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Abstract. In this article, we call a ring R right almost I-semiregular if, for any a € R,
there exists a left R—module decomposition (grr(a) = P & Q such that P C Ra and
Q N Ra C I, where I is an ideal of R, | and r are the left and right annihilators,
respectively. This definition generalizes the right almost principally injective rings
defined by Page and Zhou [10], [-semiregular rings defined by Nicholson and Yousif
[7], and right generalized semiregular rings defined by Xiao and Tong [11]. We prove
that R is I-semiregular if and only if, for any a € R, there exists a decomposition
Irrr(a) = P ® Q, where P = Re C Ra for some ¢> = ¢ € R and QN Ra C 1.
Among the results for right almost /-semiregular rings, we are able to show that if I
is the left socle Soc(rR) or the right singular ideal Z(Rg) or the ideal Z(rR)Nd(rR),
where §(rR) is the intersection of essential maximal left ideals of R, then R being
right almost I-semiregular implies that R is right almost J-semiregular, where J is
the Jacobson radical of R. We show that 6;(eRe) = ed(rR)e for any idempotent e
of R satisfying ReR = R and, for such an idempotent, R being right almost §(rR)—

semiregular implies that eRe is right almost §;(e Re)-semiregular.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity and all

modules are unitary right R—modules.
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Let M be an R—module and F' a submodule of Mg. Following Alkan and
Ozcan [1], M is called F-semiregular if, for any m € M, there exists a decom-
position M = P @ @ such that P is projective, P C mR and Q "mR C F. If
F' is a fully-invariant submodule of Mg, then M is F—semiregular if and only
if, for any m € M, there exists a decomposition mR = P @ S such that P is a
projective (direct) summand of M and S C F. A ring R is called I-semiregular
for an ideal I of R if Rp is an I-semiregular module. Such rings are studied in
[7] and [9]. Note that being I-semiregular for an ideal I of a ring R is left-right
symmetric by [9, Lemma 27 and Theorem 28].

A module M is said to be principally injective (or P—injective for short) if
Iyrr(a) = Ma for all a € R, where | and r are the left and right annihilators,
respectively. As a generalization of P-injective modules, Page and Zhou [10]
call a module M almost principally injective (or AP—injective for short) if, for
any a € R, there exists an S—submodule X, of M such that ly;rr(a) = Ma® X,
as S—modules, where S = Endr(M). A ring R is called right AP—injective if
Rp is AP—injective.

In [13], M is called almost principally quasi—injective (or AP Q—injective for
short) if, for any m € M, there exists an S—submodule X, of M such that
Iyrr(m) = Sm@ X, where S = Endg(M). Then Rp is APQ-injective if and
only if Rp is AP-injective.

In this article, we call a right R—module M almost F—semiregular if, for any
m € M, there exists an S—-module decomposition iy;rr(m) = P @ @ such that
P C Smand QNSm C F, where S = Endr(M) and F is a submodule of gM.
A ring R is called right almost I-semiregular for an ideal I of R if Rg is almost
I-semiregular. If ¢M is F-semiregular, then Mg is almost F—semiregular. An
APQ-injective module Mg is almost F—semiregular for any S—submodule F' of

M. Moreover,
Mp is APQ—injective < My is almost O—semiregular.

Right almost J-semiregular rings are examined in [11] and named as right
generalized semiregular rings.

In Section 2, firstly we give a new characterization of F—semiregular modules
by modifying the definition of almost F—semiregular modules. Next, we give
conditions under which a right almost I-semiregular ring is /-semiregular. Some
of the results in [11] are extended. We also prove that if R is a right almost
I-semiregular ring, then eRe is a right almost ele—semiregular ring for a right
semicentral idempotent e of R (i.e., eR = eRe) or an idempotent e of R satisfying
ReR = R. If the matrix ring M, (R) is right almost M, (I)-semiregular for an
ideal I of R, then R is right almost I-semiregular.

In [1, Corollary 4.6], it is shown that if Mg is projective and Soc(M)—
semiregular, then M is semiregular (i.e., for any m € M, there exists a decom-
position M = A @& B such that A is projective, A C mR and BN mR < M).



In the last section, we prove that if Mg is almost Soc(sM )—semiregular, then
Mp is almost semiregular, i.e., for any m € M, there exists an S—module de-
composition Iprr(m) = P @ Q such that P C Sm and Q@ N Sm <« gM. We
also consider right almost I-semiregular rings for some ideals such as the socle,
the singular ideal and the ideal §. If R is right almost Z,—semiregular, then Rp
satisfies (C2) and is almost semiregular.

The following implications hold for a ring R.

Si—semiregular = right almost S;—semiregular 33 right almost semiregular
= right almost §,—semiregular and right almost J;-semiregular.

Z,—semiregular = right almost Z,—semiregular Y right almost semiregular
= right almost §,—semiregular and right almost J;-semiregular.

Counterexamples to each of the inverse implications are given.

It is well known that J(eRe) = eJe for any idempotent e € R. But
Or(eRe) # ed,(R)e even for a right semicentral idempotent e (see Example 3.13).
However if e € R is an idempotent with ReR = R, then d,(eRe) = ed,(R)e.
Consequently, if R is right almost (g R)-semiregular and ReR = R, then eRe

is right almost ¢;(eRe)—semiregular.

The symbols Rad(M), Soc(M) and Z(M) will stand for the Jacobson rad-
ical, the socle and the singular submodule of a module M, respectively. In the
ring case we use the abbreviations: S, = Soc(Rg), S; = Soc(rR), Z, = Z(RRg)
and Z; = Z(rR). We write J = J(R) for the Jacobson radical of R. For a small
(resp. an essential) submodule K of M, we write K < M (resp. K <. M). For
any non-empty subset X of R, I5;(X) (resp. rpr(X)) is used for the left (resp.
right) annihilator of X in M. For any subset N of M, [g(N) (resp. rr(N)) will
denote the left (resp. right) annihilator of N in R.

Following [12], a submodule N of a module M is called §—smallin M, denoted
by N <5 M, if N+ K # M for any submodule K of M with M/K singular.
Let

0(M)=n{N C M : M/N is singular simple}.
Then 6(M) is the sum of all —small submodules of M and is a fully invariant
submodule of M [12, Lemma 1.5]. Clearly Rad(M) < §(M). If M is a projective
module, then Soc(M) C 6(M) [12, Lemma 1.9]. We use 4, for §(Rg) and §; for

0(rR). Note that ¢, need not be equal to ¢;. For example, if R is the ring of
2 x 2 upper triangular matrices over a field F, then 4,, = S, and §; = 5.

2 Almost F—semiregular Modules

Definition 2.1. Let M be a right R—module, S = Endg(M) and F' a submod-
ule of M. The module My is called almost F—semiregular if, for any m € M,



there exists an S—module decomposition {prg(m) = P @ @ such that P C Sm
and QN Sm C F. A ring R is called right almost I-semiregular for an ideal T
of R if Ry is almost [-semiregular.

If Mg is APQ-injective, then Mpg is almost F-semiregular for any sub-
module F' of gM. Moreover, Mp is almost O-semiregular if and only if Mg is
APQ—injective.

Proposition 2.2. Let M be a right R—module, S = Endr(M) and F any
submodule of sM. If sM is F—-semiregular, then Mg is almost F—semireqular.

Proof. Let m € M. Then there exists a decomposition gM = P & @ such that
P C Smand QNSm C F. Since lyrr(m) = Lyrr(m)NM, by the modular law,
we have [y rr(m) = P®(Iyrr(m)NQ) and (Iyrr(m)NQ)NSm = QNSm C F.
Hence, My is almost F—semiregular. O

In particular, if g M is semiregular, then Mg is almost Rad(sM )—semiregular.
If R is an I-semiregular ring for an ideal I, then it is right and left almost I—

semiregular, because the notion of I-semiregular rings is left—right symmetric.

When we take the summand P of Ij;rgr(m) as a summand of M in Defini-
tion 2.1, we have the following result.

Theorem 2.3 Let M be a right R—module and S = Endr(M). If sM is
projective and gF is a fully—invariant submodule of sM, then the following
are equivalent:

(1) sM is F-semiregular.

(2) For any m € M, there exists an S—module decomposition lprr(m) =
P& Q, where P C Sm, P is a summand of M and QN Sm C F.

Proof. (1) = (2) Follows from the proof of Proposition 2.2.

(2) = (1) Let m € M and Iprr(m) = P& Q, where P C Sm, P is a
summand of M and @ NSm C F. Then Sm = P ® (Q N Sm), where P is a
projective summand of M and Q N.Sm C F. Hence, s M is F—semiregular. 0O

By Theorem 2.3, we obtain the following characterization of I-semiregular

rings for an ideal I.

Corollary 2.4 Let I be an ideal of a ring R. The following are equivalent:

(1) R is I-semiregular.

(2) For any a € R, there exists a decomposition lgrr(a) = P ® Q, where
P = Re C Ra for somee? =e€ R and QN Ra C I.

(3) For any a € R, there exists a decomposition rrlr(a) = P & Q, where
P=e¢RCaR for somee’?=e€ Rand QNaR C I.



Now we consider the module-theoretic version of right generalized semireg-
ular rings defined by Xiao and Tong [11].

Definition 2.5 Let M be a right R-module and S = Endr(M). M is called
almost semiregular if, for any m € M, there exists an S—module decomposition
Iyrr(m) = P® @ such that P C Sm and Q@ N Sm < M. A ring R is called a

right almost semiregular if Ry is almost semiregular.

Clearly, R is right almost J-semiregular if and only if R is right almost
semiregular. Semiregular or right AP-injective rings are right almost semireg-
ular by [11, Proposition 1.2]. Example 1.3 in [11] shows that right almost
semiregular rings need not be right AP-injective or semiregular.

Let M be a right R—module and S = Endg(M). If M is semiregular, then
Mp, is almost semiregular by a proof similar to that of Proposition 2.2. More-
over, if My is almost semiregular, then it is almost Rad(sM )-semiregular. The
converse is true if Rad(sM) < gM.

The following result generalizes [11, Lemma 1.4].

Proposition 2.6 Let I be an ideal of a ring R. If R is right almost I —semireqular
and there ezists €> = e € R such that rr(a) = rg(e) for any a € R, then R is
I-semiregular.

Proof. Let a € R. Then there exists a decomposition lgrg(a) = P®Q such that
P C Ra and QN Ra C I as left ideals. Since rz(a) = rr(e) for some e? = e € R,
Re=P&Q and a = ae. Let e = p+ q, where p =ra € P and ¢ € Q. Then
a = ae = ara + aq and ra = rara + raq. Since ra —rara =raq € PNQ = 0,
ra is an idempotent. Also, we have a(l —ra) = a—ara =ag € QN Ra C I.

Hence, R is I-semiregular. ]

Corollary 2.7 If igrr(a) is a summand of R for any a € R and R is right
almost I-semiregular for an ideal I, then R is I-semiregular.

Proof. Let a € R. By hypothesis [grg(a) = Re for some idempotent e. Then
rr(a) = rr(e) and the claim holds by Proposition 2.6. m|

A ring R is called a right PP-ring if every principal right ideal of R is
projective ([2]), or equivalently, for any a € R, rr(a) = eR for some idempotent

e € R. Hence, we have the following result.

Corollary 2.8 Let R be a right PP—ring. If R is a right almost I-semireqular

ring for an ideal I, then R is I-semiregular.



Nicholson and Zhou [9, Proposition 41] prove that if R is [-semiregular for
an ideal I, then eRe is ele—semiregular for any idempotent e of R. We consider

this property for almost I-semiregular rings.

An idempotent e € R is called right semicentral if eR = eRe [3].

Theorem 2.9 If R is a right almost [-semiregular ring for an ideal I and e is
a Tight semicentral idempotent of R, then eRe is a Tight almost ele—semiregular

Ting.

Proof. Let a € eRe. Then there is a decomposition [grg(a) = P @ @ such
that P C Ra and Q N Ra C I. Since e is right semicentral, by the proof of
[11, Proposition 1.11], lcgerere(a) = eP @ eQ. Then eP C eRa = eRea and
e@ NeRea C e(e@ NeRea)e. Hence, eQ NeRea € Q N Ra C I implies that
e@Q NeRea C ele. O

Theorem 2.10 Let e be an idempotent of R such that ReR = R. If R is a
right almost I-semiregular ring for an ideal I, then eRe is a right almost ele—

semiregular ring.

Proof. Follows from the proof of [11, Theorem 1.15]. O

Proposition 2.11 Let S be a right almost I-semiregular ring for an ideal I
of S. If o : S — R is a ring isomorphism, then R is a right almost ¢o(I)—

semiregular Ting.

Proof. Let a € R. Then there is a decomposition lsrs(¢~(a)) = P @ Q such
that P C Sp~1(a) and Q N Sp~'(a) C I. If x € Iprg(a), then p~1(x) €
Isrs(¢~'(a)). Then we obtain a decomposition Irrr(a) = ¢(P) ® ¢(Q), where
©(P) C Ra and p(Q)NRa C ¢(I). Hence, R is a right almost ¢(I)—semiregular
ring. O

The following result generalizes [11, Corollary 1.16].

Corollary 2.12 Let I be an ideal of a ring R and let n > 1. If M,,(R) is right

almost M, (I)-semiregular, then R is right almost I -semiregular.

Proof. Let S = M, (R). Then Se;1.5 = S and R 2 e11Se11, where ej; is the n x
n matrix whose (1, 1)-entry is 1, others are 0. By Theorem 2.10, e17.Se1; is right
almost ey; M, (I)e;;—semiregular. Let ¢ : e11.5e1; — R be the isomorphism.
Since p(e11 My (I)e11) = I, R is right almost I-semiregular by Proposition 2.11.
O



3 Special cases: Soc, §, Z

In this section, we consider a few fully invariant submodules. We begin with
some examples.

Recall that if R is a ring and V is an R-R bimodule, the trivial extension
R « V of R by V is the ring with additive group R @& V and multiplication
(a,v)(b,w) = (ab, aw + vb).

Example 8.1 There exists a right AP-injective ring R that is not semireqular.
Hence, there exists a right almost I -semiregular ring R that is not I -semireqular
forideals I = J or Z(R) or Soc(R).

Proof. Let R=7Z x (Q/Z) be the trivial extension. So R is a commutative
AP-injective ring that is not semiregular by [7, Examples (8), p. 2435]. R
is almost [—semiregular for any ideal I, because R is AP-injective. But R is
neither Z(R)-semiregular nor Soc(R)-semiregular by [7, Theorem 2.4] and [1,
Corollary 4.6]. O

Ezample 3.2 There exists a right almost Soc(R)-semiregular ring R that is not

Soc(R)-semiregular.

Proof. Let R = Zg. Since R is a self-injective ring, it is almost /—semiregular
for any ideal I of R. But since 2R = J € Soc(R) = 4R, R is not Soc(R)-
semiregular (see [1, Example 4.21]). ]

Example 3.1 also shows that the class of right almost semiregular rings is
not closed under homomorphic images, because R/J = Z is not right almost
semiregular by [11, Example 4.8].

In [1], it is proved that if Mg is a projective Soc(Mp)-semiregular module,

then Mg is semiregular.

Proposition 3.3 Let M be a right R—-module and S = Endr(M). If Mg is

almost Soc(sM)—semiregular, then Mg is almost semiregular.

Proof. Let m € M. Then there exists a decomposition Iyrr(m) = A® B such
that A C Sm and BNSm C Soc(sM). By the modular law, Sm = A®(BNSm).
Then B N Sm is a finite direct sum of simple S—submodules. If every simple
submodule of BN Sm is in Rad(sM), then BN Sm < M and hence Mg is
almost semiregular. Assume that there exists a simple submodule S; of BNSm
such that S1 € Rad(sM). Then S; is a summand of M and hence a summand
of B. Let L; be such that B =51 ® L. Then lyrr(m)=A® S; & L;.
Similarly, L1NSm is a finite direct sum of simple submodules. If every simple

submodule of Ly N'Sm is in Rad(sM), then Mg is almost semiregular. Assume



that there exists a simple submodule Sy of L1 N Sm such that So € Rad(sM).
Then S5 is a summand of M and so there exists a submodule Ly such that
Ly = Sy @ Ly. Tt follows that lyrr(m) = A® S; ® Sy ® Ly. This process
produces a strictly descending chain BN Sm D Ly NSm D LsNSm.... Since
BN Sm is semisimple and finitely generated, it is Artinian. Hence, this process
must stop so that L, N .Sm C Rad(sM) for some positive integer n. Hence,
Iyrr(m) = (A®S1®...8S,) ® L,, where A S ®...H S, < Sm and
L,NSm < M. Thus, Mg is almost semiregular. O

Corollary 3.4 If R is right almost S;—semireqular, then R is right almost
semaregular.

The next example shows that the converse of Corollary 3.4 is not true in

general.

Ezxample 3.5 There exists a right almost semiregular ring that is not right almost
Sy (Sy)-semiregular.

Proof. (Camillo Example) (see [8, p. 39 and p. 114]) Let R = Zs[x1, z2,.. ],
where the z; are commuting indeterminants satisfying the relations z3 = 0 for
all i, z;z; = 0 for all i # j and 27 = 1’? for all i and j. Let m = 2% = 22
= .... Then R is a commutative local uniform (i.e., every nonzero right ideal
is essential) ring. Then R is semiregular with J = Spang, {m,x1,z2,...} and
S; = S, = J? = Zym. We claim that R is not (right) almost S;—semiregular. Let
a = x1 + x2. If R is almost S;—semiregular, then there exists a decomposition
lrrr(a) = P @® @ such that P C Ra and @ N Ra C S;. Since Igrgr(a) is
uniform, either P =0 or @ = 0. If P = 0, then we have that [grgr(a) N Ra =
Ra C S, a contradiction. If @ = 0, then lgrgr(a) = Ra. But since rgr(a) =
Spang, {m, x3,24,...}, 1 € Irrr(a) and 21 ¢ Ra. This gives a contradiction.

Hence, R is not almost S;—semiregular. O

If R is right almost S;—semiregular, then R need not be semiregular, because
right AP—injective rings need not be semiregular (see Example 3.1).

We know from [9, Corollary 30] that R is S;—semiregular if and only if R/S;
is (von Neumann) regular. If R is right almost S;—semiregular, then (Ra+5;)/S)
is a summand of (Igrgr(a) +5;)/S; for any a € R by [4, Lemma 18.4].

Note also that if R is S;—semiregular, then R is semiregular, J C S; and
Z. C S; by [7, Theorem 1.2], [1, Theorem 2.3] and by the proof of [1, Theorem
4.5]. On the other hand, J or Z, need not be contained in S; if R is right almost
Sj—semiregular (see Example 3.2).

According to [11], we know that if R is right almost semiregular, then Z,. C J.
Hence, if R is right almost S;—semiregular, then Z, C J.



Because of the fact that S; C §;, R being right almost S;—semiregular implies
that R is right almost §;—semiregular. Also if R is §;—semiregular, then Z,. C §;
by [7, Theorem 1.2]. We have the following result for right almost §,—semiregular

rings.

Proposition 3.6 If R is right almost 6;—semireqular and R/S; is a projective
right R—module, then Z,. C §;.

Proof. Let a € Z,.. If a & §;, then there exists an essential maximal left ideal
N of R such that a ¢ N. Then R = Ra + N. Write 1 = ya + n, where
y € Rand n € N. Since Z, is an ideal and R # Z,, we have n # 0. Since
rr(ya) Nrr(n) = 0 and ya € Z,, we obtain that rg(n) = 0. By hypothesis,
R=1Igrgr(n) = P®Q, where P= Re C Rn, QN Rn C §; and e? = e € R.

Let R = R/S;. If R = 0, then R is semisimple and Z, = 0 C §; = R.
Assume that R # 0. If € = I, then R = N = R. Since S; C N, N = R, which
is a contradiction. So € # 1. Since rr(ya) <. R, R/rr(ya) = R/(rr(ya) + Sy
is a singular right R—module. This implies that rg(ya) <. R, because R is a

projective right R-module. Since rg(ya) C r4(7a), we have that r5(7a) <. R.

Now (I —e)RNrg(ya) # 0. Let 0 # (1 —€)F € (1 —€RNrg(ya). Let
n = se+t, where s € Randt € . Thent =n—se € QN Rn C § and
te8,/S = J(R/S) by [12, Corollary 1.7]. So 1 — % is unit in R. Also, we have
n(l-e)r = (1-ya)(1—-e)7 = (1—e)T and n(1—e)7 = (se+1t)(1—e)7r = t(1—e)T.
Then (1 —%)(1 —€)7 = 0. Hence, (1 — )7 = 0, a contradiction. O

—_— —

Proposition 3.7 If R is right almost §;—semiregular, R/S; is a projective right
R-module and S; C Z;, then Z,. C J.

Proof. By a proof similar to that of Proposition 3.6. ]

Ezample 3.8 There exists a right almost 0; (or 6, )-semiregular ring that is not

right almost semiregular.

F F

Proof. [12, Example 4.3] Let F' be a field and I = 0 F

, and

R:{(x17932,...,$n,x,17,..-) | TLGN, Ly 6M2(F)71'€I}

Then R is 0, (&;)-semiregular but not semiregular by [12]. Since every nonzero
one—sided ideal contains a nonzero idempotent, Z, = Z; = J = 0. If R was
right almost semiregular, then R would be regular by [11, Lemma 3.1], which is
a contradiction. Hence, R is not right almost semiregular. ]
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It is well known that J(eRe) = eJe for any idempotent e of R. We consider
this property for § which will be used in the forthcoming corollary. Recall by
[12, Theorem 1.6] that

5 = {x € R:Vy € R, Ja semisimple right idealY of R 3 R = (1 —zy)R® Y}
= ﬂ{idealsPof R : R/Phas a faithful singular simple module}

Theorem 3.9 Let e be an idempotent of R such that ReR = R. Then 6;(eRe) =

ede.

Proof. We know that if e is an idempotent such that ReR = R, then the
category of left R—modules, R—Mod, and the category of left eRe—modules,
eRe—Mod, are Morita equivalent (see [6]) under the functors given by

F: R-Mod — eRe-Mod, G: eRe-Mod — R-Mod
Mr—eM Tr—— ReQcreT.

By [12], §; = R if and only if R is semisimple. Therefore if §; = R, then R
is semisimple and so is eRe. This gives that 0;(eRe) = eRe = ede.

Now assume that 6; # R. Let P be an ideal of R such that R/P has a faithful
singular simple module N. Denote R = R/P. Since RéR = R, the categories
R-Mod and eRe-Mod are Morita equivalent. So eN is a faithful eRe-module
by [6, 18.47 and 18.30], a singular Ré-module by [5, p. 34] and a simple eRe-
module. Since eRe = eRe/ePe, we have that §;(eRe) C ePe C P. This holds
for any ideal P such that R/P has a faithful singular simple module. Thus,
d1(eRe) C ede.

For the reverse inclusion, let a € §;. Then Reae <5 R. Now we claim that
eRe(eae) <5 eRe. Let K be a left ideal of eRe such that eRe = eRe(eae) + K.
Write e = ereae+k, where r € R and k € K. This implies that 1 = e+ (1—e) =
ereae+k+ (1 —e) € Reae+ RK + R(1 —e¢) and so R = Reae+ RK + R(1 —e).
Since Reae <s R, there exists a semisimple projective left ideal Y of R such
that ¥ € Reae and R =Y @ [RK + R(1 — ¢)] by [12, Lemma 1.2]. Hence,
we obtain that eRe = eYe + (eRe)K = eY + K. Since Y N RK = 0, we have
that e¥Y N K = 0. On the other hand, since ReR = R, eY is a semisimple
projective left eRe-module. So eRe = e¢Y @ K, €Y C eRe(eae) and eY is a
semisimple projective eRe—module. By [12, Lemma 1.2], eRe(eae) <5 eRe.
Thus, edje C 0;(eRe). O

Corollary 3.10 Let e be an idempotent of R such that ReR = R. If R is right

almost §;—semiregular, then eRe is right almost §;(e Re)—semiregular.

Proof. Follows from Theorems 3.9 and 2.10. ]

Now we consider the ring eRe, where e is a right semicentral idempotent.



11

Theorem 3.11 Ife is a right semicentral idempotent of R, then edje C 0;(eRe)
and 6,(eRe) C ede.

Proof. Let a € ¢;. Since §; is an ideal, eae € ¢;. By [12, Theorem 1.6],
there exists a semisimple left ideal Y of R such that kR = R(1 — eae) ® Y.
Let 1 = (1 — eae) + y, where z € R and y € Y. Then e = ex(l — eae)e +
eye = exe(e — eae) + eye and so eRe = eRe(e — eae) + eYe. Since e is right
semicentral, this sum is direct. Now we claim that eYe is semisimple. Let
Y = &}, 5;, where S; is a simple left R-module, for ¢ = 1,2,...,n. Since e
is right semicentral, eYe = @] ;eS;e. Let S; = Rs for some s € R. Then
eSie = eRse = eRe(ese) = eRe/l.re(ese). Let K be a left ideal of eRe such
that lere(ese) C K. Then there exists k € K such that k & l.re(ese). Since
lepe(ese) = lepe(es) = lr(es) NeRe, k & lr(es). Then kes # 0. But since
Ir(s) is maximal in R, we have that Ig(s) + Rke = R. Let 1 = x + yke, where
x € lg(s) and y € R. Then e = ex + eyek. Since xs = 0, we have exese = 0.
Then ex € lore(ese) C K, so ex € K. It follows that e € K. Hence, we show
that l.ge(ese) is a maximal left ideal of eRe. So eSje is simple. This proves
that eYe is semisimple. Now eRe = eRe(e — eae) @ eYe with eYe semisimple.
Since a is any element in §;, we have that ed;e C d;(eRe).

For the other inclusion, let P be an ideal of R and V be a faithful singu-
lar simple right R/P-module. Then Ve is an eRe—module. If Ve = 0, then
0r(eRe) C eRe C P.

Assume that Ve # 0. Since V is a simple R—module, Ve is a simple eRe—
module. We claim that Ve is a singular eRe—module. Let ve be the generator
of Ve. To show that r.g.(ve) = rgr(v) N eRe is an essential right ideal of
eRe, let 0 # exe € eRe. Since ex # 0 and rr(v) is essential in R, there
exists t € R such that 0 # ext € rg(v). Then 0 # ext = exte € reg.(ve)
(e is right semicentral). Hence, Ve is a singular simple eRe-module. Now,
Vé,(eRe) = Ved,.(eRe) = 0 by the definition of §. Since V' is a faithful R/P-
module, we have that ¢,(eRe) C P. Therefore §,(eRe) C P for each ideal P of
R such that R/P has a faithful singular simple module. So d,(eRe) C 4, and
hence §,(eRe) C ede. O

Corollary 3.12 Let e be a right semicentral idempotent of R. If R is right

almost §;—semiregular, then eRe is right almost §;(e Re)—semiregular.

Proof. Follows from Theorems 3.11 and 2.9. a

The following example shows that the equality ed;e = d;(eRe) does not hold

even for a right semicentral idempotent.

Ezample 3.13 There exists a right semicentral idempotent e € R such that
edie C 0;(eRe).
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Proof. Let R be the ring of 2 x 2 upper triangular matrices over a field F' and
0 1
e =
0 1

Since eRe is a semisimple projective left e Re—module, 6;(eRe) = eRe. a

. Then eR = eRe and edje = 0, where d; is the first row of R.

Recall that Rp is said to satisfy (C2) if any right ideal of R isomorphic to a
summand of Rp is itself a summand of R. We have the following results about

right almost Z, (Z;)-semiregular rings.

Theorem 3.14 Let I be an ideal of R. If R is right almost I-semireqular and
I C Z,, then Rp satisfies (C2).

Proof. Let a € R such that aR = eR, where ¢? = ¢ € R. By [10, Lemma 2.12],
there exists an idempotent f € R such that a = af and rr(a) = rr(f). By the
proof of Proposition 2.6, there exists an idempotent h € R such that h € Ra
and a(l —h) € I. By [9, Lemma 27], there exists an idempotent g € R such
that g € aR and (1 — g)a € I. Then aR = gR® S, where S = (1 — g)aR C I.
By assumption, S is a singular right R—module. Since aR is projective, we have
that S = 0. Thus, aR = gR. ]

Corollary 3.15 Let R be a right PP-ring and I an ideal of R. If R 1is right

almost I-semireqular and I C Z,., then R s regular.

Proof. Let a € R and rr(a) = eR, where e is an idempotent of R. Then
aR = (1 — e)R. By Theorem 3.14, there exists an idempotent g € R such that
aR = gR. Hence, R is regular. O

Corollary 3.16 If R is right almost Z,—semiregular, then Ry satisfies (C2).

We know from [7, Lemma 2.3] that if Rp satisfies (C2), then Z, C J. Hence,

we have the following result.

Corollary 3.17 If R is right almost Z,.-semireqular, then R is right almost

semiregular.

The following two examples show that the converse of Corollary 3.17 is not

true in general.

Ezample 8.18 There is an Artinian ring R such that R is Z;-semireqular but

not right almost Z,.—semireqular.

Zy Zo

2

Proof. Let R = . Then
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g — 224 Zg o ZZ4 ZQ
A 0 Z2 P 0 O )
274 O 27y 7o
Z, = 1p(S,) = 7= rr(S) = .
R(S7) o o | Z=rrlS) 0 01

By [9, Example 40], R is Z;—semiregular but not Z,—semiregular. Now we

1

claim that R is not right almost Z,-semiregular. Let a = in R.

8 ZS ] and lprg(a) = [ 8 ;Z
semiregular, then there is a decomposition lgrr(a) = P & @, where P C Ra
and Q N Ra C Z,. Since RaN Z, =0, Q@ N Ra = 0. This implies that Ra = P
is a summand of Igrg(a) which is a contradiction. Hence, R is not right almost

Then Ra = [ . If R is right almost Z,—

Z,—semiregular. m]

Ezxample 3.19 Let R be the ring of 2 x 2 upper triangular matrices over a field
F. Then R is an Artinian ring which does not satisfy (C2) ([8, Example 1.20]).
Hence, R is right almost semiregular but not right almost Z,—semiregular.

Recall that Rp is said to satisfy (C1) if every right ideal of R is essential
in a summand of R. A ring R satisfying (C1) and (C2) as a right R-module is
called right continuous. The following result generalizes [1, Corollary 3.5] in the

ring case.

Proposition 3.20 A ring R is right almost Z,.—semireqular and Rp satisfies
(C1) if and only if R is right continuous.

Proof. 1t is well known that if Rp is right continuous, then it is semiregular
and Z,. = J. Now the proof follows from Corollary 3.16. a

The ring R in Example 3.19 is right almost semiregular but not right almost

Z;—semiregular, because Z; = 0 and R is not right AP—injective.

Proposition 3.21 If R is a right almost Z;—semiregular and left PP—-ring, then
R is right AP—injective.

Proof. Let a € R. By hypothesis, Ra = P & @, where P is a summand of
Irrr(a) and @ C Z;. Since Ra is a projective left ideal, @ is projective, and so
@ = 0. Hence, Ra is a summand of Igrg(a). a

Proposition 3.22 If R is right almost Z; N d;—semireqular, then it is right

almost semireqular.
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Proof. Let a € R. Then there exists a decomposition Igrgr(a) = P @ @ such
that P C Ra and QN Ra C Z;NJ;. We claim that QN Ra C J. Let x € QN Ra.
To see that « € J, we must show that 1 — yx is left invertible in R for any
y € R. Let u =1 — yx, where y € R. Since = € J;, there exists a semisimple
left ideal Y of R such that R(1 — yz) @Y = R by [12, Theorem 1.6]. Let
@ : R = Y be the projection. Then ¢(Q N Ra) C ¢(Z;) C Z(Y) = 0, and so
Ryx C QN Ra C Kergp = R(1 —yx). Since R = Ryx + R(1 —yz), we have that
R = R(1 — yx). Hence, x € J and Q N Ra < R. ]

Proposition 3.23 If R is right almost I-semiregular for an ideal I such that
JNI =0, then J C Z,.

Proof. Let a € J and assume that a ¢ Z,.. Then there exists a nonzero right
ideal K of R such that rg(a) N K = 0. Take s € K such that as # 0. Let
0 # u € asR. By hypothesis, [grr(u) = P ® @, where P C Ru, QN Ru C I.
Without loss of generality we can assume that u = as. Then it can be seen
that rg(as) = rr(s). Then lgrr(as) = lgrr(s) = P ® Q. Write s = das + z,
where d € R and z € Q. Then (1 —da)s = z and so u = as = a(l — da) "'z €
JN(QNRu) CJNI =0, a contradiction. Hence, a € Z,. |

Corollary 3.24 If R is right almost S;—semiregular and R/S)| is a projective
right R—module, then J = Z, and R is right almost Z, -semireqular.

Proof. Since S; is a summand of R, JN.S; = Rad(S;) = 0. By Proposition 3.23,
J C Z,. By Corollary 3.4, R is right almost semiregular. Then Z, C J and

hence J = Z, and R is right almost Z,—semiregular. O

The following example shows that the assumption “J NI = 0” in Proposi-

tion 3.23 is not removable in case I = Z.

Ezample 3.25 Let R be the ring in Example 3.18. R is a right almost Z;—
274 7o

oo InZiA0and I 7,

semiregular ring. Since J =

Acknowledgments. The authors are grateful to the referee and Professor N. Ding
for their valuable suggestions and careful reading.
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