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�-M-SMALL AND �-HARADA MODULES

M. Tamer Koşan1 and A. Çiğdem Özcan2
1Department of Mathematics, Gebze Institute of Technology,
Çayirova Campus, Gebze-Kocaeli, Turkey
2Department of Mathematics, Hacettepe University,
Beytepe Ankara, Turkey

Let M be a right R-module and N ∈ ��M�. A submodule K of N is called �-M-small
if, whenever N = K + X with N/X M-singular, we have N = X. N is called a �-M-
small module if N � K, K is �-M-small in L for some K�L ∈ ��M�. In this article,
we prove that if M is a finitely generated self-projective generator in ��M�, then
M is a Noetherian QF-module if and only if every module in ��M� is a direct sum
of a projective module in ��M� and a �-M-small module. As a generalization of a
Harada module, a module M is called a �-Harada module if every injective module
in ��M� is �M -lifting. Some properties of �-Harada modules are investigated and a
characterization of a Harada module is also obtained.

Key Words: Harada module and ring; Injective module; Lifting module; Noetherian QF-module;
Small module.

2000 Mathematics Subject Classification: 16L30; 16E50.

1. INTRODUCTION

Let R denote an associative ring with unit, Mod-R the category of unital right
R-modules, and M a unitary right R-module.

We write Soc�M� and Rad�M� for the socle and the Jacobson radical
of a module M , respectively. N̂ and ZM�N� is the M-injective hull and the
M-singular submodule of N in ��M�, respectively. Recall that Z2

M�N� is defined as
ZM�N/ZM�N�� = Z2

M�N�/ZM�N� for a module N ∈ ��M�. The notions K ≤⊕ M and
K ≤e M are reserved for a direct summand K and essential submodule K of M ,
respectively.

A submodule K of a module M is called small, (notation K � M) if M =K+L
for some submodule L of M , then we have L = M . A module N is called an
M-small module if N � K � L ∈ ��M�. In case M = R, N is called a small module.
A module M is called lifting (or (D1)) if, for all N ≤ M , there exists a decomposition
M = A⊕ B such that A ≤ N and N ∩ B is small in M (Mohamed and Müller, 1990).
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424 KOŞAN AND ÖZCAN

Now we consider some generalizations of the notions “small” and “lifting.”
Zhou (2000) generalized the notion of a small submodule to a �-small submodule.
More general, a submodule K of a module N in ��M� is called a �-M-small
submodule (notation K��M

N ) if, whenever N = K + X with N/X M-singular, we
have N = X (Özcan, 2002).

A module N is called a �-M-small module if N � K��M
L ∈ ��M� (Özcan,

2002). We call a module N in ��M� �M -lifting if, for all K ≤ N , there exists a
decomposition N = A⊕ B such that A ≤ K and K ∩ B is �-M-small in N . Clearly,
lifting modules in ��M� are �M -lifting for any module M .

Recall that a ring R is called a right Harada ring (or a right H-ring) if every
injective right R-module is lifting (see for example Harada, 1979; Oshiro, 1984a,b).
As a module theoretic version of Harada rings, Harada modules are defined in
Jayaraman and Vanaja (2000) as modules M such that every injective module in
��M� is lifting. Equivalently, every module in ��M� is a direct sum of an injective
module in ��M� and an M-small module.

In this article, �-Harada modules are defined as an analog of Harada modules.
We call a module M a �-Harada module if every injective module in ��M� is
�M -lifting.

In Chapter 2, we study �-M-small submodules, and modules with some chain
conditions on �-M-small submodules. We also prove the following theorem.

Theorem. Let M be a module such that finitely generated self-projective and a
generator in ��M�. Then M is a Noetherian QF-module if and only if every module
in ��M� is a direct sum of a projective module in ��M� and a �-M-small module in
��M�.

In Chapter 3, after giving some properties of �M -lifting modules, we investigate
�-Harada modules. We prove the following theorem.

Theorem. M is a �-Harada module if and only if every module in ��M� is a direct
sum of an injective module in ��M� and a �-M-small module.

Corollary. If M is a �-Harada module, then M/Soc�M� is locally noetherian.

Also we have a characterization of Harada modules.

Theorem. The following are equivalent for a module M :

1. M is a Harada module;
2. M is locally Noetherian and every non-�-M-small module in ��M� contains a

nonzero injective submodule;
3. There exists a subgenerator N in ��M� such that N is

∑
-lifting and M-injective,

and for any exact sequence P
f−→ N −→ 0 in ��M� where N is injective in ��M�

and Ker�J� ��M
P, P is a direct sum of an injective module in ��M� and a

semisimple projective module in ��M�.

For the other definitions in this note we refer to Anderson and Fuller (1974)
and Wisbauer (1991).
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�-M-SMALL AND �-HARADA MODULES 425

2. �-M-SMALL MODULES

A submodule K of a module N in ��M� is called a �-M-small submodule
(notation K ��M

N ) if, whenever N = K + X with N/X M-singular, we have N = X

(Özcan, 2002). Define

�M�N� = ∩�K ≤ N � N/K is M-singular simple	

and it is the sum of all �-M-small submodules of N (see Zhou, 2000, Lemma 1.5).
Note that every finitely generated submodule of �M�N� is �-M-small submodule of
N . If N is finitely generated module in ��M�, then �M�N� ��M

N (see Zhou, 2000,
Lemma 1.5). For any projective module P, Soc�P� ≤ ��P� (Zhou, 2000, Lemma 1.9),
and J�R/Soc�RR�� = ��RR�/Soc�RR� (Zhou, 2000, Corollary 1.7) for a ring R.

We begin by stating a lemma which can be seen by a proof similar to Zhou
(2000, Lemmas 1.2 and 1.3).

Lemma 2.1. Let N be a module in ��M�.

1. If K ��M
N and N = K + X, then N = Y ⊕ X for a semisimple projective

submodule Y in ��M� with Y ≤ K.
2. If K ��M

N and f � N → L is a homomorphism, then f�K� ��M
L. In particular, if

K ��M
N ⊆ L, then K ��M

L.
3. K ��M

N and L ��M
N if and only if K + L ��M

N .
4. Let K1 ≤ M1 ≤ N , K2 ≤ M2 ≤ N and N = M1 ⊕M2. Then K1 ⊕ K2 ��M

M1 ⊕M2

if and only if K1 ��M
M1 and K2 ��M

M2.

Corollary 2.2. Let N be a module in ��M�. If K ��M
N and K 	� N , then K contains

a projective simple direct summand of N .

Proof. By Lemma 2.1(1), K contains a nonzero projective semisimple direct
summand of N . �

Corollary 2.3. Let N be a module in ��M�. If N ��M
N , then N is semisimple

projective module.

Proof. As N = N + 0, the Corollary follows from Lemma 2.1(1). �

Corollary 2.4. Let A and B be modules in ��M�. Suppose f � A → B is
an epimorphism with Ker f ��M

A and L ⊆ A. Then L ��M
B if and only if

f−1�L� ��M
A.

Proof. By Lemma 2.1(2), if f−1�L� ��M
A, then L ��M

B. Conversely, let L��M
B.

Suppose A = f−1�L�+ K where A/K is M-singular. Then B = L+ f�K� and
B/f�K� is M-singular. As L ��M

B we have f�K� = B. Hence A = Ker f + K.
Now Ker f ��M

A and A/K is M-singular imply K = A. �

Al-Khazzi and Smith (1991) investigated the ascending chain condition (ACC)
and the descending chain condition (DCC) on Rad�M� for a module M . Now we
shall consider the similar results for �M�N�.
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426 KOŞAN AND ÖZCAN

Clearly if �M�N� is Artinian (Noetherian) for a module N ∈ ��M�, then Rad�N�
is Artinian (Noetherian) because Rad�N� ⊆ �M�N�. But the converse is not true in
general. For example, let Q = ∏


i=1 Fi where each Fi = �2. Let R be the subring of
Q generated by

⊕

i=1 Fi and 1Q. Then J�R� = 0 and

⊕

i=1 Fi = Soc�R� = ��R� (see

Zhou, 2000, Example 4.1). Hence J�R� is Artinian (Noetherian) but ��R� is not.
The following two propositions can be seen by a proof similar to Proposition 2

and Theorem 5 in Al-Khazzi and Smith (1991). But we give the proofs for
completeness.

Proposition 2.5. The following are equivalent for a module N ∈ ��M�:

1. �M�N� is Noetherian;
2. N has the ACC on �-M-small submodules.

Proof. �1� ⇒ �2� is obvious.

�2� ⇒ �1� Let X1 < X2 < · · · be a strictly ascending chain of submodules
of �M�N�. Let x1 ∈ X1 and xi ∈ Xi − Xi−1 for i ≥ 2. Clearly, x1R < x1R+ x2R < · · ·
and, from the definition of �M�N�, each xiR is �-M-small. Hence, for each n,

∑n
i=1 xiR

is �-M-small submodule of N . This follows that N does not have ACC on �-M-small
submodules, a contradiction. �

A module M is called locally Artinian if every finitely generated submodule of
M is Artinian.

Proposition 2.6. The following are equivalent for a module N ∈ ��M�:

1. �M�N� is Artinian;
2. Every �-M-small submodule of N is Artinian;
3. N has the DCC on �-M-small submodules.

Proof. �1� ⇒ �2� ⇒ �3� are obvious.

�3� ⇒ �1� First we claim that �M�N� is locally Artinian. Let L be a finitely
generated submodule of �M�N�. Then L ��M

N , and by (3), it is Artinian. Now let
K be a proper submodule of �M�N�. Let x ∈ �M�N�− K. Then xR is Artinian and
�xR+ K�/K is a nonzero Artinian module. It follows that �M�N�/K has essential
socle.

Suppose that �M�N� is not Artinian. Then there exists a submodule X of �M�N�
such that �M�N�/X is not finitely cogenerated. There exists a minimal submodule
P of �M�N� with respect to �M�N�/P not finitely cogenerated by Zorn’s lemma.
Let Soc��M�N�/P� = S/P where S ≤ �M�N�. We have seen that S/P is an essential
submodule of �M�N�/P. Therefore, S/P is not finitely generated (Anderson and
Fuller, 1974, Proposition 10.7).

We claim that P � N . Let N = P +Q for some Q ≤ N . Then S = P + �S ∩Q�.
Suppose P ∩Q 	= P. Then �M�N�/�P ∩Q� is finitely cogenerated by the choice of
P. But S/P = �P + �S ∩Q��/P � �S ∩Q�/�P ∩Q� ≤ Soc��M�N�/�P ∩Q�� and hence
S/P is finitely generated, a contradiction. Thus P � N .

Now we claim that S ��M
N . Let N = S + V where N/V is M-singular. Then

N/�P + V� = �S + V�/�P + V� � S/�P + �S ∩ V��. Thus N/�P + V� is semisimple.
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�-M-SMALL AND �-HARADA MODULES 427

If N 	= P + V , then there exists a maximal submodule W of N such that P + V ≤W .
Since N/V is M-singular, �M�N� ≤ W . But now S ≤ W gives the contradiction
N =W . Then N = P + V . Since P � N , N = V . Thus S ��M

N and by hypothesis
S is Artinian. Since S/P is semisimple Artinian, S/P is finitely generated, a
contradiction. Thus �M�N� is Artinian. �

Definition 2.7. A module N is called a �-M-small module if N � K ��M
L ∈ ��M�.

A module is called non-�-M-small if it is not a �-M-small module.

Lemma 2.8. Let 0 −→ A −→ B −→ C −→ 0 be a short exact sequence of modules
in ��M�. If B is �-M-small, then A and C are �-M-small.

Clearly, every M-small module is a �-M-small module, and any nonzero
semisimple non-M-singular injective module in ��M� is a �-M-small module, but not
an M-small module. The following result is by definitions, see also Özcan (2002).

Proposition 2.9. A module N ∈ ��M� is a �-M-small module if and only if N ��M
N̂ .

If M is a Noetherian injective cogenerator in ��M�, then it is called a
Noetherian quasi-Frobenius (QF)-module (Wisbauer, 1991). For a finitely generated
quasi-projective module M , M is a Noetherian QF-module if and only if every
injective module in ��M� is projective in ��M� if and only if M is a self-generator
and every projective module in ��M� is injective in ��M� by Wisbauer (1991, 48.14).
A ring R is called a quasi-Frobenius ring, in short QF-ring, if R is Noetherian and
injective as a right (or left) R-module. Rayar proved that a ring R is a QF-ring if
and only if every right R-module is a direct sum of a projective module and a small
module (Rayar, 1982, Theorem 7). Now we generalize this result as follows.

Theorem 2.10. Let M be a module such that finitely generated self-projective and a
generator in ��M�. Then the following are equivalent:

1. M is a Noetherian QF-module;
2. Every module in ��M� is a direct sum of a projective module in ��M� and a �-M-

small module in ��M�.

Proof. �1 ⇒ 2� It follows from Jayaraman and Vanaja (2000, Proposition 3.7).

�2 ⇒ 1� Let N be an injective module in ��M�. By the assumption, N =P⊕Q
for a projective module P in ��M� and a �-M-small module Q. Then Q is injective
in ��M�. By Proposition 2.9, Q is �-M-small in Q. By Corollary 2.3, Q is projective
in ��M�. Hence N is projective in ��M�. �

Corollary 2.11. The following are equivalent for a ring R:

1. R is a QF-ring;
2. Every right R-module is a direct sum of a projective module and a �-small module.
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428 KOŞAN AND ÖZCAN

3. �-HARADA MODULES

In this chapter, we study some properties of �M -lifting modules in ��M� for a
module M and �-Harada modules.

A module N ∈ ��M� is called �M -lifting if, for all K ≤ N , there exists a
decomposition N = A⊕ B such that A ≤ K and K ∩ B ��M

N . In case M = R, we
use � = lifting instead of �R = lifting.

Remark 3.1. Clearly any lifting module in ��M� is �M -lifting. Suppose N ∈ ��M�
does not contain a projective simple direct summand. By Corollary 2.2, N is
�M -lifting if and only if it is lifting. Hence if M is indecomposable (for example
uniform) or M-singular, then M is �M -lifting if and only if it is lifting.

The following lemma can be seen by a proof similar to Koşan (2007,
Lemma 2.3).

Lemma 3.2.

1. The following are equivalent for a module N ∈ ��M�:

(a) N is �M -lifting;
(b) For all K ≤ N , there exists a decomposition K = A⊕ B such that A≤⊕N and

B ��M
N ;

(c) For all K ≤ N , there exists A ≤⊕ N such that A ≤ K and K/A ��M
N/A.

2. Any direct summand of a �M -lifting module is �M -lifting.

Now we give an example of a �M -lifting module.

Example 3.3. Q = ∏

i=1 Fi where Fi = �2. Let R be the subring of Q generated by⊕


i=1 Fi and 1Q. Then R is �-semiperfect (i.e., �M -lifting) but not semiperfect (i.e., not
lifting) by Zhou (2000, Example 4.1).

Theorem 3.4. Let N ∈ ��M� be a �M -lifting module. If N satisfies DCC (ACC) on
�-M-small submodules, then so also does N/A for any submodule A of N .

Proof. Suppose N is a �M -lifting module and let A ≤ N . Then N = X ⊕ Y with
A=X ⊕ �A ∩ Y� and A ∩ Y ��M

N . Consider the natural map f � Y → Y/�A ∩ Y�.
Then Ker f ��M

Y . N has DCC (ACC) on �-M-small submodules implies that Y
has also DCC (ACC) on �-M-small submodules. From Corollary 2.4 it is easy to
conclude N/A � Y/�A ∩ Y� has DCC (ACC) on �-M-small submodules. �

By Proposition 2.5 and 2.6, we have the following corollary.

Corollary 3.5. Let N ∈ ��M� be a �M -lifting module. Then �M�N� is Artinian
(Noetherian) if and only if �M�N/A� is Artinian (Noetherian) for every A ≤ N .

A family �Xi � i ∈ I	 of submodules of a module N ∈ ��M� is called a local
direct summand of N if

∑
i∈I Xi is direct and

∑
i∈F Xi is a direct summand of N for
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�-M-SMALL AND �-HARADA MODULES 429

any finite subset F of I . If N is an injective lifting module in ��M�, then every local
direct summand of N is a direct summand (see Oshiro, 1984b, Lemma 2.5). For an
injective �M -lifting module in ��M� we have the following result.

Proposition 3.6. If N is an injective �M -lifting module in ��M�, then every local
direct summand of N is a direct sum of an injective module in ��M� and a semisimple
projective module in ��M�.

Proof. Let N ∈ ��M� be an injective �M -lifting module in ��M�. Let X = 
i∈IXi

be a local direct summand of N . We have a decomposition N = M1 ⊕M2 such
that M1 ≤X and X ∩M2 ��M

N . Thus, X = M1 ⊕ �X ∩M2�. For any x ∈ X ∩M2,
we have xR ≤ X1 + · · · + Xn for some n. Since X1 ⊕ · · · ⊕ Xn is self-injective, by
Mohamed and Müller (1990, Proposition 2.1) xR ≤e Z ≤⊕ X1 ⊕ · · · ⊕ Xn for some
Z. This shows that Z ∩M1 = 0 and so Z ⊕M1 ≤⊕ X. Let X = Z ⊕M1 ⊕ U for
some U ≤X. Then Z ⊕ U � X ∩M2. So there exists Y ≤ X ∩M2 such that Z � Y .
It follows that Y ≤⊕ N . By Lemma 2.1, Y is semisimple projective in ��M� and so
is Z. Thus xR=Z is semisimple projective in ��M�. Since x can be any element of
X ∩M2, X ∩M2 is semisimple projective in ��M�. �

Definition 3.7. A module M is called a �-Harada module if every injective module
in ��M� is �-lifting. A ring R is called a right �-Harada ring if every injective right
R-module is �M -lifting.

Any Harada module is a �-Harada module.

Theorem 3.8. The following are equivalent for a module M:

1. M is a �-Harada module;
2. Every module in ��M� is a direct sum of an injective module in ��M� and a �-M-small

module.

Proof. �1 ⇒ 2� It is obvious by Lemma 3.2.

�2 ⇒ 1� Suppose that every module in ��M� is a direct sum of an injective
module in ��M� and a �-M-small module. Let K be a submodule of an injective
module N in ��M�. Then K has a decomposition K = A⊕ B such that A is an
injective module in ��M� and B ��M

B̂. Since N is injective in ��M�, B��M
N . Since

A is injective, A ≤⊕ N . Hence N is �M -lifting by Lemma 3.2. �

Consider the following:

�∗�M Every non-M-small module in ��M� contains a nonzero injective
submodule;

�∗��M Every non-�-M-small module in ��M� contains a nonzero injective
submodule;

(ICC)M For any exact sequence P
f−→ N −→ 0 in ��M� where N is injective

in ��M� and Ker�f� � P, P is injective in ��M�;
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430 KOŞAN AND ÖZCAN

(ICC)�M For any exact sequence P
f−→ N −→ 0 in ��M� where N is injective

in ��M� and Ker�f���M
P, P is a direct sum of an injective module in ��M� and a

semisimple projective module in ��M�.

By Jayaraman and Vanaja (2000, Theorem 2.8) a module M is a Harada
module if and only if M is locally Noetherian with �∗�M if and only if there exists a
subgenerator N in ��M� such that N is

∑
-lifting and M-injective, and (ICC)M holds.

By Oshiro (1984b, Theorem 2.11) and Harada (1979, Proposition 2.1), a ring
R is a right Harada ring if and only if R is right Noetherian with �∗�R if and only if
R is right Artinian with �∗�R if and only if R is right perfect ring with (ICC)R.

Proposition 3.9. �∗�M if and only if �∗��M .

Proof. �⇒� This is clear.

�⇐� Let N ∈ ��M� be a non-M-small module. Then there exists a proper
submodule X of N̂ such that N̂ = N + X. If N ��M

N̂ , then N̂ = Y ⊕ X for some
semisimple projective submodule Y of N in ��M� by Lemma 2.1. Then Y is a nonzero
injective submodule of N in ��M�. If N is non-�-M-small, by hypothesis, N contains
a nonzero injective submodule. �

Let M be a module and N ∈ ��M�. P is called a �-M-small cover of N if there
exists an epimorphism f � P → N such that Ker�f� ��M

P.

Theorem 3.10. Let M be a �-Harada module. Then the following hold:

1. M satisfies �∗�M ;
2. M satisfies (ICC)�M ;
3. Every factor module of an injective module in ��M� has a �-M-small cover in ��M�

which is injective in ��M�.

Proof. (1) By Theorem 3.8, M has �∗��M . Then (1) follows from Proposition 3.9.

(2) Let f � P −→ N be an epimorphism in ��M� where N is injective in ��M�
and Ker�f� ��M

P. By Theorem 3.8, P = X ⊕ Y where X is injective in ��M� and
Y is �-M-small. We claim that Y ��M

P. Then N = f�X�+ f�Y�. f�Y� is �-M-small
(see Lemma 2.8). N is injective implies f�Y� ��M

N (see Proposition 2.9). Since
Ker f ��M

P, f−1f�Y� ��M
P (see Corollary 2.4) and hence Y ��M

P.

(3) Let N be injective in ��M� and K ≤ N . Then N has a decomposition
N =M1 ⊕M2 such that M1 ≤ K and K ∩M2 ��M

N . Let f � M2 → N/K be the
canonical epimorphism. Then Ker�f� = K ∩M2 ��M

N . Hence K ∩M2 ��M
M2.

So M2 is an injective �-M-small cover of N/K. �

Corollary 3.11. (ICC)�M ⇒ (ICC)M .

Proof. Let P
f−→ N −→ 0 be an exact sequence in ��M� where N is injective in

��M� and Ker�f� � P. Then P = X ⊕ Y where X is injective in ��M� and Y is
semisimple projective in ��M�. Put T = �x ∈ P � f�x� ∈ f�X�	. Since Y is semisimple,



D
ow

nl
oa

de
d 

B
y:

 [T
Ü

B
İT

A
K

 E
K

U
A

L]
 A

t: 
06

:5
4 

8 
A

pr
il 

20
08

 

�-M-SMALL AND �-HARADA MODULES 431

P = T ⊕ K for some submodule K of Y . f�X�+ f�K� = N and Ker f � P imply that
P=X⊕K. Hence T = X. This implies that N = f�X�⊕ f�Y�. Since Y is semisimple
and Ker f �P, f is one-to-one on Y . Hence Y � f�Y� ≤ N implies P is injective.

�

Corollary 3.12. If M is a �-Harada module, then M has (ICC)M .

Corollary 3.13. The following are equivalent for a module M:

1. M is a Harada module;
2. M is locally Noetherian with �∗��M ;
3. There exists a subgenerator N in ��M� such that N is

∑
-lifting and M-injective, and

(ICC)�M holds.

Proof. By Jayaraman and Vanaja (2000, Theorem 2.8), Proposition 3.9, and
Corollary 3.11. �

Corollary 3.14. The following are equivalent for a ring R:

1. R is a right Harada ring;
2. R is right Noetherian with �∗��;
3. R is right Artinian with �∗��;
4. R is right perfect with (ICC)�.

Proof. �1 ⇔ 2 ⇔ 3� By Oshiro (1984b, Theorem 2.11), Harada (1979,
Proposition 2.1) and Proposition 3.9.

�1 ⇔ 4� By Oshiro (1984b, Theorem 2.11), Theorem 3.10, and Corollary 3.11.
�

Corollary 3.15. (a) Any right Noetherian (or right perfect) right �-Harada ring is
a right Harada ring.

(b) A right �-Harada ring R is a right Harada ring if R has no simple projective module.

Remark. We couldn’t find an example of a right �-Harada ring which is not right
Harada. Such a ring should not be right Noetherian and right perfect. So we have
the following open question.

Question. Is there a right �-Harada ring which is not a right Harada ring?

Corollary 3.16. If M is a �-Harada module, then every finitely generated submodule
L of M has an ACC on �K ≤ L � Z2

M�L/K� = L/K	. In particular, M/Soc�M� is locally
Noetherian.

Proof. Let N ∈ ��M� and assume that N = ⊕
i∈I Ni where each Ni is M-injective

and Z2
M�Ni� = Ni, then

⊕
i∈I Ni is a local summand of N̂ . Since Z2

M�N� = N , it is
injective in ��M� by Theorem 3.10(4). By Page and Zhou (1994, Proposition 9
and Lemma 7), every finitely generated submodule L of M has ACC on �K ≤ L �
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Z2
M�L/K� = L/K	. Now let L be a finitely generated submodule of M . By Dung et al.

(1994, 5.15), L/Soc�L� is Noetherian and hence M/Soc�M� is locally Noetherian.
�

So if R is a right �-Harada ring, then R/Soc�RR�, and hence R/��RR�, is right
Noetherian.

Proposition 3.17. If M is a �-Harada module with �M�M���M
M and �M�M� = M ∩

�M�M̂�, then M is �M -lifting.

Proof. Let N be a submodule of M . Since M̂ is �M -lifting, there is a decomposition
N = A⊕ B such that A is a direct summand of M̂ and B is a �M -small module.
This implies that A is a direct summand of M and B ≤ M ∩ �M�M̂� = �M�M���M

M .
Hence M is �M -lifting. �

Zhou (2000) calls a ring R �-semiperfect if every simple module has a projective
�-cover. R is �-semiperfect if and only if RR is �M -lifting (Zhou, 2000, Theorem 3.6).

Hence by Proposition 3.17 we have that if R is a right �-Harada ring with
��RR� = R ∩ ��E�R�R�, then R is a �-semiperfect ring.

The following is an example of a ring which is not perfect and not �-Harada.

Example 3.18. Let Q = ∏

i=1 Fi where each Fi = �2. Let R be the subring of Q

generated by
⊕


i=1 Fi and 1Q. Then R is a commutative regular (i.e., cosemisimple;
see Anderson and Fuller, 1974), �-semiperfect ring, and Soc�R� = ��R� but not
semiperfect (Zhou, 2000). The injective hull of RR is E�RR� = QR. Now we claim that
E�RR� is not �-lifting. Assume that E�RR� is �M -lifting. Then R has a decomposition
R = A⊕ B such that A ≤⊕ E�RR� and B �� E�RR� by Lemma 3.2. Since R/��R�
is semisimple, M��R� = ��M� for any R-module M (Zhou, 2000, Theorem 1.8).
Then we have that B ≤ ��E�R�� = E�R���R� = E�R�Soc�R� ≤ Soc�E�R��. Hence B
is semisimple finitely generated submodule of R. Since every simple R-module is
injective, we get that B is injective. Consequently, R is self-injective. This gives a
contradiction. Hence R is not a �-Harada ring.
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