Corrigendum to: A Generalization of Semiregular and Almost Principally Injective Rings

A. Çiğdem Özcan Pınar Aydoğdu
Department of Mathematics, Hacettepe University
06800 Beytepe Ankara, Turkey
E-mails: ozcan@hacettepe.edu.tr paydogdu@hacettepe.edu.tr

$$
10 / 05 / 2011
$$

Abstract

Some errors were detected in Example 3.5 and Example 3.8 of [1]. We replace Example 3.5 with a new example and correct the proof of Example 3.8.

2000 Mathematics Subject Classification: 16A30, 16D50, 16D10
Keywords: almost principally (quasi) injective, (almost) semiregular.

In [1, Example 3.5], we claimed that the ring R is not right almost $S_{l^{-}}$ semiregular. There is an error in the proof of this example. We delete this example and its proof, and replace it with the example below:

Example 1 There exists a right almost semiregular ring that is not right almost S_{l}-semiregular (S_{r}-semiregular).

Proof. Let $R=\mathbb{Z}_{(p)}$ be the localization of the ring of integers \mathbb{Z} at a prime p. Since R is a local ring, it is semiregular whence it is right almost semiregular. We claim that the ring R is not right almost S_{l}-semiregular. Take a non-zero element a in the Jacobson radical $J(R)$. Since a is non-zero, we have $l_{R} r_{R}(a)=R$. Because R is indecomposable as a left R-module, the only decomposition is $l_{R} r_{R}(a)=R=R \oplus 0$. Because a is non-unit in R, we have $R a \neq R$. On the other hand, if R was right almost S_{l}-semiregular, then we would have $R a \subseteq S_{l}$ by the definition of the almost S_{l}-semiregularity. But this is a contradiction since $S_{l}=0$.

We delete the last two sentences of Example 3.8, and give the proof below in order to show that the ring R in Example 3.8 is not right almost semiregular.

Example 2 There exists a right almost δ_{l} (or δ_{r})-semiregular ring that is not right almost semiregular.

Proof. Let F be a field and $I=\left[\begin{array}{cc}F & F \\ 0 & F\end{array}\right]$. Consider the ring

$$
R=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, x, x, \ldots\right) \mid n \in \mathbb{N}, x_{i} \in M_{2}(F), x \in I\right\} .
$$

We claim that R does not satisfy ($C 2$) condition as a right R-module. Take the element $\alpha=(x, x, \ldots)$ of R and the idempotent $g=(e, e, \ldots)$, where $x=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $e=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $\alpha R \cong g R$. One can observe that the idempotents in αR is of the form $f=\left(f_{1}, f_{2}, \ldots, f_{n}, 0,0, \ldots\right)$, where $f_{i}=0$ or $f_{i}=\left[\begin{array}{ll}1 & d \\ 0 & 0\end{array}\right], d \in F$ for $i=1,2, \ldots, n$. Hence, $f R \neq \alpha R$ for each idempotent $f \in \alpha R$. Thus, R_{R} does not satisfy (C2). By [1, Theorem 3.14], R is not right almost semiregular.

References

[1] Özcan A.Ç., Aydoğdu P., (2010), A generalization of semiregular and almost-principally injective rings, Algebra Colloq. 17(Spec 1):905-916.

