KMU220 CHEMICAL ENGINEERING THERMODYNAMICS I

INTRODUCTION A GENERAL REVIEW OF THERMODYNAMIC CONCEPTS

Selis Önel, Ph.D. Hacettepe University, Department of Chemical Engineering

Outline

- Definition of thermodynamics
- □ Dimensions and units
- □ Force
- \Box Temperature
- □ Pressure
- Work
- □ Energy
- □ Heat

ID Card

Greek words: *therme (heat) + dynamis (power) Thermodynamics Power developed from heat*

What is Thermodynamics?

Thermodynamics is the study of the effects of work, heat, and energy on a system. Thermodynamics is only concerned with large scale observations.

Zeroth Law: Thermodynamic Equilibrium and Temperature

First Law: Work, Heat, and Energy

Second Law: Entropy

Ref: http://www.grc.nasa.gov/WWW/k-12/airplane/thermo.html

Thermodynamics Definition

5

Thermodynamics is *a* science of energy where temperature is related to the average molecular motion \rightarrow statistical mechanics

- **Guggenheim's definition:** "Thermodynamics is a part of physics concerned with any equilibrium property's dependence on temperature"
- Thermodynamics also formulates the average changes taking place among large numbers of molecules; therefore, it is a macroscopic science

History

- □ First emergence as a science: After construction and operation of steam engines
	- in 1697 by Thomas Savery and
	- \Box in 1712 by Thomas Newcomen in England.
- \Box Formulations of thermodynamic principles for describing the conservation and conversion of energy
	- **Q** Carnot: $@1824$ \rightarrow heat-fluid theory

2nd law of thermodynamics=limitations in transferring heat into work

R.J. Mayer: $@1842 \rightarrow$ equivalence of heat and mechanical work

1 st law of thermodynamics=Conservation of energy

- **E** Rankine
- **O** Clausius
- \blacksquare Kelvin
- Statistical mechanics: Maxwell, Boltzmann, Gibbs
- **D** Nernst: 3rd law

©SelisÖnel

Chemical engineer & thermodynamics

- **7**
- □ Calculation of heat and work requirements for physical and chemical processes
- □ Determination of equilibrium conditions for
	- **O** Chemical reactions
	- **O** Transfer of chemical species between phases (mass transport)
- \Box Thermodynamics
	- \blacksquare deals with driving force
	- **D** does not deal with RATEs of physical or chemical phenomena
- \Box Rate=f(driving force, resistance)

Basic Thermodynamic definitions

- **8**
	- A *system* contains a substance with a large amount of molecules or atoms, and is formed by a geometrical volume of macroscopic dimensions subjected to controlled experimental conditions
	- A *simple system* is a single state system with no internal boundaries, and is not subject to external force fields or inertial forces
	- A *composite system* has at least two simple systems separated by a barrier restrictive to one form of energy or matter
	- The *boundary* of the volume separates the system from its *surroundings*
	- \Box A system may be taken through a complete cycle of states, in which its final state is the same as its original state

Closed and Open systems

Closed system:

- Material content is fixed
- \Box Internal mass changes only due to a chemical reaction
- □ Exchange energy only in the form of heat or work with the surroundings

Open system:

- □ Material and energy content are variable
- □ Systems freely exchange mass and energy with their surroundings

9

Other systems

Isolated system:

- □ Cannot exchange energy and matter
- **Thermally insulated system:**
- □ System surrounded by an insulating boundary

Universe:

□ A system and its surroundings

Classical vs. Statistical Thermodynamics

11

Classical thermodynamics formulate the macroscopic state

- \rightarrow Studies the average behavior of large groups of molecules
- \rightarrow Defines macroscopic properties such as temperature and pressure

Statistical thermodynamics formulate the microscopic state

 \rightarrow Defines the properties of a system based on the behavior of molecules/atoms

Processes

Energy conversion and degradation \rightarrow physical and chemical processes

A process takes place in a system!

Adiabatic process:

 Any process within an adiabatic system (no heat transfer through the system boundaries)

Steady state process:

- Variables in the system remain constant with time
- □ System exchanges energy or matter at a constant rate

Unsteady state process (transient process):

Variables in the system change with time

Infinitesimal process:

 \Box A process that takes place with only an infinitesimal change in the macroscopic properties of a system

Processes

- Planck's classification considering three independent infinitesimal processes:
- Natural processes actually occur and always proceed in a direction toward equilibrium
- □ Unnatural processes are those that proceed in a direction away from equilibrium that never occurs
- □ Reversible process is a case between natural and unnatural processes and proceeds in either direction through a continuous series of equilibrium states

Ex: Processes

Consider the evaporation of a liquid at an equilibrium pressure P_{eq} *:* \Box If $P < P_{eq}$ \rightarrow a natural evaporation takes place \Box When $P>P_{eq} \rightarrow$ evaporation is unnatural If $P=P_{eq}$ *-* δ , where δ >0, evaporation takes place and in the limit $\delta \rightarrow 0$ process becomes reversible

Source: E.A. Guggenheim, Thermodynamics. An Advanced Treatment for Chemists and Physicists, North Holland, Amsterdam (1967)

Thermodynamic properties

15

- are derived from the statistical averaging of the observable microscopic coordinates of motion
- □ If a thermodynamic property is a *state function*
	- \rightarrow its change is independent of the path between the initial and final states
	- \rightarrow depends on only the properties of the initial and final states of the system
- \Box The infinitesimal change of a state function is an exact differential

What do we mean by the State of a System?

 \Box The state of a system is fixed by knowing a minimum number of the system properties

EXTENSIVE

 \blacksquare are additive and depend upon the mass of the system, e.g. m, n, V, H, U, etc.

INTENSIVE

n are not additive and do not depend upon the mass of the system,e.g. P, T, refractive index,density,thermal conductivity,etc.

Extensive properties

Properties like mass *m* and volume *V* are:

- \Box Defined by the system as a whole (total amounts)
- Additive
- All extensive properties are homogeneous functions of the first order in the mass of the system
- Ex: Doubling the mass of a system at constant composition doubles the internal energy

Intensive properties

Pressure *P* and temperature *T* define the values at each point of the system and are therefore called intensive properties

 \Box Intensive properties can be expressed as derivatives of extensive properties

 $\mathbf{E} \times$: $\mathbf{T} = (\partial \mathbf{U}/\partial \mathbf{S})_{V,Ni}$

Temperature scales

19

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed, McGraw-Hill

©SelisÖnel

Pressure: Dead-weight gauge

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, $7th$ Ed, McGraw-Hill

©SelisÖnel

Partial properties

- **21**
- If *X* denotes any extensive property (not necessarily a thermodynamic property) of a phase:
- \rightarrow It is possible to derive intensive properties denoted by X_i Partial property \rightarrow $(i \neq j)$ $\begin{array}{c} \begin{array}{c} \text{(not ne)} \ \text{case:} \end{array} \ \begin{array}{c} \text{(not n)} \ \text{(not n)} \end{array} \ \begin{array}{c} \text{(not n)} \ \text{(not n)} \end{array} \ \begin{array}{c} \text{(not n)} \ \text{(i)} \end{array}$ $i \begin{array}{c|c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ First phase:
 i phase:
 \sum_{i}^{r} properties dend
 \sum_{i}^{r} , $(i \neq j)$
 \sum_{i}^{r} phase:
 \sum_{i}^{r} and P : $X \mid (1, 0)$ **rifies**

ve property (not necessarily a

intensive properties denoted by $X_i = \left(\frac{\partial X}{\partial n_i}\right)_{T,P,n_j}$, $(i \neq j)$

rty at constant T and P:
 $\Sigma_i X_i dn_i$
 $X_i = \Sigma_i X_i n_i$

volume
 $\otimes_{\text{Selis\bullet rel}}$ n_i _r $_{r}$ ⁷ (\cdot \cdot) example operty (not necessarily a
of a phase:
nsive properties denoted by X_i
 $\left(\frac{\partial X}{\partial n_i}\right)_{T,P,n_j}, \quad (i \neq j)$
it constant T and P :
 n_i
 $N_iX_jn_j$
- For any partial property at constant *T* and *P:*
- \rightarrow *dX* = Σ_i (∂*X*/∂*n*_{*i*})dn_{*i*} = Σ_i *X_idn_i*
- \rightarrow Euler theorem gives: $X = \sum_i X_i n_i$
- *→ ν* = Σ_{*i}νn_i* → Specific volume</sub>

j

Energy in Transit: Energy may be transferred in the form of heat or work through the system boundary

Conversion of **work** to **heat** or heat to work: Work \rightarrow Heat or Heat \rightarrow Work Efficiency= ? **|Work| |Heat|**

 \Box In a complete cycle of steady-state process

- \rightarrow | work | = | heat |
- \rightarrow Internal energy change is zero \therefore work done on the system is converted to heat by the system

- **Mechanical work** of expansion or compression proceeds with the observable motion of the coordinates of the particles of matter
- **Chemical work** proceeds with changes in internal energy due to changes in the chemical composition (mass action)
- **Potential energy** is the capacity for mechanical work related to the position of a body
- **Kinetic energy** is the capacity for mechanical work related to the motion of a body
- **Potential and kinetic energies are external energies**
- **Sensible heat and latent heat are internal energies**

Mechanical Work: P-V

Ref: Smith, Van Ness and Abbott, Introduction to Chemical Engineering Thermodynamics, 7th Ed, McGraw-Hill

$$
dW = Fdl = -PAd\left(\frac{V^t}{A}\right) = -PdV^t
$$

$$
W = -\int_{V_1^t}^{V_2^t} PdV^t
$$

 $(-)$ \rightarrow work is done on the system, piston moves down to compress fluid, i.e. volume change is positive $(+)$ \rightarrow work is done on the surroundings, piston moves up to expand fluid, i.e. volume change is negative