
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Variables

#2

2

Computers can be annoyingly literal. If you don't tell them exactly what
you want them to do, they are likely to do the wrong thing. Try writing
an algorithm for driving between two destinations. Write it the way you
would for a person, and then imagine what would happen if that person
were as stupid as a computer, and executed the algorithm exactly as
written. (For an amusing illustration of this, take a look at the video

Exact Instructions Challenge PB&J Classroom Friendly

• https://www.youtube.com/watch?v=FN2RM-CHkuI&t=24s

Programming

3

• variable: A named piece of memory that can store a value.

– Usage:

• Compute an expression's result,

• store that result into a variable,

• and use that variable later in the program.

• assignment statement: Stores a value into a variable.

– Syntax:

 variable = expression

– Examples: x = 5

 gpa = 3.14

 x 5 gpa 3.14

Variables

4

Variables

left-hand side = right-hand side

LHS = RHS
>>> width = 10 <enter>

>>> length = 5 <enter>

>>>

>>> print(width) <enter>

10

>>> print(length) <enter>

5

>>> print('width') <enter>

width

>>> print(width) <enter>

10

>>> 25 = age <enter>

SyntaxError: can't assign to literal

5

Variables
Left = Right

6

Variables are chunks of data stored in the computers memory.

There are generally three types of data stored in variables. Variables can be

in the form of integers or in a string. The second type of data, called a float,

refers to the non-whole numbers like decimals.

integers 1, 2, 3, 4,

float 0.3, 1.1, 1.8, 2.5, 3.14,

string “what is your name ? “, “your age is 18”, ...

How about 5j ? What is it?

Variables

7

• Integer objects

• Floating-point objects

• Complex number objects

• Decimal: fixed-precision objects

• Fraction: rational number objects

• Sets: collections with numeric operations

• Booleans: true and false

• Built-in functions and modules: round, math, random, etc.

• Expressions; unlimited integer precision; bitwise operations; hex,

octal, and binary formats

• Third-party extensions: vectors, libraries, visualization, plotting, etc.

Variables

8

Literal Interpretation

1234, −24, 0, 99999999999999 Integers (unlimited size)

1.23, 1., 3.14e-10, 4E210, 4.0e+210 Floating-point numbers

0o177, 0x9ff, 0b101010 Octal, hex, and binary literals

3+4j, 3.0+4.0j, 3J Complex number literals

set('spam'), {1, 2, 3, 4} Sets: construction forms

Decimal('1.0'), Fraction(1, 3) Decimal and fraction extension types

bool(X) True, False Boolean type and constants

Variables

9

Numbers in Python

Python offers three different kinds of numbers with which you can work:

integers , floating - point numbers (or floats), and imaginary numbers .

>>> type(1)

<class 'int'>

>>> type(200000)

<class 'int'>

>>> type(99999999999999)

<class 'int'>

>>> type(1.0)

<class 'float'>

>>> type(5j)

<class 'complex'>

Variables

10

Data type Cat <class 'cat'>

Variables

11

>>> 399 + 3020 + 1 + 3456

6876

>>> 300 - 59994 + 20

-59674

>>> 4023 - 22.46

4000.54

>>> 2000403030 * 392381727

784921595607432810

>>> 2000403030 * 3923817273929

7849215963933911604870

>>> 2e304 * 3923817273929

inf

>>> 2e34 * 3923817273929

7.847634547858e+46

Numbers in Python

Variables

12

>>> import sys

>>> sys.float_info

sys.float_info(max=1.7976931348623157e+308, max_exp=1024,

max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,

min_10_exp=-307, dig=15, mant_dig=53,

epsilon=2.220446049250313e-16, radix=2, rounds=1)

>>> sys.int_info

sys.int_info(bits_per_digit=30, sizeof_digit=4)

>>> # Guess what is the answer?

>>> 0.1 + 0.1 + 0.1 - 0.3 # it must be ZERO !!

Numbers in Python

Variables

13

Fixed Point and Floating Point Arithmetic

Variables

In contrast, numbers like 1.1 and 2.2 do not have

exact representations in binary floating point.

End users typically would not expect 1.1 + 2.2 to

display as 3.3000000000000003 as it does with

binary floating point.

Decimal numbers can be represented exactly in

binary.

14

Variables

Integer Numbers Decimal : Binary : Hexadecimal

for i in range(16):

 print(f"{f'{i:d}':>2}:{f'{i:b}':>5}:{f'{i:X}':>2}")

 0: 0: 0

 1: 1: 1

 2: 10: 2

 3: 11: 3

 4: 100: 4

 5: 101: 5

 6: 110: 6

 7: 111: 7

 8: 1000: 8

 9: 1001: 9

10: 1010: A

11: 1011: B

12: 1100: C

13: 1101: D

14: 1110: E

15: 1111: F

http://evanw.github.io/float-toy/

15

Numbers in Python

Variables

16

>>> 0.1 + 0.1 + 0.1 - 0.3

5.551115123125783e-17 # be careful !!

>>> # However, with decimals, the result can be exact:

>>> from decimal import Decimal

>>> Decimal('0.1')+Decimal('0.1')+Decimal('0.1')-Decimal('0.3')

Decimal('0.0')

When decimals of different precision are mixed in expressions,

Python converts up to the largest number of decimal digits

>>> Decimal('0.1')+Decimal('0.10')+Decimal('0.10')-

Decimal('0.30')

Decimal('0.00')

Numbers in Python

Variables

17

Setting Decimal Precision Globally

>>> import decimal

>>> decimal.Decimal(1) / decimal.Decimal(7)

Decimal('0.1428571428571428571428571429')

Default: 28 digits

>>> decimal.getcontext().prec = 4

Fixed precision

>>> decimal.Decimal(1) / decimal.Decimal(7)

Decimal('0.1429')

The decimal module provides support for fast correctly-rounded decimal

floating point arithmetic. It offers several advantages over the float

datatype

Fixed Point and Floating Point Arithmetic

Variables

18

Fixed Point and Floating Point Arithmetic

Variables

>>> 0b0001

1

>>> 0b0010

2

>>> bin(21)

'0b10101'

>>> int('101111',2)

47

>>> 0b101111

47

>>> bin(0.5)

Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 bin(0.5)

TypeError: 'float' object cannot be interpreted as an integer

19

Mixed Types Are Converted Up

integers are simpler than floating point numbers, which are simpler than

complex numbers. So, when an integer is mixed with a floating point, as in

the preceding example, the integer is converted up to a floating-point value

first, and floating-point math yields the floating-point result

>>> 40 + 3.14 # Integer to float, float math/result

43.14

You can force the issue by calling built-in functions to convert types

manually
>>> int(3.1415) # Truncates float to integer

3

>>> float(3) # Converts integer to float

3.0

Variables

Variables and Basic Expressions

Variables are created when they are first assigned values.

Variables are replaced with their values when used in expressions.

Variables must be assigned before they can be used in expressions.

Variables refer to objects and are never declared ahead of time.

>>> a = 3 # Name created: not declared ahead of time

>>> b = 4

>>> a + 1, a − 1 # Addition (3+1), subtraction (3−1)

(4, 2)

>>> b * 3, b / 2 # Multiplication (4*3), division (4/2)

(12, 2.0)

>>> a % 2, b ** 2 # Modulus (remainder), power (4**2)

(1, 16)

>>> 2 + 4.0, 2.0 ** b # Mixed-type conversions

(6.0, 16.0)

Variables

20

Unpacking a Sequence into Separate Variables
>>> p = (4, 5)

>>> x, y = p

>>> x

4

>>> y

5

If there is a mismatch in the number of elements, you’ll get an error. For

example:

>>> p = (4, 5)

>>> x, y, z = p

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: need more than 2 values to unpack

Variables

21

Variables

Legal or Illegal?

Variable names may only use letters, digits, or underscores.

Variable Name Legal or Illegal?

units_per_day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.

June1997 Legal

Mixture#3 Illegal

Please give 5 Legal and 5 Illegal Variable Names

22

Python Naming Conventions

23

24

Python Naming Conventions

Do NOT use these words as a variable name
>>>help('keywords')

Here is a list of the Python keywords. Enter any keyword to get

more help.

False class from or

None continue global pass

True def if raise

and del import return

as elif in try

assert else is while

async except lambda with

await finally nonlocal yield

break for not

Key Words in Python

“SyntaxError: invalid syntax...” is Python’s ways of saying, “Hey, you

don’t know what you are talking about and neither do I! Speak Python!”

25

Python Naming Conventions

26

Python Naming Conventions

• Variable names can contain only letters, numbers, and underscores. They can start
with a letter or an underscore, but not with a number. For instance, you can call a
variable message_1 but not 1_message.

• Spaces are not allowed in variable names, but underscores can be used to separate
words in variable names. For example, greeting_message works, but
greeting message will cause errors.

• Avoid using Python keywords and function names as variable names; that is, do not
use words that Python has reserved for a particular programmatic purpose, such as
the word print.

• Variable names should be short but descriptive. For example, name is better than n,
student_name is better than s_n, and name_length is better than
length_of_persons_name.

• Be careful when using the lowercase letter l and the uppercase letter O because
they could be confused with the numbers 1 and 0.

Variables Naming Rules

• You cannot use one of Python’s key words as a variable name.

• A variable name cannot contain spaces.

• The first character must be one of the letters a through z, A through Z,

or an underscore character (_).

• After the first character you may use the letters a through z or A

through Z, the digits 0 through 9, or underscores.

• Uppercase and lowercase characters are distinct. This means the

variable name ItemsOrdered is not the same as itemsordered.

27

Python Naming Conventions

28

>>> "This is a string using a double quote"

'This is a string using a double quote'

>>> 'This is a string with a single quote'

'This is a string with a single quote'

>>> """This string has three quotes

look at what it can do!"""

'This string has three quotes\nlook at what it can do!'

Variables

Strings in Python

When you type a string into Python, you do so by preceding it with quotes. Whether
these quotes are single ('), double(“), or triple(“ “ “) depends on what you are trying
to accomplish.

29

Variables

>>> boilerplate = """

 #===(")===#===(*)===#===(")===#

 Egregious Response Generator

 Version '0.1'

 "FiliBuster" technologies inc.

 #===(")===#===(*)===#===(")===#

 """

>>> print(boilerplate)

 #===(")===#===(*)===#===(")===#

 Egregious Response Generator

 Version '0.1'

 "FiliBuster" technologies inc.

 #===(")===#===(*)===#===(")===#

>>>

30

Variables

>>> s = 'Hello'

>>> a, b, c, d, e = s

>>> a

'H'

>>> b

'e'

When unpacking, you may sometimes want to discard certain

values

==================== RESTART ======================

s = 'Hello'

>>> _, b, c, d, e = s

>>> a

Traceback (most recent call last):

 File "<pyshell#14>", line 1, in <module>

 a

NameError: name 'a' is not defined

31

Variables
Casting String To Integer

>>> int('99')

99

>>> int('-29')

-29

>>> int('99 bottles of milk!')

ValueError: invalid literal for int() with base 10: '99

bottles of milk!'

>>> int(' ')

ValueError: invalid literal for int() with base 10: ' '

>>> int('98.6')

ValueError: invalid literal for int() with base 10:

'98.6'

>>>

32

Variables
Casting String To Float

>>> float(98)

98.0

>>> float('98')

98.0

>>> float('99 bottles of milk!')

ValueError: could not convert string to float: '99

bottles of milk!'

>>> float('99.3')

99.3

>>> float(' ')

ValueError: could not convert string to float:

33

Variables

Each data (or object) in Python is assigned a unique identifier (basically, an integer)
which can be accessed by the id() function. Having unique identifiers, Python
manages memory space such that multiple occurrences of the same data are stored
only once whenever possible. For example:

>>> a = 1

>>> b = 1

>>> id(1)

1921961712

>>> id(a)

1921961712

>>> id(b)

1921961712

1 a

b 1921961712

34

Variables

1 a

b 1921961712

>>> a = 1

>>> b = 1

>>> id(1)

1921961712

>>> id(a)

1921961712

>>> id(b)

1921961712

>>> a = 2

>>> b

1

>>> id(a)

1921961744

>>> id(b)

1921961712

2

1921961744

35

Variables

>>> a = 'serdar'

>>> b = 'serdar'

>>> id(a)

2197335546608

>>> id(b)

2197335546608

id('serdar')

2197335546608

>>> a = 's'

>>> b = 's'

>>> id(a)

2197299367088

>>> id(b)

2197299367088

>>> a == b

True

36

from objbrowser import browse

a = 16

browse(locals())

Everything Is an Object

37

Variables

Python’s garbage collection is based mainly upon reference counters, however, it also
has a component that detects and reclaims objects with cyclic references in time. This
component can be disabled if you’re sure that your code doesn’t create cycles, but it is
enabled by default. ,

>>> a = 3

>>> b = a

the variables a

and b wind up

referencing the

same object

38

Variables

A circular reference is a cyclic dependency in Python. Python's garbage collector runs
automatically when a program exits. It will try to free unused objects by removing them
from the program's memory. If you have a circular reference, the garbage collector will
run infinitely until your program eventually crashes.

39

Variables

>>> a = 3

>>> b = a

>>> a = 'spam'

After running the assignment a = ‘spam’. Variable a references
the new object (i.e., piece of memory) created by running the literal
expression ‘spam’, but variable b still refers to the original object 3.
Because this assignment is not an in-place change to the object 3, it
changes only variable a, not b.

in Python variables are
always pointers to objects,
not labels of changeable
memory areas: setting a
variable to a new value does
not alter the original object,
but rather causes the variable
to reference an entirely
different object.

For more details on Python’s cycle detector, see the documentation for the gc module in
Python’s library manual.

40

Variables

41

Operators

Operators do something, like add, multiply, divide, subtract, or compare. Notice that
we already used the = sign to assign identifiers. So, we can’t use the equal sign as an
operator. Instead we must use == to mean; “equals.” What other useful things can be
done with operators?

In the Python shell type:
“words words words words words”
Hit enter

Now type:

“words ” * 10

Hit enter. ???

Operators

Arithmetic operators we will use:
+ addition
 - subtraction/negation
 * multiplication
 / division
% modulus, a.k.a. remainder
** exponentiation

precedence: Order in which operations are computed.
* / % ** have a higher precedence than + -

1 + 3 * 4 is 13

Parentheses can be used to force a certain order of evaluation.
(1 + 3) * 4 is 16

42

Operators

43

>>>

>>> 1.0023 − 1.0567

>>>

>>> 1000.0023 − 1000.0567

>>>

>>> a = 1234.567

>>> b = 45.67834

>>> c = 45.67834

>>> d = (a + b) + c

>>> e = a + (b + c)

>>> print(d)

>>> print(e)

Try these..

Floating point calculations !!!

44

When we divide integers with // , the quotient is also an integer.
 >>> 3//3

 1

 >>> 3//2

 1

 >>> 5//8

 0

 >>> 8//5

 1

The % operator computes the remainder from a division of integers.
 >>> 8%5

 3

 >>> 3%2

 1

 >>> 3%3

 0

Integer Division
Operators

45

Operators

We also have comparison operators for…
you guessed it; comparing things!
Here are some of those:

> for greater than
< for less than
<= less than or equal to
>= greater than or equal to
= = equal to
! = not equal to

Remember that we already used the = symbol to define or tell the computer the
meaning of our variables. So we don’t confuse our little computer, we must use = = to
express the traditional meaning of “equal to.”

46

Operators

Boolean is the type of data that represents the answer to questions like 9 < 19. The
words “and, or,” and “not” are logical operators. A simple condition is a comparison
that only uses two values:
9<19

A compound condition is a comparison using more than two values:
x < 10 and x>5

These logical operators generally mean the same thing in programming as they do in
English.

47

>>> 1 < 2 # Less than

True

>>> 2.0 >= 1 # Greater than or equal: mixed-type 1 converted to 1.0

True

>>> 2.0 == 2.0 # Equal value

True

>>> 2.0 != 2.0 # Not equal value

False

>>> X = 2

>>> Y = 4

>>> Z = 6

>>> X < Y < Z # Chained comparisons: range tests

True

>>> X < Y and Y < Z

True

Operators

48

Operators

>>> int(False)

>>> ?

>>> int(True)

>>> ?

>>> not 0

>>> ?

>>> not 1

>>> ?

>>> not “ “

>>> ?

>>> not "This is some text“

>>> ?

>>> float(True)

>>> ?

Try these..

What is the answer?

49

print()

print : Produces text output on the console.

Syntax:

print ("Message“)

print (Expression)

Prints the given text message or expression value on the

console, and moves the cursor down to the next line.

print (Item1, Item2, ..., ItemN)

Prints several messages and/or expressions on the same line.

Examples:
 >>> print ("Hello, world!")
 >>> age = 50
 >>> print ("You have", 65 - age, "years until

retirement")
Output:
 Hello, world!
 You have 15 years until retirement

50

The print Function

The standard output function print displays its arguments on the console. This
function allows a variable number of arguments. Python automatically runs the str
function on each argument to obtain its string representation and separates each
string with a space before output. By default, print terminates its output with a
newline.

Line 1| message = "Hello from Python Programing Course"

Line 2| print(mesage)

Traceback (most recent call last):

 File "hello_world.py", line 2, in <module>

 print(mesage)

 NameError: name 'mesage' is not defined

51

print()

print : Produces text output on the console.

>>> print('This is a string using a single quote!')

This is a string using a single quote!

>>> print("This is a string using ‘a double’ quote!")

This is a string using 'a double' quote!

>>> print("""This string has three “quotes\n Look” at what

it can do!""")

This string has three “quotes

Look” at what it can do!

>>> print("I said, "Don’t do it")

SyntaxError: invalid character in identifier

>>> print("I said, \"Don’t do it\"")

I said, "Don’t do it"

When Python saw the
backslash (\), or escape
character, it knew to treat
the double quote as a
character, and not as a
data type indicator

52

Variables

>>> print("Using double quotes")

>>> print('Using single quotes')

>>> print("Mentioning the word ‘Python’ by quoting it")

>>> print("Embedding a\nline break with \\n")

>>> print("""Embedding a

line break with triple quotes""")

Output:

Using double quotes

Using single quotes

Mentioning the word 'Python' by quoting it

Embedding a

line break with \n

Embedding a

line break with triple quotes

>>>

53

Variables

>>> print("Example Heading\n\nFollowed by a line\nor two

of text\n \\tName\n\tRace\n\tGender\nDon\'t forget to

escape \'\\\'.“)

Example Heading

Followed by a line

or two of text

 Name

 Race

 Gender

Don't forget to escape '\'.

>>>

54

print()

 Basic Escape Sequences

55

print()

 Basic Escape Sequences

 A string can represent characters by preceding them with a backslash.

\t tab character
\n new line character
\" quotation mark character
\\ backslash character

Example:
>>> print("Hello\tthere\nHow are you?")

Hello there

How are you?

\t tab character

\n new line character

56

print()

 Basic Escape Sequences

>>> start = 'Ya' * 3 + '\n'

>>> middle = ‘Şa' * 3 + '\n'

>>> end = ‘En Büyük….‘

>>> print(start + middle + end)

>>> ?

Write a program that prints a face similar to the following:

 /////
 +"""""+
 (| o o |)
 | ^ |
 | ‘-’ |
 +-----+

 \\\\\
 +"""""+
 (| o o |)
 | ^ |
 | ‘-’ |
 +-----+

 \\\///
 +"""""+
 (| o o |)
 | ^ |
 | ‘---’ |
 +-----+

57

print()

Ulaşım Masrafı
1. Cumartesi - Pazar günleri çalışmıyoruz.
2. Dolayısıyla ayda 22 gün çalışıyoruz.
3. Evden işe gitmek için kullandığımız aracın ücreti 2.5 TL
4. İşten eve dönmek için kullandığımız aracların ücreti 3.4 TL

gün = 22

gidiş_ücreti = 2.5

dönüş_ücreti = 3.4

masraf = gün * (gidiş_ücreti + dönüş_ücreti)

print(masraf)

58

print()

print()

gün = 22

gidiş_ücreti = 2.5

dönüş_ücreti = 3.4

masraf = gün * (gidiş_ücreti + dönüş_ücreti)

print("-"*30)

print("çalışılan gün sayısı\t:", gün)

print("işe gidiş ücreti\t:", gidiş_ücreti)

print("işten dönüş ücreti\t:", dönüş_ücreti)

print("-"*30)

print("AYLIK ULAŞIM MASRAFI\t:", masraf)

59

60

print()

>>> "serdar“ + "aritan"

'serdararitan'

>>> "serdar“ + " “ + "aritan"

'serdar aritan'

>>> "serdar“ + ".“ + "aritan"

'serdar.aritan‘

Using a Format Specifier to Populate a String

>>> "%s %s %10s" % ("Serdar" , "Aritan", "Hacettepe")

'Serdar Aritan Hacettepe‘

>>> "%s %s %20s" % ("Serdar" , "Aritan", "Hacettepe")

'Serdar Aritan Hacettepe'

61

print()

 Format Specifier

>>> num = 1 / 3.0

>>> num # Auto-echoes

0.3333333333333333

>>> print(num) # Print explicitly

0.3333333333333333

>>> '%e' % num # String formatting expression

'3.333333e-01'

>>> '%4.2f' % num # Alternative floating-point

format

'0.33'

>>> '{0:4.2f}'.format(num) # String formatting method

'0.33'

62

print()

 Format Specifier

63

print()

 Format Specifier

>>> myscore = 1000

>>> message = 'I scored %s points'

>>> print(message % myscore)

I scored 1000 points

TRY These..

I scored 1000 points, how about you Serdar

Your height 1.80 cm

Your name [Serdar Arıtan]

64

print()

 F-Strings Format Specifier

Strings in Python

Python 3.6 introduced an alternative, more compact, way to build string expressions. An
f-string consists of the character f (or F) following by a special kind of string literal
called a formatted string literal. Formatted string literals contain both sequences of
characters (like other string literals) and expressions bracketed by curly braces. These
expressions are evaluated at runtime and automatically converted to strings. The code.

print(f'{int(num*fraction)} is {fraction*100}% of {num}’)

65

print()

 F-Strings Format Specifier

>>> msg = 'hello world'

>>> 'msg: %s' % msg

'msg: hello world‘

>> msg = 'hello world'

>>> 'msg: {}'.format(msg)

'msg: hello world‘

>>> msg = 'hello world'

>>> f'msg: {msg}'

'msg: hello world'

66

print()

>>> book = "The dog guide"

>>> num_pages = 124

>>> f"The book {book} has {num_pages} pages"

'The book The dog guide has 124 pages'

>>> F"The book {book} has {num_pages} pages"

'The book The dog guide has 124 pages'

>>> print(Fr"The book {book} has {num_pages} pages\n")

The book The dog guide has 124 pages\n

>>> print(FR"The book {book} has {num_pages} pages\n")

The book The dog guide has 124 pages\n

>>> print(f"The book {book} has {num_pages} pages\n")

The book The dog guide has 124 pages‘

↓

>>>

F-Strings Format Specifier

67

print()

 F-Strings Format Specifier

>>> f"4 * 4 is {4 * 4}“

'4 * 4 is 16'

>>>

>>> n = 4

>>> f"4 * 4 is {n * n}"

'4 * 4 is 16‘

>>> def magic_number():

 ...: return 42

>>> f"{magic_number() = }“

'magic_number() = 42‘

>>> f"{magic_number()}"

'42'

68

input()

input : Reads a number from user input.

 You can assign (store) the result of input into a variable.

Example:
 age = input("How old are you? ")

 print ("Your age is", age)

 print ("You have", 65 - age, "years until retirement”)

 Output:

 How old are you? 53

 Your age is 53

 You have 12 years until retirement

Why it does not run?

What wrong with this?

69

input()

input : Reads a number from user input.

 You can assign (store) the result of input into a variable.

Example:
 age = input("How old are you? ")

 print ("Your age is", age)

 print ("You have", 65 – int(age), "years until
retirement”)

 Output:

 How old are you? 55

 Your age is 55

 You have 10 years until retirement

70

input()

Calculate the area and circumference of a circle from its radius

Step 1: Prompt for a radius.

Step 2: Apply the area formula.

Step 3: Print out the results.

import math

radius_str = input("Enter the radius of your circle: ")

radius_int = int(radius_str)

circumference = 2 * math.pi * radius_int

area = math.pi * (radius_int ** 2)

print ("The cirumference is:",circumference, \

", and the area is:",area)

>>>

Enter the radius of your circle: 20

The cirumference is: 125.66370614359172 , and the area is:

1256.6370614359173

71

Resources

https://cscircles.cemc.uwaterloo.ca/visualize

https://runestone.academy/ns/books/published/pythonds/index.html

72

https://www.youtube.com/user/gjenkinslbcc

Online Resources

73

https://runestone.academy/ns/books/published/pythonds/Introduction/GettingStartedwithData.html

Online Resources

74

Boolean data type is referring to two possible values; True or False.

Comparison operators are for comparing things, (<, >, ==, !=, etc.).

Compound condition is a comparison using more than two values, (x<10 and x>5)

Conditional expressions (also called Boolean expressions), are based on the

condition that something is either true or false.

Delimiters quotation marks to tell the computer we are entering a string.

Vocabulary Review

Float non-whole numbers like decimals.

Floating point numbers with a decimal point

Identifiers are names

Integer a complete number as opposed to part of a number like ½

Logical operators the words “and, or,” and “not”

Operators do something, like add, multiply, divide, subtract, or compare.

75

Vocabulary Review

