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Abstract. In this article, we call a ring R right almost I–semiregular if, for any a ∈ R,

there exists a left R–module decomposition lRrR(a) = P ⊕ Q such that P ⊆ Ra and

Q ∩ Ra ⊆ I, where I is an ideal of R, l and r are the left and right annihilators,

respectively. This definition generalizes the right almost principally injective rings

defined by Page and Zhou [10], I–semiregular rings defined by Nicholson and Yousif

[7], and right generalized semiregular rings defined by Xiao and Tong [11]. We prove

that R is I–semiregular if and only if, for any a ∈ R, there exists a decomposition

lRrR(a) = P ⊕ Q, where P = Re ⊆ Ra for some e2 = e ∈ R and Q ∩ Ra ⊆ I.

Among the results for right almost I–semiregular rings, we are able to show that if I

is the left socle Soc(RR) or the right singular ideal Z(RR) or the ideal Z(RR)∩δ(RR),

where δ(RR) is the intersection of essential maximal left ideals of R, then R being

right almost I–semiregular implies that R is right almost J–semiregular, where J is

the Jacobson radical of R. We show that δl(eRe) = eδ(RR)e for any idempotent e

of R satisfying ReR = R and, for such an idempotent, R being right almost δ(RR)–

semiregular implies that eRe is right almost δl(eRe)–semiregular.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity and all
modules are unitary right R–modules.
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Let M be an R–module and F a submodule of MR. Following Alkan and
Özcan [1], M is called F–semiregular if, for any m ∈ M , there exists a decom-
position M = P ⊕ Q such that P is projective, P ⊆ mR and Q ∩mR ⊆ F . If
F is a fully–invariant submodule of MR, then M is F–semiregular if and only
if, for any m ∈ M , there exists a decomposition mR = P ⊕ S such that P is a
projective (direct) summand of M and S ⊆ F . A ring R is called I–semiregular
for an ideal I of R if RR is an I–semiregular module. Such rings are studied in
[7] and [9]. Note that being I–semiregular for an ideal I of a ring R is left-right
symmetric by [9, Lemma 27 and Theorem 28].

A module M is said to be principally injective (or P–injective for short) if
lMrR(a) = Ma for all a ∈ R, where l and r are the left and right annihilators,
respectively. As a generalization of P–injective modules, Page and Zhou [10]
call a module M almost principally injective (or AP–injective for short) if, for
any a ∈ R, there exists an S–submodule Xa of M such that lMrR(a) = Ma⊕Xa

as S–modules, where S = EndR(M). A ring R is called right AP–injective if
RR is AP–injective.

In [13], M is called almost principally quasi–injective (or APQ–injective for
short) if, for any m ∈ M , there exists an S–submodule Xm of M such that
lMrR(m) = Sm⊕Xm, where S = EndR(M). Then RR is APQ–injective if and
only if RR is AP–injective.

In this article, we call a right R–module M almost F–semiregular if, for any
m ∈ M , there exists an S–module decomposition lMrR(m) = P ⊕Q such that
P ⊆ Sm and Q∩Sm ⊆ F , where S = EndR(M) and F is a submodule of SM .
A ring R is called right almost I–semiregular for an ideal I of R if RR is almost
I–semiregular. If SM is F–semiregular, then MR is almost F–semiregular. An
APQ–injective module MR is almost F–semiregular for any S–submodule F of
M . Moreover,

MR is APQ–injective ⇔ MR is almost 0–semiregular.

Right almost J-semiregular rings are examined in [11] and named as right
generalized semiregular rings.

In Section 2, firstly we give a new characterization of F–semiregular modules
by modifying the definition of almost F–semiregular modules. Next, we give
conditions under which a right almost I–semiregular ring is I–semiregular. Some
of the results in [11] are extended. We also prove that if R is a right almost
I–semiregular ring, then eRe is a right almost eIe–semiregular ring for a right
semicentral idempotent e of R (i.e., eR = eRe) or an idempotent e of R satisfying
ReR = R. If the matrix ring Mn(R) is right almost Mn(I)–semiregular for an
ideal I of R, then R is right almost I–semiregular.

In [1, Corollary 4.6], it is shown that if MR is projective and Soc(M)–
semiregular, then M is semiregular (i.e., for any m ∈ M , there exists a decom-
position M = A ⊕ B such that A is projective, A ⊆ mR and B ∩mR ¿ M).
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In the last section, we prove that if MR is almost Soc(SM)–semiregular, then
MR is almost semiregular, i.e., for any m ∈ M , there exists an S–module de-
composition lMrR(m) = P ⊕ Q such that P ⊆ Sm and Q ∩ Sm ¿ SM . We
also consider right almost I–semiregular rings for some ideals such as the socle,
the singular ideal and the ideal δ. If R is right almost Zr–semiregular, then RR

satisfies (C2) and is almost semiregular.
The following implications hold for a ring R.
Sl–semiregular ⇒ right almost Sl–semiregular 3.3⇒ right almost semiregular

⇒ right almost δr–semiregular and right almost δl-semiregular.
Zr–semiregular⇒ right almost Zr–semiregular 3.17⇒ right almost semiregular

⇒ right almost δr–semiregular and right almost δl-semiregular.
Counterexamples to each of the inverse implications are given.
It is well known that J(eRe) = eJe for any idempotent e ∈ R. But

δr(eRe) 6= eδr(R)e even for a right semicentral idempotent e (see Example 3.13).
However if e ∈ R is an idempotent with ReR = R, then δr(eRe) = eδr(R)e.
Consequently, if R is right almost δ(RR)–semiregular and ReR = R, then eRe

is right almost δl(eRe)–semiregular.

The symbols Rad(M), Soc(M) and Z(M) will stand for the Jacobson rad-
ical, the socle and the singular submodule of a module M , respectively. In the
ring case we use the abbreviations: Sr = Soc(RR), Sl = Soc(RR), Zr = Z(RR)
and Zl = Z(RR). We write J = J(R) for the Jacobson radical of R. For a small
(resp. an essential) submodule K of M , we write K ¿ M (resp. K ≤e M). For
any non-empty subset X of R, lM (X) (resp. rM (X)) is used for the left (resp.
right) annihilator of X in M . For any subset N of M , lR(N) (resp. rR(N)) will
denote the left (resp. right) annihilator of N in R.

Following [12], a submodule N of a module M is called δ–small in M , denoted
by N ¿δ M , if N + K 6= M for any submodule K of M with M/K singular.
Let

δ(M) = ∩{N ⊆ M : M/N is singular simple}.
Then δ(M) is the sum of all δ–small submodules of M and is a fully invariant
submodule of M [12, Lemma 1.5]. Clearly Rad(M) ≤ δ(M). If M is a projective
module, then Soc(M) ⊆ δ(M) [12, Lemma 1.9]. We use δr for δ(RR) and δl for
δ(RR). Note that δr need not be equal to δl. For example, if R is the ring of
2× 2 upper triangular matrices over a field F , then δr = Sr and δl = Sl.

2 Almost F–semiregular Modules

Definition 2.1. Let M be a right R–module, S = EndR(M) and F a submod-
ule of SM . The module MR is called almost F–semiregular if, for any m ∈ M ,
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there exists an S–module decomposition lMrR(m) = P ⊕Q such that P ⊆ Sm

and Q ∩ Sm ⊆ F . A ring R is called right almost I–semiregular for an ideal I

of R if RR is almost I–semiregular.

If MR is APQ–injective, then MR is almost F–semiregular for any sub-
module F of SM . Moreover, MR is almost 0–semiregular if and only if MR is
APQ–injective.

Proposition 2.2. Let M be a right R–module, S = EndR(M) and F any
submodule of SM . If SM is F–semiregular, then MR is almost F–semiregular.

Proof. Let m ∈ M . Then there exists a decomposition SM = P ⊕Q such that
P ⊆ Sm and Q∩Sm ⊆ F . Since lMrR(m) = lMrR(m)∩M , by the modular law,
we have lMrR(m) = P⊕(lMrR(m)∩Q) and (lMrR(m)∩Q)∩Sm = Q∩Sm ⊆ F .
Hence, MR is almost F–semiregular. 2

In particular, if SM is semiregular, then MR is almost Rad(SM)–semiregular.
If R is an I–semiregular ring for an ideal I, then it is right and left almost I–
semiregular, because the notion of I–semiregular rings is left–right symmetric.

When we take the summand P of lMrR(m) as a summand of M in Defini-
tion 2.1, we have the following result.

Theorem 2.3 Let M be a right R–module and S = EndR(M). If SM is
projective and SF is a fully–invariant submodule of SM , then the following
are equivalent:

(1) SM is F–semiregular.
(2) For any m ∈ M , there exists an S–module decomposition lMrR(m) =

P ⊕Q, where P ⊆ Sm, P is a summand of M and Q ∩ Sm ⊆ F .

Proof. (1) ⇒ (2) Follows from the proof of Proposition 2.2.
(2) ⇒ (1) Let m ∈ M and lMrR(m) = P ⊕ Q, where P ⊆ Sm, P is a

summand of M and Q ∩ Sm ⊆ F . Then Sm = P ⊕ (Q ∩ Sm), where P is a
projective summand of M and Q ∩ Sm ⊆ F . Hence, SM is F–semiregular. 2

By Theorem 2.3, we obtain the following characterization of I–semiregular
rings for an ideal I.

Corollary 2.4 Let I be an ideal of a ring R. The following are equivalent:
(1) R is I–semiregular.
(2) For any a ∈ R, there exists a decomposition lRrR(a) = P ⊕ Q, where

P = Re ⊆ Ra for some e2 = e ∈ R and Q ∩Ra ⊆ I.
(3) For any a ∈ R, there exists a decomposition rRlR(a) = P ⊕ Q, where

P = eR ⊆ aR for some e2 = e ∈ R and Q ∩ aR ⊆ I.
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Now we consider the module-theoretic version of right generalized semireg-
ular rings defined by Xiao and Tong [11].

Definition 2.5 Let M be a right R–module and S = EndR(M). M is called
almost semiregular if, for any m ∈ M , there exists an S–module decomposition
lMrR(m) = P ⊕Q such that P ⊆ Sm and Q ∩ Sm ¿ M . A ring R is called a
right almost semiregular if RR is almost semiregular.

Clearly, R is right almost J–semiregular if and only if R is right almost
semiregular. Semiregular or right AP–injective rings are right almost semireg-
ular by [11, Proposition 1.2]. Example 1.3 in [11] shows that right almost
semiregular rings need not be right AP–injective or semiregular.

Let M be a right R–module and S = EndR(M). If SM is semiregular, then
MR is almost semiregular by a proof similar to that of Proposition 2.2. More-
over, if MR is almost semiregular, then it is almost Rad(SM)–semiregular. The
converse is true if Rad(SM) ¿ SM .

The following result generalizes [11, Lemma 1.4].

Proposition 2.6 Let I be an ideal of a ring R. If R is right almost I–semiregular
and there exists e2 = e ∈ R such that rR(a) = rR(e) for any a ∈ R, then R is
I–semiregular.

Proof. Let a ∈ R. Then there exists a decomposition lRrR(a) = P⊕Q such that
P ⊆ Ra and Q∩Ra ⊆ I as left ideals. Since rR(a) = rR(e) for some e2 = e ∈ R,
Re = P ⊕ Q and a = ae. Let e = p + q, where p = ra ∈ P and q ∈ Q. Then
a = ae = ara + aq and ra = rara + raq. Since ra − rara = raq ∈ P ∩ Q = 0,
ra is an idempotent. Also, we have a(1 − ra) = a − ara = aq ∈ Q ∩ Ra ⊆ I.
Hence, R is I–semiregular. 2

Corollary 2.7 If lRrR(a) is a summand of R for any a ∈ R and R is right
almost I–semiregular for an ideal I, then R is I–semiregular.

Proof. Let a ∈ R. By hypothesis lRrR(a) = Re for some idempotent e. Then
rR(a) = rR(e) and the claim holds by Proposition 2.6. 2

A ring R is called a right PP–ring if every principal right ideal of R is
projective ([2]), or equivalently, for any a ∈ R, rR(a) = eR for some idempotent
e ∈ R. Hence, we have the following result.

Corollary 2.8 Let R be a right PP–ring. If R is a right almost I–semiregular
ring for an ideal I, then R is I–semiregular.
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Nicholson and Zhou [9, Proposition 41] prove that if R is I–semiregular for
an ideal I, then eRe is eIe–semiregular for any idempotent e of R. We consider
this property for almost I–semiregular rings.

An idempotent e ∈ R is called right semicentral if eR = eRe [3].

Theorem 2.9 If R is a right almost I–semiregular ring for an ideal I and e is
a right semicentral idempotent of R, then eRe is a right almost eIe–semiregular
ring.

Proof. Let a ∈ eRe. Then there is a decomposition lRrR(a) = P ⊕ Q such
that P ⊆ Ra and Q ∩ Ra ⊆ I. Since e is right semicentral, by the proof of
[11, Proposition 1.11], leRereRe(a) = eP ⊕ eQ. Then eP ⊆ eRa = eRea and
eQ ∩ eRea ⊆ e(eQ ∩ eRea)e. Hence, eQ ∩ eRea ⊆ Q ∩ Ra ⊆ I implies that
eQ ∩ eRea ⊆ eIe. 2

Theorem 2.10 Let e be an idempotent of R such that ReR = R. If R is a
right almost I–semiregular ring for an ideal I, then eRe is a right almost eIe–
semiregular ring.

Proof. Follows from the proof of [11, Theorem 1.15]. 2

Proposition 2.11 Let S be a right almost I–semiregular ring for an ideal I

of S. If ϕ : S → R is a ring isomorphism, then R is a right almost ϕ(I)–
semiregular ring.

Proof. Let a ∈ R. Then there is a decomposition lSrS(ϕ−1(a)) = P ⊕ Q such
that P ⊆ Sϕ−1(a) and Q ∩ Sϕ−1(a) ⊆ I. If x ∈ lRrR(a), then ϕ−1(x) ∈
lSrS(ϕ−1(a)). Then we obtain a decomposition lRrR(a) = ϕ(P )⊕ ϕ(Q), where
ϕ(P ) ⊆ Ra and ϕ(Q)∩Ra ⊆ ϕ(I). Hence, R is a right almost ϕ(I)–semiregular
ring. 2

The following result generalizes [11, Corollary 1.16].

Corollary 2.12 Let I be an ideal of a ring R and let n ≥ 1. If Mn(R) is right
almost Mn(I)–semiregular, then R is right almost I–semiregular.

Proof. Let S = Mn(R). Then Se11S = S and R ∼= e11Se11, where e11 is the n×
n matrix whose (1, 1)-entry is 1, others are 0. By Theorem 2.10, e11Se11 is right
almost e11Mn(I)e11–semiregular. Let ϕ : e11Se11 → R be the isomorphism.
Since ϕ(e11Mn(I)e11) = I, R is right almost I–semiregular by Proposition 2.11.
2
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3 Special cases: Soc, δ, Z

In this section, we consider a few fully invariant submodules. We begin with
some examples.

Recall that if R is a ring and V is an R–R bimodule, the trivial extension
R ∝ V of R by V is the ring with additive group R ⊕ V and multiplication
(a, v)(b, w) = (ab, aw + vb).

Example 3.1 There exists a right AP -injective ring R that is not semiregular.
Hence, there exists a right almost I–semiregular ring R that is not I–semiregular
for ideals I = J or Z(R) or Soc(R).

Proof. Let R = Z ∝ (Q/Z) be the trivial extension. So R is a commutative
AP -injective ring that is not semiregular by [7, Examples (8), p. 2435]. R

is almost I–semiregular for any ideal I, because R is AP -injective. But R is
neither Z(R)–semiregular nor Soc(R)–semiregular by [7, Theorem 2.4] and [1,
Corollary 4.6]. 2

Example 3.2 There exists a right almost Soc(R)–semiregular ring R that is not
Soc(R)–semiregular.

Proof. Let R = Z8. Since R is a self–injective ring, it is almost I–semiregular
for any ideal I of R. But since 2R = J 6⊆ Soc(R) = 4R, R is not Soc(R)–
semiregular (see [1, Example 4.21]). 2

Example 3.1 also shows that the class of right almost semiregular rings is
not closed under homomorphic images, because R/J ∼= Z is not right almost
semiregular by [11, Example 4.8].

In [1], it is proved that if MR is a projective Soc(MR)–semiregular module,
then MR is semiregular.

Proposition 3.3 Let M be a right R–module and S = EndR(M). If MR is
almost Soc(SM)–semiregular, then MR is almost semiregular.

Proof. Let m ∈ M . Then there exists a decomposition lMrR(m) = A⊕B such
that A ⊆ Sm and B∩Sm ⊆ Soc(SM). By the modular law, Sm = A⊕(B∩Sm).
Then B ∩ Sm is a finite direct sum of simple S–submodules. If every simple
submodule of B ∩ Sm is in Rad(SM), then B ∩ Sm ¿ M and hence MR is
almost semiregular. Assume that there exists a simple submodule S1 of B∩Sm

such that S1 6⊆ Rad(SM). Then S1 is a summand of M and hence a summand
of B. Let L1 be such that B = S1 ⊕ L1. Then lMrR(m) = A⊕ S1 ⊕ L1.

Similarly, L1∩Sm is a finite direct sum of simple submodules. If every simple
submodule of L1 ∩Sm is in Rad(SM), then MR is almost semiregular. Assume
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that there exists a simple submodule S2 of L1 ∩ Sm such that S2 6⊆ Rad(SM).
Then S2 is a summand of M and so there exists a submodule L2 such that
L1 = S2 ⊕ L2. It follows that lMrR(m) = A ⊕ S1 ⊕ S2 ⊕ L2. This process
produces a strictly descending chain B ∩ Sm ⊃ L1 ∩ Sm ⊃ L2 ∩ Sm . . .. Since
B ∩Sm is semisimple and finitely generated, it is Artinian. Hence, this process
must stop so that Ln ∩ Sm ⊆ Rad(SM) for some positive integer n. Hence,
lMrR(m) = (A ⊕ S1 ⊕ . . . ⊕ Sn) ⊕ Ln, where A ⊕ S1 ⊕ . . . ⊕ Sn ≤ Sm and
Ln ∩ Sm ¿ M . Thus, MR is almost semiregular. 2

Corollary 3.4 If R is right almost Sl–semiregular, then R is right almost
semiregular.

The next example shows that the converse of Corollary 3.4 is not true in
general.

Example 3.5 There exists a right almost semiregular ring that is not right almost
Sl (Sr)–semiregular.

Proof. (Camillo Example) (see [8, p. 39 and p. 114]) Let R = Z2[x1, x2, . . .],
where the xi are commuting indeterminants satisfying the relations x3

i = 0 for
all i, xixj = 0 for all i 6= j and x2

i = x2
j for all i and j. Let m = x2

1 = x2
2

= . . .. Then R is a commutative local uniform (i.e., every nonzero right ideal
is essential) ring. Then R is semiregular with J = SpanZ2

{m,x1, x2, . . .} and
Sl = Sr = J2 = Z2m. We claim that R is not (right) almost Sl–semiregular. Let
a = x1 + x2. If R is almost Sl–semiregular, then there exists a decomposition
lRrR(a) = P ⊕ Q such that P ⊆ Ra and Q ∩ Ra ⊆ Sl. Since lRrR(a) is
uniform, either P = 0 or Q = 0. If P = 0, then we have that lRrR(a) ∩ Ra =
Ra ⊆ Sl, a contradiction. If Q = 0, then lRrR(a) = Ra. But since rR(a) =
SpanZ2

{m, x3, x4, . . .}, x1 ∈ lRrR(a) and x1 6∈ Ra. This gives a contradiction.
Hence, R is not almost Sl–semiregular. 2

If R is right almost Sl–semiregular, then R need not be semiregular, because
right AP–injective rings need not be semiregular (see Example 3.1).

We know from [9, Corollary 30] that R is Sl–semiregular if and only if R/Sl

is (von Neumann) regular. If R is right almost Sl–semiregular, then (Ra+Sl)/Sl

is a summand of (lRrR(a) + Sl)/Sl for any a ∈ R by [4, Lemma 18.4].
Note also that if R is Sl–semiregular, then R is semiregular, J ⊆ Sl and

Zr ⊆ Sl by [7, Theorem 1.2], [1, Theorem 2.3] and by the proof of [1, Theorem
4.5]. On the other hand, J or Zr need not be contained in Sl if R is right almost
Sl–semiregular (see Example 3.2).

According to [11], we know that if R is right almost semiregular, then Zr ⊆ J .
Hence, if R is right almost Sl–semiregular, then Zr ⊆ J .
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Because of the fact that Sl ⊆ δl, R being right almost Sl–semiregular implies
that R is right almost δl–semiregular. Also if R is δl–semiregular, then Zr ⊆ δl

by [7, Theorem 1.2]. We have the following result for right almost δl–semiregular
rings.

Proposition 3.6 If R is right almost δl–semiregular and R/Sl is a projective
right R–module, then Zr ⊆ δl.

Proof. Let a ∈ Zr. If a 6∈ δl, then there exists an essential maximal left ideal
N of R such that a 6∈ N . Then R = Ra + N . Write 1 = ya + n, where
y ∈ R and n ∈ N . Since Zr is an ideal and R 6= Zr, we have n 6= 0. Since
rR(ya) ∩ rR(n) = 0 and ya ∈ Zr, we obtain that rR(n) = 0. By hypothesis,
R = lRrR(n) = P ⊕Q, where P = Re ⊆ Rn, Q ∩Rn ⊆ δl and e2 = e ∈ R.

Let R = R/Sl. If R = 0, then R is semisimple and Zr = 0 ⊆ δl = R.
Assume that R 6= 0. If e = 1, then Rn = N = R. Since Sl ⊆ N , N = R, which
is a contradiction. So e 6= 1. Since rR(ya) ≤e R, R/rR(ya) ∼= R/(rR(ya) + Sl)
is a singular right R–module. This implies that rR(ya) ≤e R, because R is a
projective right R–module. Since rR(ya) ⊆ rR(ya), we have that rR(ya) ≤e R.

Now (1 − e)R ∩ rR(ya) 6= 0. Let 0 6= (1 − e)r ∈ (1 − e)R ∩ rR(ya). Let
n = se + t, where s ∈ R and t ∈ Q. Then t = n − se ∈ Q ∩ Rn ⊆ δl and
t ∈ δl/Sl = J(R/Sl) by [12, Corollary 1.7]. So 1− t is unit in R. Also, we have
n(1−e)r = (1−ya)(1−e)r = (1−e)r and n(1−e)r = (se+t)(1−e)r = t(1−e)r.
Then (1− t)(1− e)r = 0. Hence, (1− e)r = 0, a contradiction. 2

Proposition 3.7 If R is right almost δl–semiregular, R/Sl is a projective right
R–module and Sl ⊆ Zl, then Zr ⊆ J .

Proof. By a proof similar to that of Proposition 3.6. 2

Example 3.8 There exists a right almost δl (or δr)-semiregular ring that is not
right almost semiregular.

Proof. [12, Example 4.3] Let F be a field and I =

[
F F

0 F

]
, and

R = {(x1, x2, . . . , xn, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ I}.
Then R is δr (δl)-semiregular but not semiregular by [12]. Since every nonzero
one–sided ideal contains a nonzero idempotent, Zr = Zl = J = 0. If R was
right almost semiregular, then R would be regular by [11, Lemma 3.1], which is
a contradiction. Hence, R is not right almost semiregular. 2
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It is well known that J(eRe) = eJe for any idempotent e of R. We consider
this property for δ which will be used in the forthcoming corollary. Recall by
[12, Theorem 1.6] that

δr = {x ∈ R : ∀y ∈ R, ∃a semisimple right idealY ofR 3 RR = (1− xy)R⊕ Y }
=

⋂
{ideals P of R : R/P has a faithful singular simple module}

Theorem 3.9 Let e be an idempotent of R such that ReR = R. Then δl(eRe) =
eδle.

Proof. We know that if e is an idempotent such that ReR = R, then the
category of left R–modules, R–Mod, and the category of left eRe–modules,
eRe–Mod, are Morita equivalent (see [6]) under the functors given by

F : R-Mod −→ eRe-Mod, G : eRe-Mod −→ R-Mod

M 7−→ eM T 7−→ Re⊗eRe T.

By [12], δl = R if and only if R is semisimple. Therefore if δl = R, then R

is semisimple and so is eRe. This gives that δl(eRe) = eRe = eδle.
Now assume that δl 6= R. Let P be an ideal of R such that R/P has a faithful

singular simple module N . Denote R = R/P . Since ReR = R, the categories
R-Mod and eRe-Mod are Morita equivalent. So eN is a faithful eRe–module
by [6, 18.47 and 18.30], a singular eRe–module by [5, p. 34] and a simple eRe–
module. Since eRe ∼= eRe/ePe, we have that δl(eRe) ⊆ ePe ⊆ P . This holds
for any ideal P such that R/P has a faithful singular simple module. Thus,
δl(eRe) ⊆ eδle.

For the reverse inclusion, let a ∈ δl. Then Reae ¿δ R. Now we claim that
eRe(eae) ¿δ eRe. Let K be a left ideal of eRe such that eRe = eRe(eae) + K.
Write e = ereae+k, where r ∈ R and k ∈ K. This implies that 1 = e+(1−e) =
ereae+ k +(1− e) ∈ Reae+RK +R(1− e) and so R = Reae+RK +R(1− e).
Since Reae ¿δ R, there exists a semisimple projective left ideal Y of R such
that Y ⊆ Reae and R = Y ⊕ [RK + R(1 − e)] by [12, Lemma 1.2]. Hence,
we obtain that eRe = eY e + (eRe)K = eY + K. Since Y ∩ RK = 0, we have
that eY ∩ K = 0. On the other hand, since ReR = R, eY is a semisimple
projective left eRe–module. So eRe = eY ⊕ K, eY ⊆ eRe(eae) and eY is a
semisimple projective eRe–module. By [12, Lemma 1.2], eRe(eae) ¿δ eRe.
Thus, eδle ⊆ δl(eRe). 2

Corollary 3.10 Let e be an idempotent of R such that ReR = R. If R is right
almost δl–semiregular, then eRe is right almost δl(eRe)–semiregular.

Proof. Follows from Theorems 3.9 and 2.10. 2

Now we consider the ring eRe, where e is a right semicentral idempotent.
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Theorem 3.11 If e is a right semicentral idempotent of R, then eδle ⊆ δl(eRe)
and δr(eRe) ⊆ eδre.

Proof. Let a ∈ δl. Since δl is an ideal, eae ∈ δl. By [12, Theorem 1.6],
there exists a semisimple left ideal Y of R such that RR = R(1 − eae) ⊕ Y .
Let 1 = x(1 − eae) + y, where x ∈ R and y ∈ Y . Then e = ex(1 − eae)e +
eye = exe(e − eae) + eye and so eRe = eRe(e − eae) + eY e. Since e is right
semicentral, this sum is direct. Now we claim that eY e is semisimple. Let
Y = ⊕n

i=1Si, where Si is a simple left R-module, for i = 1, 2, . . . , n. Since e

is right semicentral, eY e = ⊕n
i=1eSie. Let S1 = Rs for some s ∈ R. Then

eS1e = eRse = eRe(ese) ∼= eRe/leRe(ese). Let K be a left ideal of eRe such
that leRe(ese) ⊂ K. Then there exists k ∈ K such that k 6∈ leRe(ese). Since
leRe(ese) = leRe(es) = lR(es) ∩ eRe, k 6∈ lR(es). Then kes 6= 0. But since
lR(s) is maximal in R, we have that lR(s) + Rke = R. Let 1 = x + yke, where
x ∈ lR(s) and y ∈ R. Then e = ex + eyek. Since xs = 0, we have exese = 0.
Then ex ∈ leRe(ese) ⊂ K, so ex ∈ K. It follows that e ∈ K. Hence, we show
that leRe(ese) is a maximal left ideal of eRe. So eS1e is simple. This proves
that eY e is semisimple. Now eRe = eRe(e− eae)⊕ eY e with eY e semisimple.
Since a is any element in δl, we have that eδle ⊆ δl(eRe).

For the other inclusion, let P be an ideal of R and V be a faithful singu-
lar simple right R/P–module. Then V e is an eRe–module. If V e = 0, then
δr(eRe) ⊆ eRe ⊆ P .

Assume that V e 6= 0. Since V is a simple R–module, V e is a simple eRe–
module. We claim that V e is a singular eRe–module. Let ve be the generator
of V e. To show that reRe(ve) = rR(v) ∩ eRe is an essential right ideal of
eRe, let 0 6= exe ∈ eRe. Since ex 6= 0 and rR(v) is essential in R, there
exists t ∈ R such that 0 6= ext ∈ rR(v). Then 0 6= ext = exte ∈ reRe(ve)
(e is right semicentral). Hence, V e is a singular simple eRe–module. Now,
V δr(eRe) = V eδr(eRe) = 0 by the definition of δ. Since V is a faithful R/P–
module, we have that δr(eRe) ⊆ P . Therefore δr(eRe) ⊆ P for each ideal P of
R such that R/P has a faithful singular simple module. So δr(eRe) ⊆ δr and
hence δr(eRe) ⊆ eδre. 2

Corollary 3.12 Let e be a right semicentral idempotent of R. If R is right
almost δl–semiregular, then eRe is right almost δl(eRe)–semiregular.

Proof. Follows from Theorems 3.11 and 2.9. 2

The following example shows that the equality eδle = δl(eRe) does not hold
even for a right semicentral idempotent.

Example 3.13 There exists a right semicentral idempotent e ∈ R such that
eδle ⊂ δl(eRe).
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Proof. Let R be the ring of 2× 2 upper triangular matrices over a field F and

e =

[
0 1
0 1

]
. Then eR = eRe and eδle = 0, where δl is the first row of R.

Since eRe is a semisimple projective left eRe–module, δl(eRe) = eRe. 2

Recall that RR is said to satisfy (C2) if any right ideal of R isomorphic to a
summand of RR is itself a summand of R. We have the following results about
right almost Zr (Zl)–semiregular rings.

Theorem 3.14 Let I be an ideal of R. If R is right almost I–semiregular and
I ⊆ Zr, then RR satisfies (C2).

Proof. Let a ∈ R such that aR ∼= eR, where e2 = e ∈ R. By [10, Lemma 2.12],
there exists an idempotent f ∈ R such that a = af and rR(a) = rR(f). By the
proof of Proposition 2.6, there exists an idempotent h ∈ R such that h ∈ Ra

and a(1 − h) ∈ I. By [9, Lemma 27], there exists an idempotent g ∈ R such
that g ∈ aR and (1 − g)a ∈ I. Then aR = gR ⊕ S, where S = (1 − g)aR ⊆ I.
By assumption, S is a singular right R–module. Since aR is projective, we have
that S = 0. Thus, aR = gR. 2

Corollary 3.15 Let R be a right PP–ring and I an ideal of R. If R is right
almost I–semiregular and I ⊆ Zr, then R is regular.

Proof. Let a ∈ R and rR(a) = eR, where e is an idempotent of R. Then
aR ∼= (1 − e)R. By Theorem 3.14, there exists an idempotent g ∈ R such that
aR = gR. Hence, R is regular. 2

Corollary 3.16 If R is right almost Zr–semiregular, then RR satisfies (C2).

We know from [7, Lemma 2.3] that if RR satisfies (C2), then Zr ⊆ J . Hence,
we have the following result.

Corollary 3.17 If R is right almost Zr–semiregular, then R is right almost
semiregular.

The following two examples show that the converse of Corollary 3.17 is not
true in general.

Example 3.18 There is an Artinian ring R such that R is Zl–semiregular but
not right almost Zr–semiregular.

Proof. Let R =

[
Z4 Z2

0 Z2

]
. Then
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Sr =

[
2Z4 Z2

0 Z2

]
, Sl =

[
2Z4 Z2

0 0

]
,

Zr = lR(Sr) =

[
2Z4 0

0 0

]
, Zl = rR(Sl) =

[
2Z4 Z2

0 0

]
.

By [9, Example 40], R is Zl–semiregular but not Zr–semiregular. Now we

claim that R is not right almost Zr–semiregular. Let a =

[
0 1
0 0

]
in R.

Then Ra =

[
0 Z2

0 0

]
and lRrR(a) =

[
0 Z2

0 Z2

]
. If R is right almost Zr–

semiregular, then there is a decomposition lRrR(a) = P ⊕ Q, where P ⊆ Ra

and Q ∩ Ra ⊆ Zr. Since Ra ∩ Zr = 0, Q ∩ Ra = 0. This implies that Ra = P

is a summand of lRrR(a) which is a contradiction. Hence, R is not right almost
Zr–semiregular. 2

Example 3.19 Let R be the ring of 2× 2 upper triangular matrices over a field
F . Then R is an Artinian ring which does not satisfy (C2) ([8, Example 1.20]).
Hence, R is right almost semiregular but not right almost Zr–semiregular.

Recall that RR is said to satisfy (C1) if every right ideal of R is essential
in a summand of R. A ring R satisfying (C1) and (C2) as a right R-module is
called right continuous. The following result generalizes [1, Corollary 3.5] in the
ring case.

Proposition 3.20 A ring R is right almost Zr–semiregular and RR satisfies
(C1) if and only if R is right continuous.

Proof. It is well known that if RR is right continuous, then it is semiregular
and Zr = J . Now the proof follows from Corollary 3.16. 2

The ring R in Example 3.19 is right almost semiregular but not right almost
Zl–semiregular, because Zl = 0 and R is not right AP–injective.

Proposition 3.21 If R is a right almost Zl–semiregular and left PP–ring, then
R is right AP–injective.

Proof. Let a ∈ R. By hypothesis, Ra = P ⊕ Q, where P is a summand of
lRrR(a) and Q ⊆ Zl. Since Ra is a projective left ideal, Q is projective, and so
Q = 0. Hence, Ra is a summand of lRrR(a). 2

Proposition 3.22 If R is right almost Zl ∩ δl–semiregular, then it is right
almost semiregular.
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Proof. Let a ∈ R. Then there exists a decomposition lRrR(a) = P ⊕ Q such
that P ⊆ Ra and Q∩Ra ⊆ Zl∩ δl. We claim that Q∩Ra ⊆ J . Let x ∈ Q∩Ra.
To see that x ∈ J , we must show that 1 − yx is left invertible in R for any
y ∈ R. Let u = 1 − yx, where y ∈ R. Since x ∈ δl, there exists a semisimple
left ideal Y of R such that R(1 − yx) ⊕ Y = R by [12, Theorem 1.6]. Let
ϕ : R → Y be the projection. Then ϕ(Q ∩ Ra) ⊆ ϕ(Zl) ⊆ Z(Y ) = 0, and so
Ryx ⊆ Q∩Ra ⊆ Kerϕ = R(1− yx). Since R = Ryx + R(1− yx), we have that
R = R(1− yx). Hence, x ∈ J and Q ∩Ra ¿ R. 2

Proposition 3.23 If R is right almost I–semiregular for an ideal I such that
J ∩ I = 0, then J ⊆ Zr.

Proof. Let a ∈ J and assume that a 6∈ Zr. Then there exists a nonzero right
ideal K of R such that rR(a) ∩ K = 0. Take s ∈ K such that as 6= 0. Let
0 6= u ∈ asR. By hypothesis, lRrR(u) = P ⊕ Q, where P ⊆ Ru, Q ∩ Ru ⊆ I.
Without loss of generality we can assume that u = as. Then it can be seen
that rR(as) = rR(s). Then lRrR(as) = lRrR(s) = P ⊕ Q. Write s = das + x,
where d ∈ R and x ∈ Q. Then (1 − da)s = x and so u = as = a(1 − da)−1x ∈
J ∩ (Q ∩Ru) ⊆ J ∩ I = 0, a contradiction. Hence, a ∈ Zr. 2

Corollary 3.24 If R is right almost Sl–semiregular and R/Sl is a projective
right R–module, then J = Zr and R is right almost Zr–semiregular.

Proof. Since Sl is a summand of R, J ∩Sl = Rad(Sl) = 0. By Proposition 3.23,
J ⊆ Zr. By Corollary 3.4, R is right almost semiregular. Then Zr ⊆ J and
hence J = Zr and R is right almost Zr–semiregular. 2

The following example shows that the assumption “J ∩ I = 0” in Proposi-
tion 3.23 is not removable in case I = Zl.

Example 3.25 Let R be the ring in Example 3.18. R is a right almost Zl–

semiregular ring. Since J =

[
2Z4 Z2

0 0

]
, J ∩ Zl 6= 0 and J 6⊆ Zr.
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