
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Python

 Programming Language

#1

2

Monty Python (sometimes known as The Pythons) was a British surreal comedy group that created

Monty Python's Flying Circus, a British television comedy sketch show that first aired on the BBC on

5 October 1969.

Snake logos and mascot not

with standing, it’s named after

Monty Python’s Flying Circus

3

• Invented in the Netherlands, early 90s by Guido van Rossum

• Named after Monty Python

• Open sourced from the beginning, man-aged by Python
Software Foundation

• Considered a scripting language, but is much more

• Scalable, object oriented and functional from the beginning

• Used by Google from the beginning

Brief History of Python

4

http://en.wikipedia.org/wiki/Python_Software_Foundation
http://en.wikipedia.org/wiki/Python_Software_Foundation

5

Python’s Benevolent Dictator For Life

“Python is an experiment in how

much freedom program-mers

need. Too much freedom and

nobody can read another's code;

too little and expressive-ness is

endangered.”

 - Guido van Rossum

http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Guido_van_Rossum
http://en.wikipedia.org/wiki/Guido_van_Rossum

6

• TIOBE has been collecting data on programming language “popularity” for

many years

7

Python’s place in the Market

8

Python’s place in the Market

9

Python’s place in the Market

10

• Extensible (packages)

• Embeddable into applications

• Functional programming

• Object-Oriented programming

• Rapid Prototyping

• Great for readability and presentation

• White space is significant

• Low maintenance costs

• Exception handling

• Free (open source)

Distinct Features of Python

11

The core philosophy of the language is summarized by

the document "PEP 20 (The Zen of Python)",

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Readability counts.

Try;

>>> import this

12

In 1994, Mike Gancarz, a member of Digital Equipment Corporation's

Unix Engineering Group (UEG), published The UNIX Philosophy",

• Small is beautiful.

• Make each program do one thing well.

• Build a prototype as soon as possible.

• Choose portability over efficiency.

• Store data in flat text files.

• Use software leverage to your advantage.

• Use shell scripts to increase leverage and portability.

• Avoid captive user interfaces.
• Make every program a filter.

The nine basic "tenets" he claims to be important are

13

http://www.python.org/

14

https://docs.python.org/3/

15

16

• code or source code: The sequence of instructions in a program.

• syntax: The set of legal structures and commands that can be used in a particular

programming language.

Programming Basics

• output: The messages printed to

the user by a program.

• console: The text box onto which

output is printed.

– Some source code editors pop

up the console as an external

window, and others contain

their own console window.

17

Compiling and Interpreting

Both types of languages have their strengths and weaknesses. Usually, the

decision to use an interpreted language is based on time restrictions on

development or for ease of future changes to the program.

Compiled languages are all translated by running the source code through a

compiler. This results in very efficient code that can be executed any number of

times. The overhead for the translation is incurred just once, when the source is

compiled; thereafter, it need only be loaded and executed. Interpreted

languages, in contrast, must be parsed, interpreted, and executed each time the

program is run, thereby greatly adding to the cost of running the program. For

this reason, interpreted programs are usually less efficient than compiled

programs.

18

Compiling and Interpreting

Python is an interpreted language, as opposed to a compiled one, though the

distinction can be blurry because of the presence of the bytecode compiler. This

means that source files can be run directly without explicitly creating an

executable which is then run.

Python is not interpreted. The standard implementation compiles to bytecode,

and then executes in a virtual machine.

This is the approach taken by languages like Java and C#. The code is

transformed into instructions for a "virtual machine". These instructions are

then interpreted.

Bytecode, also known as p-code (portable code), is a form of instruction set

designed for efficient execution by a software interpreter.

19

Compiling and Interpreting

• Many languages require you to compile (translate) your program

into a form that the machine understands.

20 20

Compiling and Interpreting

21

Compiling and Interpreting

22

Compiling and Interpreting

23

Compiling and Interpreting

• Python is instead directly interpreted into machine instructions.

interpret

output source code
Hello.py

24

Compiling and Interpreting

Your source code doesn’t contain all the information that the virtual

machine needs. For example, it does not contain the implementation of

the print function. The virtual machine locates functions such as print in

library modules. Generally, you need not be concerned with library

modules.

25

Compiling and Interpreting

An interpreter is a translating program that translates and executes the

statements in sequence. Unlike an assembler or compiler that produces

machine code as output, which is then executed in a separate step, an

interpreter translates a statement and then immediately executes the

statement.

By definition, machine code differs from machine to machine. That is,

each type of CPU has its own machine language that it understands. So

how can we give each of you the experience of using machine language

when you may be working on different machines? We solve that problem

by using a virtual computer. A virtual computer is a hypothetical machine,

in this case one that is designed to contain the important features of real

computers that we want to illustrate.

26

Hello World

27

Hello World

Hello World

28

Hello World

29

Hello World

30

Hello World

31

interpret

output source code
HelloWorld.py

Lecture Notes

32

Lecture Notes

33

34

Lecture Notes

35

Lecture Notes

36

Lecture Notes

