neumann regular then R/P is an Artinian ring for
every right primitive ideal P if and only if R/Q is an Artinian ring for every
left primitive ideal Q (see!!* Theerem 62 ‘We do not know an example of a
ring R such that R/ P is Artinian for every right primitive ideal P but R/Q is
not Artinian for some left primitive ideal Q. Note that if such an example
exists then there exists a non-Artinian left primitive ring R’ such that R’/ P is
Artinian for every right primitive ideal P.

2 RINGS WHOSE PRIMITIVE IMAGES ARE ARTINIAN

Let R be a ring and let M be a (right) R-module. If R is right hereditary
then Theorem 1.5 gives a description of Z*(M), although it is not clear how
one would calculate it in practice. In general, to find Z*(M) seems a difficult
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problem because it involves information about the radical of the injective
hull of M. In this section we shall show that for a large class of rings,
including all left Noetherian rings whose primitive images are Artinian, it is
possible to give a very satisfactory description of Z*(M). The first result of
this section illustrates why rings whose primitive images are Artinian feature
in the study of the Z* functor.

Lemma 2.1. Let R be a ring such that R/ P is an Artinian ring for every left
primitive ideal P. Then Z*(M) C 1y/(Soc(xR)) for every R-module M.

Proof. Let M be any R-module and let £ = E(M). If Soc(xR) =0 then
there is nothing to prove. Suppose that Soc(,R) # 0. Let U be a minimal left
ideal of R. Let P =1g(U). Then P is a left primitive ideal of R and, by
hypothesis, R/P is an Artinian ring. Note that the R-module E/EP is
semisimple and hence RadEC EP. Now Z*(M)UC (RadE)U C
(EP)U = 0. It follows that Z*(M) C Iy/(Soc(xR)). O

Corollary 2.2. Let R be a ring such that R/ P is an Artinian ring for every left
primitive ideal P and let M be an R-module such that 1y;(Soc(zR)) = 0. Then
Z*(M) =0.

Proof. By Lemma 2.1. O

Let R be a commutative ring. Then every (left) primitive ideal is
maximal and R/P is a field for every primitive ideal P. By Lemma 2.1,
Z*(M) C1y(Soc(xR)) for every R-module M. We shall show that for many
commutative rings R, Z*(M) = 1(Soc(zR)) for every R-module M (see
Theorem 2.9). However, this is not always the case for commutative rings
and, in fact, can fail spectacularly. For example, if R is a (commutative) von
Neumann regular ring with zero socle then Z*(M)=0 and
13/(Soc(zR)) = M for every R-module M (seel'> “orollary 19:331 4 (12, Theorem
121). An example of such a ring R can be produced as follows. Let F be any
field and let T be the direct product of any infinite number of copies of F.
Then T is a commutative ring. Let I be the ideal of T consisting of all ele-
ments which have at most a finite number of non-zero components. Then
the ring R = T/I is a commutative von Neumann regular ring with zero
socle.

For any ring R, Rg will denote the R-module R and Rg) will denote
the direct sum of n copies of Rg, for any positive integer #. The next lemma
is key to our investigation. It is probably known but we do not have a
reference.

Lemma 2.3. Let R be any ring and let E be an injective R-module. Then EL =
lg(rr(L)) for every almost finitely generated left ideal L of R.
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Proof. Note first that (EL)rg(L) = 0, so that EL C lg(rg(L)). Conversely,
let e € 1g(rr(L)). By hypothesis, rg(L) =rg(Rx; +---+ Rx,) for some
positive integer n and elements x; € L(1 <i<n). Consider the element
(x1,...,x,) of the free R-module R%) and define a mapping
¢: (x1,...,x,)R — E by

d(x1r,...,x,r) =er (r€R).

Note that if r € R and (x;r,...,x,r) =0 then r € rg(L) and hence
er = 0. Thus ¢ is well defined and is clearly a homomorphism. Because E is
injective, there exists a homomorphism 0 : Rsf) — E such that ¢ is the
restriction of 0 to (xy,...,x,)R.

For each 1 <i <, let ¢; denote the element (0,...,0,1,0,...,0) of
RS?), where 1 is the ith component of e;. Then

e=a¢(x1,...,x,) =0(e1x; + -+ enxy)
=0(e;)x1 + -+ 0(ey)x, € EL.

It follows that 1g(rg(L)) € EL. Hence EL = lg(rg(L)). O

For any ring R, n(R) will denote the collection of all right primitive
ideals of R.

Lemma 2.4. Let R be a ring such that every right primitive ideal is an almost
finitely generated left ideal. Let A denote the ideal ZP@(R) rr(P) of R. Then
1y (A4) C Z*(M) for every R-module M.

Proof. Let M be any R-module and let £ = E(M). If N is a maximal
submodule of E then the ideal Q = rg(E/N) is right primitive and EQ C N.
It follows that NpeyryEP € Rad E. By Lemmas 1.1 and 2.3,

Z'(M)=MnRadED (| (MNEP)= () lu(rz(P))
Pen(R) Pen(R)

=Ly Y rr(P) | =lu(A). O

Pen(R)

Corollary 2.5. Let R be a ring such that for every right primitive ideal P of R
there exists a finitely generated left ideal L of R such that L C P and
rr(L) = 0. Then Z*(M) = M for every R-module M.

Proof. Let P be any right primitive ideal of R. By hypothesis there exists a
finitely generated left ideal L C P such that rg(L) = 0. But this implies that
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rr(P) = 0 =rg(L). Hence every right primitive ideal P is an almost finitely
generated left ideal and satisfies rg(P) = 0. By Lemma 2.4, Z*(M) = M for
every R-module M. O

An element ¢ of a ring R is called right regular if c¢r #0 for all
0#re R, ie,rg(c)=0.Note that Corollary 2.5 shows that if R is a ring
such that every right primitive ideal contains a right regular element then
Z"*(M) = M for every R-module M. The next result gives another situation
where every module M satisfies Z*(M) = M. It generalizest'> orollary I
where it is proved for prime right Goldie rings which are not right primitive.

Proposition 2.6. Let R be a semiprime ring which satisfies dcc for right
annihilators such that no minimal prime ideal is right primitive. Then Z*(M) =
M for every R-module M.

Proof. Let P be any right primitive ideal of R. For any minimal prime ideal
Q of R, P#Q and Prg(P)=0C Q so that rg(P) C Q. Because R is
semiprime, we deduce that rg(P) = 0. By Lemma 1.6, P is an almost finitely
generated left ideal. The result follows by Corollary 2.5. Ul

In particular, Proposition 2.6 shows that if R is a prime ring which
satisfies dcc for right annihilators but which is not right primitive then
Z"*(M) = M for every R-module M. Here the fact that R is not right pri-
mitive is crucial because of the example in Section 1 of a simple Noetherian
ring R for which Z*(M) =0 for every R-module M. Note further that
we showed in Section 1 that there exist simple Noetherian rings R such
that Z*(M) = M for every R-module M. Next we prove an analogue of
Lemma 2.4.

Lemma 2.7. Let R be a ring with Jacobson radical J such that J is an almost
finitely generated left ideal. Then ly(rr(J)) C Z*(M) for every R-module M.
In particular, 1g(rg(J)) C Z*(RR).

Proof. Let M be any R-module and let E = E(M). Byl!: Corollary 15181 34
Lemma 2.3,

lE(l'R(J)) =FEJ - Rad E,
and hence

The last part is clear. O
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[8, Theorem 3

Using Lemma 2.7 we can generalize a result of Rayar ! (see

alsol® temma 22l who proved it for right Artinian rings.

Proposition 2.8. Let R be a ring with Jacobson radical J such that J is an
almost finitely generated left ideal and R/J is an Artinian ring. Then Z*(M) =
Ly(Soc(xR)) = ly(rr(J)) for every R-module M. In particular,
Z*(Rg) = 1r(Soc(gR)) = 1r(rr(J)).

Proof. Note that Soc(xR) = rg(J). Apply Lemmas 2.1 and 2.7. U

Let R be a ring with Jacobson radical J such that J is an almost finitely
generated left ideal and R/J is an Artinian ring. Let P be a right primitive
ideal of R. Because the ring R/J is semiprime Artinian, the left ideal P/J is
principal. It follows that P =J+ Ra for some element a of P. Now
rr(J) = rg(L) for some finitely generated left ideal L C J and hence rg(P) =
rr(L + Ra). Tt follows that every right primitive ideal of R is an almost
finitely generated left ideal. Moreover it is clear that R/Q is an Artinian ring
for every right (or left) primitive ideal Q. Our aim now is to generalize
Proposition 2.8. We do this in the next result.

Theorem 2.9. Let R be a ring such that every right primitive ideal is an almost
finitely generated left ideal and R/P is an Artinian ring for every right pri-
mitive ideal P. Then ly(Soc(xR)) C Z*(M) =Ly (3_peq(r) Tr(P)) for every
right R-module M. Moreover, if in addition R/Q is an Artinian ring for every
left primitive ideal Q then Z*(M) = ly(Soc(zR)) for every right R-module M.

Proof. Let M be any R-module and let £ = E(M). Set A =3 pc g TrR(P).
By Lemma 2.4, 1;,(4) C Z*(M). For each P in n(R), the ring R/P is simple
Artinian and hence the left (R/P)-module rg(P) and the right (R/P)-
module E/EP are both semisimple. It follows that Rad E C EP. By Lemma
L1, Z" (M)A C (Rad E)A4 C ((peyry EP)A =0, so that Z*(M) C ly(A)
and hence Z*(M) =1y/(4). Moreover 4 C Soc(rR) and we deduce that
Ly (Soc(xR)) C 1y (A4).

Now suppose that, in addition, R/Q is an Artinian ring for every left
primitive ideal Q. By Lemma 2.1, Z*(M) Cly(Soc(xR)) and hence
Z*(M) =1y(Soc(xR)). O

Any commutative Noetherian ring satisfies the hypotheses of Theorem
2.9 but need not satisfy the hypotheses of Proposition 2.8.

Let M be any module (over an arbitrary ring). Then we define a chain
of submodules 0= Zj(M)C Z;(M) C Z5(M) C--- of M as follows:
for each integer n > 1, Z*(M)/Z! (M) = Z*(M/Z;_,(M)). Clearly Z} (M)
= Z*(M). Haradal> Proposition 1.21 proved that if R is a ring with Jacobson
radical J such that R/J is an Artinian ring then Z}(M) = Z;(M) for every
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R-module M, ie., Z5 = Z;. Now we show that Z5 = Z3 for all rings R
satisfying the hypotheses of Theorem 2.9.

Theorem 2.10. Let R be a ring such that every right primitive ideal is an almost
finitely generated left ideal and R/ P is an Artinian ring for every right or left
primitive ideal P. Then Z3(M) = Z3(M) = 1y/(S?) for every right R-module
M, where S = Soc(zR).

Proof. Let M be any R-module. By Theorem 2.9, Z5(M)={me M :
mS C Z*(M)} = {me M:mS* =0} =1(S?) and, similarly,
Z5(M) =134(S%). If S=0 then there is nothing to prove. Suppose that
S # 0. Let L be a minimal left ideal of R. Then L?> = L or L> = 0. Moreover,
if L2 =0 then LL' =0 for every minimal left ideal L' of R. There exist
disjoint collections {L, : 1 € A(i)} (1 <i < 3) of independent minimal left
ideals of R such that S = Hy & H, ® Hs, where H; = @) Ly (1 <1< 3),
and moreover,

(@) L2=1L; forall Zin A(1),
(b) L7=0and H,L; = L; for all 4 in A(2), and
() L;=0and H,L; =0 for all Ain A(3).

By the above remarks (H, @ H3)S = 0 and hence S*> = H, @ H, = S°.
It follows that Z5(M) = Z5(M). O

Theorem 2.10 can be viewed as an analogue off>% P-148 Proposition 6.2]
Let R be a commutative von Neumann regular ring with socle S = 0. Then,
in contrast to Theorem 2.10, R/P is a field for every primitive ideal P but
Z5(M) = Z5(M) =0 and [)/(S*) = M for every R-module M. Like Har-
adal P! we do not know if Z5 = Z; for any (commutative) ring R. Note
that if R is a right hereditary ring then Z5(M) = Z{(M)(= Z;(M)) for every
R-module M, by Theorem 1.5.

3 MODULES M WITH Z*(M) =0

In this section we shall study rings R with the property Z*(Rg) =0
and more generally modules M such that Z*(M) = 0. In Corollary 1.2(iii)
we observed that a module M has the property Z*(M) = 0 if and only if
Rad E(M) = 0. Note that every right self-injective von Neumann regular
ring satisfies Z*(Rg) = 0 (see Corollary 1.2). In"?, Ozcan proved that a ring
R is a right V-ring (i.e., every simple right R-module is injective) if and only
if Z*(M) = 0 for every (simple) right R-module M. In particular if R is a
right V-ring then Z*(Rg) = 0. However, the converse is false. For, by
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Corollary 2.2, any commutative ring R with socle S such that 1z(S) =0
satisfies Z*(R) = 0, and not all such rings are V-rings. We have the fol-
lowing specific example.

Example 3.1. There exists a commutative ring R with socle S such that
1z(S) = 0 but R is not a V-ring.

Proof. Let K be a commutative domain which is not a field and let F be the
field of fractions of K. Let T be the direct product of a countable number of
copies of F. Then T is the ring consisting of all sequences a;,ay,as, ... of
elements a;(i > 1) of F. Let R be the subring of T consisting of all sequences
ay,az,as, ... in T such that there exist b in S and a positive integer n with
a; = b for all i > n. Then R is a commutative ring whose socle K consists of
all sequences ay, ay,as, . .. in R such that there exists a positive integer k with
a; = 0 for all i > k. Clearly 1g(S) = 0 and hence Z*(R) = 0 by Corollary 2.2.
Let ¢ be any non-zero non-unit in K and let » be the sequence ¢, ¢, ¢, ... in R.
Clearly r ¢ Rr?. Thus the ring R is not von Neumann regular. Byl!'>: <oroliary
19331 R is not a V-ring. O

Next we prove a lemma which will be useful in the sequel.

Lemma 3.2. Let P be a prime ideal of a ring R such that the ring R/ P satisfies
dec for right annihilators and ly(P) # 0 for some R-module M satisfying
Z*(M) = 0. Then P is a right primitive ideal of R.

Proof. Let E=E(M). By Corollary 1.2(%ii)), RadE=0. Let
X ={ee E:eP=0}. Byl® Proposiion 227 "y is an injective (R/P)-module
and X #0 because 0 # Iy (P) C X. Note that, as R-modules, Rad X C
Rad E = 0 byl Proposition 9:14] "Hence X is an injective (R/P)-module which
contains a maximal submodule. By Proposition 2.6, P is a right primitive
ideal. ]

The next two results are presumably known but we do not have
references.

Lemma 3.3. Every right bounded semiprime ring is right nonsingular.

Proof. Let 4 be any essential right ideal of a right bounded semiprime ring
R and let r € 1g(A4). There exists an ideal 7 of R such that 7 is an essential
right ideal of R and I C A. If r # 0 then rR N1+ 0. However, (rRN1)* C
(rRYI=rICrA =0, so that rRNI=0, a contradiction. Thus r=0. It
follows that R is right nonsingular. O

Lemma 3.4. Let R be a right bounded ring and let P be a prime ideal of R such
that P is not an essential right ideal of R. Then R/P is a right bounded ring.
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Proof. Let A be a right ideal of R such that P C 4 and 4/P is an essential
right ideal of the ring R/P. It can easily be checked that A is an essential
right ideal of R. By hypothesis, there exists an ideal B of R such that B C 4
and B is an essential right ideal of R. By hypothesis, B € P and it is clear
that (B+ P)/P is an ideal of R/P, (B+ P)/P C A/P and (B+ P)/P is an
essential right ideal of R/P.

The next result generalizes!' Theorm 1-24] Note that if R is a semiprime
ring then Soc(Rz) = Soc(zR) (see, for example,!'* ') and in this case we
shall call Soc(Rg) the socle of R.

Lemma 3.5. Let R be a prime ring which satisfies acc or dcc for right anni-
hilators such that R has non-zero socle. Then R is a simple Artinian ring.

Proof. 1If R satisfies dcc for right annihilators then R satisfies acc for left
annihilators (seel'* P-?). Thus it is sufficient to prove the result in case R
satisfies acc for right annihilators. Let S denote the socle of R. For any
0#ae R 0%#aSCaRnN S and hence S is an essential right ideal of R. Let
U, be a minimal right ideal of R. It is well known that, because R is a prime
ring, there exists an idempotent element e; of R such that U; = ¢; R. Hence
R=U, @V, where V| = (1 — e;)R. Suppose that V; # 0. Then SN V; #0.
Let U, be a minimal right ideal of R such that U, C V. By the above
remarks, R = U, ® V; for some right ideal V, and hence V, = U, ® (V1 N
V)and R=U, @ U, & (V1 N V7).

If VinV, #0then SNV, NV, # 0 and by the above argument there
exists a minimal right ideal U; of R such that U; C VNV, and
R=U;®V; for some right ideal V3. In this case, R=U; ® U,®
Us ® (ViNnVyNnV3). This process produces a strictly ascending chain
UcU U, CcU @U,d Us C ... of right annihilators. Since R satisfies
acc for right annihilators it follows that this process must stop, so that
Vin---nV, =0 for some positive integer n. Hence R=U, & --- & U,,. It
follows that the ring R is simple Artinian. O

Note that the proof of Lemma 3.5 shows that if R is a prime ring
which does not contain an infinite set of orthogonal idempotents such that R
has non-zero socle then R is simple Artinian (see!'> Mm™™ma 2228 "However
Lemma 3.5 is in the form we shall need. The next result is an immediate
consequence of Corollary 1.2 and Lemma 1.3.

Lemma 3.6. Let a module M = @;c;M; be a direct sum of simple injective
submodules M (i € I). Then Z*(M) = 0.

This brings us to the main result of this section. It shows that if Ris a
right bounded ring then often the only way for a faithful R-module M to
satisfy Z*(M) = 0 is for M to be semisimple injective.
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Theorem 3.7. The following statements are equivalent for a ring R.

(i) R is a semiprime Artinian ring.
(il) R is a right bounded ring which satisfies dcc for right annihilators
such that Z*(M) = 0 for every right R-module M.
(ili) R is a right bounded ring which satisfies dcc for right annihilators
such that Z*(Rg) = 0.
(iv) R is a right bounded ring which satisfies dcc for right annihilators
such that Z*(M) = 0 for some faithful right R-module M.

Proof. (i) = (ii)) By Lemma 3.6.

(i) = (iii) = (iv) Clear.

(iv) = (i) Let J be the Jacobson radical of R. Byl €orollary 15181 54
Lemma 1.1, we have MJ C Rad M C Z*(M), so that MJ =0 and hence
J = 0. In particular, the ring R is semiprime. By!'# temma 116] “there exist a
positive integer n and prime ideals P;(1 <i<n) of R such that Py,..., P,
are the minimal prime ideals of R. Clearly to complete the proof it is suf-
ficient to prove that R/P; is an Artinian ring for each 1 < i< n.

B Choose 1 <i<n.Set P= P; and A= H#,. P;. Clearly P =rg(A). Let
R denote the prime ring R/P. Note that R is right bounded by Lemma 3.4.
For any non-empty subset X of R, let X = {x + P: x € X} and note that
rz(X) =rgr(A4X)/P. It follows that R satisfies dcc for right annihilators. By
Lemma 3.2 R is a right primitive ring. Since R is right bounded it follows
that Soc(Ry) # 0. Finally R is Artinian by Lemma 3.5. O

Note that in Theorem 3.7 the condition “R satisfies dcc for right
annihilators” can be replaced throughout by the condition “R has finite
right uniform dimension.” This is because of the following result.

Corollary 3.8. 4 ring R is semiprime Artinian if and only if R is right bounded,
R has finite right uniform dimension and Z*(M) = 0 for some faithful right
R-module M.

Proof. The necessity is clear. Conversely, suppose that R is right bounded
with finite right uniform dimension such that Z*(M) = 0 for some faithful
right R-module M. As in the proof of Theorem 3.7 (iv) = (i), R is a semi-
prime ring. By Lemma 3.3 R is right nonsingular and by!!# Lemma 1141 p
satisfies dcc for right annihilators. Now the ring R is semiprime Artinian by
Theorem 3.7. ]

For modules we have the following result.

Corollary 3.9. Let R be a ring and let M be a right R-module with injective
hull E = E(M) such that the ring R/xg(E) is right bounded and satisfies dcc
for right annihilators. Then the following statements are equivalent.
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(i) M is semisimple injective.
(ii) M is injective and Rad M = 0.
(ii) Z*(M) =0

Proof. (1) = (ii) Clear.

(ii)) = (iii) By Corollary 1.2.

(ili) = (i) By Corollary 1.2 RadE =0, ie.,, Z*(E) =0. Now the
ring R/rgr(E) is semiprime Artinian by Theorem 3.7. It follows that E is
a semisimple R-module so that M = FE and hence M is semisimple
injective. O

Recall that a module M is X—injective if every direct sum of copies of
M is injective. For a given ring R, an R-module M is Z—injective if and only
if M is injective and R satisfies acc on right ideals of the form rg(X), where X
is a non-empty subset of M (seel!™ Proposition 20.3A1 "ywe now show that for a
large class of rings R, including all right Noetherian P/-rings, an R-module
M satisfies Z*(M) = 0 if and only if M is semisimple injective.

Theorem 3.10. Let R be a ring such that R/S is a right bounded ring which
satisfies dcc for right annihilators, for each semiprime ideal S of R. Then the
following statements are equivalent for a right R-module M.

(i) M is semisimple X—injective.
(il) M is semisimple injective.
(i) Z*(M) = 0.

Proof. (1) = (ii) Clear.

(ii)) = (ii1) By Lemma 3.6.

(ili) = (i) Let M’ be any R-module such that M’ is a direct sum of
copies of M. By Lemma 1.3, Z*(M’') =0. Let E=EM'). If J is the
Jacobson radical of R then EJ C Rad E = 0, by!" Corollary 15181 3 q Cor-
ollary 1.2. Tt follows that the ring R/rg(E) is semiprime and hence R/rg(E)
is right bounded and satisfies dcc for right annihilators. By Corollary 3.9, F
is semisimple. Hence M’ = E and M’ is semisimple and injective. It follows
that M is a semisimple X-injective module.
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