KMU220 CHEMICAL ENGINEERING THERMODYNAMICS I

INTRODUCTION A GENERAL REVIEW OF THERMODYNAMIC CONCEPTS

Selis Önel, Ph.D. Hacettepe University, Department of Chemical Engineering

Outline

- Definition of thermodynamics
- Dimensions and units
- □ Force
- Temperature
- Pressure
- Work
- Energy
- Heat

ID Card

Name	Therme Dynamis
Date of birth	19 th century
Occupation	Describes operation of steam engines
Mother's name	First law of thermodynamics
Father's name	Second law of Thermodynamics

Greek words: therme (heat) + dynamis (power) Thermodynamics -> Power developed from heat

What is Thermodynamics?

Thermodynamics is the study of the effects of work, heat, and energy on a system. Thermodynamics is only concerned with large scale observations.

Zeroth Law: Thermodynamic Equilibrium and Temperature

First Law: Work, Heat, and Energy

Second Law: Entropy

Ref: http://www.grc.nasa.gov/WWW/k-12/airplane/thermo.html

Thermodynamics Definition

5

Thermodynamics is a science of energy where temperature is related to the average molecular motion → statistical mechanics

- Guggenheim's definition: "Thermodynamics is a part of physics concerned with any equilibrium property's dependence on temperature"
- Thermodynamics also formulates the average changes taking place among large numbers of molecules; therefore, it is a macroscopic science

History

- First emergence as a science: After construction and operation of steam engines
 - □ in 1697 by Thomas Savery and
 - □ in 1712 by Thomas Newcomen in England.
- Formulations of thermodynamic principles for describing the conservation and conversion of energy
 - Carnot: @1824 \rightarrow heat-fluid theory

2nd law of thermodynamics=limitations in transferring heat into work

R.J. Mayer: @1842 \rightarrow equivalence of heat and mechanical work

1st law of thermodynamics=Conservation of energy

- Rankine
- Clausius
- Kelvin
- Statistical mechanics: Maxwell, Boltzmann, Gibbs
- Nernst: 3rd law

©SelisÖnel

Chemical engineer & thermodynamics

- 7
- Calculation of heat and work requirements for physical and chemical processes
- Determination of equilibrium conditions for
 - Chemical reactions
 - Transfer of chemical species between phases (mass transport)
- □ Thermodynamics
 - deals with driving force
 - does not deal with RATEs of physical or chemical phenomena
- Rate=f(driving force, resistance)

Basic Thermodynamic definitions

- 8
 - A system contains a substance with a large amount of molecules or atoms, and is formed by a geometrical volume of macroscopic dimensions subjected to controlled experimental conditions
 - A simple system is a single state system with no internal boundaries, and is not subject to external force fields or inertial forces
 - A composite system has at least two simple systems separated by a barrier restrictive to one form of energy or matter
 - □ The boundary of the volume separates the system from its surroundings
 - A system may be taken through a complete cycle of states, in which its final state is the same as its original state

Closed and Open systems

Closed system:

- Material content is fixed
- Internal mass changes only due to a chemical reaction
- Exchange energy only in the form of heat or work with the surroundings

Open system:

- Material and energy content are variable
- Systems freely exchange mass and energy with their surroundings

Other systems

Isolated system:

- Cannot exchange energy and matter
- Thermally insulated system:
- System surrounded by an insulating boundary

Universe:

 A system and its surroundings

©SelisÖnel

Classical vs. Statistical Thermodynamics

Classical thermodynamics formulate the macroscopic state

- Studies the average behavior of large groups of molecules
- Defines macroscopic properties such as temperature and pressure

Statistical thermodynamics formulate the microscopic state

 Defines the properties of a system based on the behavior of molecules/atoms

Processes

Energy conversion and degradation ightarrow physical and chemical processes

A process takes place in a system!

Adiabatic process:

 Any process within an adiabatic system (no heat transfer through the system boundaries)

Steady state process:

- Variables in the system remain constant with time
- System exchanges energy or matter at a constant rate

Unsteady state process (transient process):

Variables in the system change with time

Infinitesimal process:

A process that takes place with only an infinitesimal change in the macroscopic properties of a system

Processes

- Planck's classification considering three independent infinitesimal processes:
- Natural processes actually occur and always proceed in a direction toward equilibrium
- Unnatural processes are those that proceed in a direction away from equilibrium that never occurs
- Reversible process is a case between natural and unnatural processes and proceeds in either direction through a continuous series of equilibrium states

Ex: Processes

14

Consider the evaporation of a liquid at an equilibrium pressure P_{eq}:
If P<P_{eq} → a natural evaporation takes place
When P>P_{eq} → evaporation is unnatural
If P=P_{eq}-δ, where δ>0, evaporation takes place and in the limit δ→ 0 process becomes reversible

Source: E.A. Guggenheim, Thermodynamics. An Advanced Treatment for Chemists and Physicists, North Holland, Amsterdam (1967)

Thermodynamic properties

15

- are derived from the statistical averaging of the observable microscopic coordinates of motion
- □ If a thermodynamic property is a *state function*
 - its change is independent of the path between the initial and final states
 - Jepends on only the properties of the initial and final states of the system
- The infinitesimal change of a state function is an exact differential

What do we mean by the State of a System?

The state of a system is fixed by knowing a minimum number of the system properties

are additive and depend upon the mass of the system, e.g. m, n, V, H, U, etc.

INTENSIVE

are not additive and do not depend upon the mass of the system,e.g. P, T, refractive index,density,thermal conductivity,etc.

Extensive properties

Properties like mass m and volume V are:

- Defined by the system as a whole (total amounts)
- Additive
- All extensive properties are homogeneous functions of the first order in the mass of the system
- Ex: Doubling the mass of a system at constant composition doubles the internal energy

Intensive properties

Pressure P and temperature T define the values at each point of the system and are therefore called intensive properties

Intensive properties can be expressed as derivatives of extensive properties

Ex: $\mathbf{T} = (\partial \mathbf{U} / \partial \mathbf{S})_{\mathbf{V}, \mathbf{N}i}$

Temperature scales

19

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed, McGraw-Hill

©SelisÖnel

Pressure: Dead-weight gauge

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed, McGraw-Hill

©SelisÖnel

Partial properties

- 21
- If X denotes any extensive property (not necessarily a thermodynamic property) of a phase:
- → It is possible to derive intensive properties denoted by X_i Partial property→ $X_i = \left(\frac{\partial X}{\partial n_i}\right)_{T,P,r}$, $(i \neq j)$
- \rightarrow For any partial property at constant T and P:
- $\rightarrow dX = \sum_{i} (\partial X / \partial n_{i}) dn_{i} = \sum_{i} X_{i} dn_{i}$
- → Euler theorem gives: $X = \sum_i X_i n_i$
- $\rightarrow v = \Sigma_i v n_i \rightarrow \text{Specific volume}$

Energy in Transit: Energy may be transferred in the form of heat or work through the system boundary

Conversion of **work** to **heat** or heat to work: Work → Heat or Heat → Work Efficiency= ? |Work | ≠ |Heat |

□ In a complete cycle of steady-state process

- \rightarrow |work|=|heat|
- → Internal energy change is zero ... work done on the system is converted to heat by the system

- Mechanical work of expansion or compression proceeds with the observable motion of the coordinates of the particles of matter
- Chemical work proceeds with changes in internal energy due to changes in the chemical composition (mass action)
- Potential energy is the capacity for mechanical work related to the position of a body
- Kinetic energy is the capacity for mechanical work related to the motion of a body
- Potential and kinetic energies are <u>external energies</u>
- Sensible heat and latent heat are <u>internal energies</u>

Mechanical Work: P-V

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed, McGraw-Hill

$$dW = Fdl = -PAd\left(\frac{V^{t}}{A}\right) = -PdV^{t}$$
$$W = -\int_{V_{1}^{t}}^{V_{2}^{t}} PdV^{t}$$

(-) → work is done on the system, piston moves down to compress fluid,
i.e. volume change is positive
(+) → work is done on the surroundings,
piston moves up to expand fluid,
i.e. volume change is negative