PYTHON
PROGRAMMING

Variables
#2

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON Programming
PROGRAMMING

Computers can be annoyingly literal. If you don't tell them exactly what
you want them to do, they are likely to do the wrong thing. Try writing
an algorithm for driving between two destinations. Write it the way you
would for a person, and then imagine what would happen if that person
were as stupid as a computer, and executed the algorithm exactly as
written. (For an amusing illustration of this, take a look at the video

Exact Instructions Challenge PB&J Classroom Friendly

* https:/www.youtube.com/watch?v=FN2RM-CHkul&t=24s

Serdar ARITAN

PYTHON Variables
PROGRAMMING

« variable: A named piece of memory that can store a value.
— Usage:
« Compute an expression's result,
» store that result into a variable,
- and use that variable later in the program.

« assignment statement: Stores a value into a variable.

— Syntax:
variable = expression
— Examples: X=5
gpa=3.14
X 5 gpa 3.14

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

20

109

100.1

11111

-f— |evel

-— Score

-4— AveScore

Variables

i

v

TopScore

— 7

Level

A}

/ Otherstuff E

/ Score

A\

\

PYTHON Variables
PROGRAMMING

left-hand side = right-hand side

LHS = RHS
>>> width = 10 <enter>
>>> length = 5 <enter>
>>>
>>> print (width) <enter>
10
>>> print(length) <enter>
5
>>> print('width') <enter>
width
>>> print (width) <enter>
10
>>> 25 = age <enter>

SyntaxError: can't assign to literal

Serdar ARITAN

PYTHON
PROGRAMMING

Variables are chunks of data stored in the computers memory.

Variables

There are generally three types of data stored in variables. Variables can be
in the form of integers or in a string. The second type of data, called a float,
refers to the non-whole numbers like decimals.

integers 1, 2, 3, 4,
float 03,1.1,1.8, 2.5, 3.14,
Strlng [13 (13 (13 »

y § mun

How about 5] ? What is it?

Serdar ARITAN

PYTHON Variables

PROGRAMMING
* Integer objects Integer: coffee count = 5
* Floating-point objects Float: percentage words spelled correctly = 21.0
« Complex number objects Boolean: had_enough coffee = False

« Decimal: fixed-precision objects

« Fraction: rational number objects

« Sets: collections with numeric operations

- Booleans: true and false

* Built-in functions and modules: round, math, random, etc.

« Expressions; unlimited integer precision; bitwise operations; hex,
octal, and binary formats

« Third-party extensions: vectors, libraries, visualization, plotting, etc.

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Literal Interpretation

1234, 24, 0, 99999999999999 Integers (unlimited size)

1.23, 1., 3.14e-10, 4E210, 4.0e+210 Floating-point numbers

00177, Ox9ff, 0b101010 Octal, hex, and binary literals

3+4j, 3.0+4.0j, 3J Complex number literals

set(‘'spam’), {1, 2, 3, 4} Sets: construction forms

Decimal('1.0"), Fraction(1, 3) Decimal and fraction extension types
bool(X) True, False Boolean type and constants

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Numbers in Python

Python offers three different kinds of numbers with which you can work:
integers , floating - point numbers (or floats), and imaginary numbers .

>>> type (1)

<class 'int'>

>>> type (200000)

<class 'int'>

>>> type (99999999999999)

<class 'int'>

>>> type (1.0)

<class 'float'>

>>> type(5))
<class 'complex'>

Serdar ARITAN

PYTHON
PROGRAMMING

Serdar ARITAN

Variables

Data type Cat <class 'cat™>

PYTHON Variables
PROGRAMMING

>>> 399 + 3020 + 1 + 3456

Numbers in Python

6876

>>> 300 - 59994 + 20
-59674

>>> 4023 - 22.46

4000.54

>>> 2000403030 * 392381727
784921595607432810

>>> 2000403030 * 3923817273929
7849215963933911604870

>>> 2e304 * 3923817273929

inf

>>> 2e34 * 3923817273929
7.847634547858e+46

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Numbers in Python

>>> Lmport sys

>>> sys.float_info
sys.float_info(max=1.7976931348623157e+308, max exp=1024,
max 10 exp=308, min=2.2250738585072014e-308, min exp=-1021,
min 10 exp=-307, dig=15, mant_dig=53,
epsilon=2.220446049250313e-16, radix=2, rounds=1l)

>>> sys.int_info

sys.int_info(bits_per digit=30, sizeof digit=4)

>>> # Guess what is the answer?

>>> 0.1 + 0.1 + 0.1 - 0.3 # it must be ZERO !!

Serdar ARITAN

PYTHON
PROGRAMMING

Decimal

Binary

Hexadecimal

0000

0001

0010

0011

0100

0101

0110

0111

1000

Jole[w|eo|lu[w|w]|nw]|=]|o

1001

[y
o

1010

[
[

1011

ot
N

1100

[y
W

1101

P
S

1110

15

1111

Him | g|a|(w ||| N[oa|a|k|[w]|N]|=|oO

Serdar ARITAN

Variables
Fixed Point and Floating Point Arithmetic

Decimal numbers can be represented exactly in
binary.

In contrast, numbers like 1.1 and 2.2 do not have
exact representations in binary floating point.

End users typically would not expect 1.1 + 2.2 to
display as 3.3000000000000003 as it does with
binary floating point.

PYTHON Variables
PROGRAMMING

Integer Numbers Decimal : Binary : Hexadecimal
for i in range(l6):
print (£"{£f'{i:d}"':>2}:{£'{1i:b}"':>5}:{£'{1i:X}"':>2}")

0:

1:
10:
11:
100:
101:
110:
111:
: 1000:
9: 1001:
10: 1010:
11: 1011:
12: 1100:
13: 1101:
14: 1110:
15: 1111:

o ~JoUun s WNKHFHO

HEOQWM» oo ~JouUudwWNHO

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Numbers in Python

16-bit (half) http://evanw.github.io/float-toy/

161514131211 109 8 7 6 &5

([o[o[olo[-FER = 0x4243

1 x 2! x 1.571 = 3.141

32-bit (float)

262524232221 20181817 161514131211 10 8 8

20 28 28 27 2
(o[o[ololololole[[ele[felo[Tolo[o[o[-[:[:FI-EIFHIE = 0x40490FDE

1 x 2' x 15707964 = 3.1415927

64-bit (double)

6463626160 5958 57 565554535251 504948 47464544 434241403938 37363534333231302928272625242322212019181716151413 121110 9 8 7 6 5 4 3 2 1

(o[[o[o[o[o[o[o[ololele] Je[e[s o[o[s o[o[o[o[s[+[-[-[-T-le[[+[e[s o[[o[s[olo[e[-[o[o[o[-Tolele[e[o[+ e FELE] = ox400621FE54442018

1 x 2! x 1.5707963267948966 = 3.141592653589793

Serdar ARITAN

Serdar ARITAN

PYTHON Variables
PROGRAMMING
Numbers in Python

>>> 0.1 + 0.1 +0.1 -0.3

5.551115123125783e-17 # be careful !!

>>> # However, with decimals, the result can be exact:

>>> from decimal import Decimal

>>> Decimal('0.1'")+Decimal ('0.1'")+Decimal('0.1"')-Decimal ('0.2")
Decimal ('0.0")

When decimals of different precision are mixed in expressions,
Python converts up to the largest number of decimal digits
>>> Decimal ('0.1'")+Decimal ('0.10")+Decimal ('0C.10") -

Decimal ('0.20")

Decimal ('0.00")

PYTHON Variables

PROGRAMMING Fixed Point and Floating Point Arithmetic
Setting Decimal Precision Globally

>>> decimal
>>> decimal .Decimal (1) / decimal .Decimal (7)
Decimal (' ")

Default: 28 digits

>>> decimal .getcontext () .prec = 4

Fixed precision

>>> decimal .Decimal (1) / decimal .Decimal (7)
Decimal (' ")

The decimal module provides support for fast correctly-rounded decimal
floating point arithmetic. It offers several advantages over the float
datatype

Serdar ARITAN

PYTHON Variables

PROGRAMMING Fixed Point and Floating Point Arithmetic
>>> 0b0001
1
>>> 0b0010
2
>>> bin (21)
'0bl10101"
>>> int('101111',2)
47
>>> 0b101111
47
>>> bin (0.5)
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>

bin (0.5)

TypeError: 'float' object cannot be interpreted as an integer

Serdar ARITAN

PYTHON Variables

PROGRAMMING Mixed Types Are Converted Up

integers are simpler than floating point numbers, which are simpler than
complex numbers. So, when an integer is mixed with a floating point, as in
the preceding example, the integer is converted up to a floating-point value
first, and floating-point math yields the floating-point result

>>> 40 + 3.14 # Integer to float, float math/result

43.14

You can force the issue by calling built-in functions to convert types
manually

>>> int (3.1415) # Truncates float to integer

3

>>> float (3) # Converts integer to float

3.0

Serdar ARITAN

PYTHON Variables

PROGRAMMING Variables and Basic Expressions

Variables are created when they are first assigned values.
Variables are replaced with their values when used in expressions.

Variables must be assigned before they can be used in expressions.

Variables refer to objects and are never declared ahead of time.

>>> a =3 # Name created: not declared ahead of time
>>> b = 4

>>> a +1, a -1 # Addition (3+1l), subtraction (3-1)

(4, 2)

>>> b * 3, b / 2 # Multiplication (4*3), division (4/2)
(12, 2.0)

>>> a % 2, b ** 2 # Modulus (remainder), power (4**2)
(1, 16)

>>> 2 + 4.0, 2.0 ** b # Mixed-type conversions
(6.0, 16.0)

Serdar ARITAN

PYTHON Variables

PROGRAMMING Unpacking a Sequence into Separate Variables
>>p = (4, 5)
>>> x, y = P
>>> X
4
>>> y
5

If there is a mismatch in the number of elements, you’ll get an error. For
example:

>>> p = (4, 5)

>>> X, ¥y, 2 =p

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack

Serdar ARITAN

PYTHON Variables
PROGRAMMING Legal or lllegal?

Variable names may only use letters, digits, or underscores.

Variable Name Legal or lllegal?

units per day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.
Junel997 Legal

Mixture#3 Illegal

Please give 5 Legal and 5 lllegal Variable Names

Serdar ARITAN

PYTHON

Python Naming Conventions

PROGRAMMING
Type of Name Examples
Variable salary, hoursWorked, isAbsent
Constant ABSOLUTE_ZERO, INTEREST_RATE

Function or method

Class

printResults, cubeRoot, input

BankAccount, SortedSet

Examples of Python Naming Conventions

Serdar ARITAN

PYTHON Python Naming Conventions
PROGRAMMING

Do NOT use these words as a variable name
>>>help ('keywords')

Here is a list of the Python keywords. Enter any keyword to get
more help.

False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

Serdar ARITAN

PYTHON Python Naming Conventions

PROGRAMMING Key Words in Python
_Ioix
File Edit Shel Debug Options Windows Help

> =
>

>

»»> def B 7

SyntaxError: inwvalid syntax

>33 | - vI
|Ln::iiEuI:4

“SyntaxError: invalid syntax...” is Python’s ways of saying, “Hey, you
don’t know what you are talking about and neither do I! Speak Python!”

Serdar ARITAN

PYTHON Python Naming Conventions
PROGRAMMING

* Variable names can contain only letters, numbers, and underscores. They can start
with a letter or an underscore, but not with a number. For instance, you can call a
variable message 1 butnotl message.

* Spaces are not allowed in variable names, but underscores can be used to separate
words in variable names. For example, greeting message works, but
greeting message will cause errors.

* Avoid using Python keywords and function names as variable names; that is, do not
use words that Python has reserved for a particular programmatic purpose, such as
the word print.

* Variable names should be short but descriptive. For example, name is better than n,
student name is better than s n, and name length is better than
length of persons name.

» Be careful when using the lowercase letter 1 and the uppercase letter O because
they could be confused with the numbers 1 and 0.

Serdar ARITAN

PYTHON Python Naming Conventions
PROGRAMMING Variables Naming Rules

* You cannot use one of Python’s key words as a variable name.
« Avariable name cannot contain spaces.

* The first character must be one of the letters a through z, A through Z,
or an underscore character ().

« After the first character you may use the letters a through z or A
through Z, the digits 0 through 9, or underscores.

- Uppercase and lowercase characters are distinct. This means the
variable name ltemsOrdered is not the same as itemsordered.

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Strings in Python

When you type a string into Python, you do so by preceding it with quotes. Whether
these quotes are single ('), double(“), or triple(“ “ “) depends on what you are trying
to accomplish.

>>> "This is a string using a double gquote"

'This is a string using a double quote'

>>> 'This is a string with a single quote'

'This is a string with a single quote'

>>> """This string has three quotes

look at what it can do!"""

'This string has three quotes\nlook at what it can do!'

Serdar ARITAN

PYTHON
~ PROGRAMMING
>>> boilerplate = """

=== (") ===ff=== (*) ===f{=== (") ===}

Egregious Response Generator

Version '0.1"
"FiliBuster" technologies inc.
=== (" mmnfizms (*) munfizms (")===

>>> print (boilerplate)

=== (") ===ff===(*) # (")

#

Egregious Response Generator

Version '0.1"
"FiliBuster" technologies inc.

#

#:::(")::#m(*) # (")

>>>

Serdar ARITAN

Variables

PYTHON Variables

PROGRAMMING
>>> s = 'Hello'

>>> a, b, ¢, d, e =s

>>> a

IHI

>>> b

lel

When unpacking, you may sometimes want to discard certain
values

RESTART
s = 'Hello'
>>> , b, c,d, e=s
>>> a
Traceback (most recent call last):
File "<pyshell#l4>", line 1, in <module>
a

NameError: name 'a' is not defined
Serdar ARITAN

PYTHON Variables
PROGRAMMING Casting String To Integer

>>> int ('99")

99

>>> int('-29"')

-29

>>> int('99 bottles of milk!")

ValueError: invalid literal for int() with base 10: '99
bottles of milk!'

>>> int (' ')

ValueError: invalid literal for int() with base 10: ' '
>>> int('98.6")

ValueError: invalid literal for int() with base 10:
'98.6"

>>>

Serdar ARITAN

PYTHON
PROGRAMMING

Variables
Casting String To Float

>>> float (98)

98.0

>>> float('9a8"')

98.0

>>> float('99 bottles of milk!")

ValueError: could not convert string to float: '99
bottles of milk!'

>>> float('99.32")

99.3

>>> float(' ')

ValueError: could not convert string to float:

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Each data (or object) in Python is assigned a unique identifier (basically, an integer)
which can be accessed by the id() function. Having unique identifiers, Python
manages memory space such that multiple occurrences of the same data are stored
only once whenever possible. For example:

>>> a =1
>> b =1
>>> id (1) b 1921961712
1921961712

>>> id(a)

1921961712

>>> id(b)

1921961712

a — 1

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

>>> a =1

>>> b =1

>>> id (1)

1921961712
>>> id(a)

1921961712
>>> id(b)

1921961712
>>> a = 2

>>> b

1

>>> id(a)

1921961744
>>> id(b)

1921961712

Variables

1

1921961712

2

1921961744

Serdar ARITAN

PYTHON
PROGRAMMING

>>> a = 's'
>>> b = 's'
>>> id(a)
2197299367088
>>> id(b)
2197299367088
>>> a ==

irue

Variables

>>> a = 'serdar'
>>> b = 'serdar'

>>> id(a)
2197335546608
>>> id(b)
2197335546608
id('serdar')
2197335546608

PYTHON

Everything Is an Object

- PROGRAMMING

from objbrowser import browse

a =16

browse (locals())

name path summary unicode repr type name

> _spec_ _spec_ None None None NoneType

v a 16 16 16 int
> _abs__ a._abs__ <method-wrapper '_abs_' of in... <method-wrapper '_abs_" of in... method-wrapp
> _add_ a._add_ <method-wrapper '_add_" of in.. <method-wrapper '_add_' of in... method-wrapp
> _and_ a._and_ <method-wrapper '_and_' of in... <method-wrapper '_and_' of in... method-wrapp
> _bool_ a.__bool_ <method-wrapper '_bool_' of ... <method-wrapper '_bool_' of i.. method-wrapp
> _ceil a._ceil__ <built-in method __ceil__ of int 0... <built-in method __ceil_ of int ... builtin_functior
> _class__ a._class_ <class ‘int"> <class 'int'> type
> _delattr_ a._delattr__ <method-wrapper '_delattr_' of... <method-wrapper '_delattr_' of... method-wrapp
> _dir_ a._dir_ <built-in method __dir__ of int 0... <built-in method __dir__ of int 0... builtin_functior
> _dvmod_ a._divmod_ <method-wrapper '_divmod_"... <method-wrapper '_divmod_'... method-wrapp
> _doc_ a._doc__ int({x]) -> integer«int(x, base=1... int({x]) -> integer«int(x, base=1.. “int([x]) -> integer\nint(x, base=... str
> _eq_ a._eq_ <method-wraopper '_eq_' of int ... <method-wrapper '_eq_" of int ... method-wropp
> _float_ o._float_ <method-wropper '_float_' of i.. <method-wrapper '_float_"of i.. method-wrapp
> _floor_ a._floor_ <built-in method _floor__ of int ... <built-in method _floor__ of int ... builtin_functior
> _floordiv_ a._floordiv_ <method-wrapper '_floordiv_" ... <method-wrapper '_floordiv_'.. method-wrapp
> _format_ a._format_ <built-in method __format__ of ... <built-in method __format_ of i.. builtin_functior
D 08 - a._ge_ <method-wrapper '_ge_' of int ... <method-wrapper _ge_' of int... method-wrapp
> _getottrib... a._getattribute_ <method-wropper '_getattribute.. <method-wrapper '_getattribute.. method-wrapp
> __getnewar... 0._getnewargs__ <built-in method _getnewargs_... <built-in method _getnewargs_... budtin_functior
.~ - . - - . B S - eh -k T T we b S -k . L bl & n it

Detais
O path _file

Serdar ARITAN

PYTHON Variables
PROGRAMMING

Python’s garbage collection is based mainly upon reference counters, however, it also
has a component that detects and reclaims objects with cyclic references in time. This
component can be disabled if you’'re sure that your code doesn’t create cycles, but it is
enabled by default.,

>>> a = 3
>>> b = a
Names References Objects
277 7. the variables a
> . + and b wind up
> . 3 » referencing the
* < same object

Serdar ARITAN

PYTHON
PROGRAMMING

A circular reference is a cyclic dependency in Python. Python's garbage collector runs
automatically when a program exits. It will try to free unused objects by removing them

from the program's memory. If you have a circular reference, the garbage collector will
run infinitely until your program eventually crashes.

'

Variables

Object A Object B
Property Property
!

Serdar ARITAN

PYTHON Variables

PROGRAMMING
>>> a = 3 After running the assignment a = ‘spam’. Variable a references
>>> b = a the new object (i.e., piece of memory) created by running the literal
>>> a = 'spam' expression ‘spam’, but variable b still refers to the original object 3.

Because this assignment is not an in-place change to the object 3, it
changes only variable a, not b.

in Python variables are
Names References Objects always pointers to objects,
: B not labels of changeable

,,,:f . memory areas: setting a

a'— g / variable to a new value does
not alter the original object,

} -, but rather causes the variable
S > [spam | O reference an entirely

different object.

Serdar ARITAN

PYTHON
PROGRAMMING

Variables

For more details on Python’s cycle detector, see the documentation for the gc module in
Python’s library manual.

Serdar ARITAN

gc — Garbage Collector interface

This module provides an interface to the optional garbage collector. 1t provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python,
you can disable the collector if you are sure your program does not create reference cycles. Automatic collection
can be disabled by calling ge.disable () . To debug a leaking program call gc.set debug (gc.DEBUG LEAR) .

Notice that this includes gc.DEBUG saveary, causing garbage-collected objects to be saved in gc.garbage for
inspection.

* Garbage Collection is the process by which unused objects are
deleted to reclaim memory space

- Invented by John McCarthy around 1959 to solve problems in
Lisp

PYTHON Operators
PROGRAMMING

Operators do something, like add, multiply, divide, subtract, or compare. Notice that
we already used the = sign to assign identifiers. So, we can’t use the equal sign as an
operator. Instead we must use == to mean; “equals.” What other useful things can be
done with operators?

In the Python shell type:

“words words words words words”
Hit enter

Now type:

“words ” * 10

Hit enter. ???

Serdar ARITAN

PYTHON
PROGRAMMING

Arithmetic operators we will use:

+ addition

- subtraction/negation
multiplication

Operators

/ division
% modulus, a.k.a. remainder
%k %k

exponentiation

precedence: Order in which operations are computed.
* | % ** have a higher precedence than + -

1+3*%4is13

Parentheses can be used to force a certain order of evaluation.
(1+3)*4is16

Serdar ARITAN

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Serdar ARITAN

PYTHON
PROGRAMMING

1.0023 - 1.0567

1000.0023 - 1000.0567

a = 1234.567

b = 45.67834

c = 45.67834
d= (a + b)) + ¢
e=a+ (b + ¢)
print (d)

print (e)

Operators

Try these..

Floating point calculations !!!

PYTHON Operators
PROGRAMMING Integer Division

When we divide integers with //, the quotient is also an integer.
>>> 3//3
1
>>> 3//2
1
>>> 5//8
0
>>> 8//5
1
The % operator computes the remainder from a division of integers.
>>> 8%5
3
>>> 3%2
1
>>> 3%3
0

Serdar ARITAN

PYTHON
PROGRAMMING
We also have comparison operators for...

you guessed it; comparing things!
Here are some of those:

Operators

> for greater than

< for less than

<= less than or equal to

>= greater than or equal to
3 equal to

1= not equal to

Remember that we already used the = symbol to define or tell the computer the
meaning of our variables. So we don’t confuse our little computer, we must use = = to
express the traditional meaning of “equal to.”

Serdar ARITAN

PYTHON Operators
PROGRAMMING

Boolean is the type of data that represents the answer to questions like 9 < 19. The
words “and, o=r,” and “not” are logical operators. A simple condition is a comparison

that only uses two values:
9<19

A compound condition is a comparison using more than two values:

x < 10 and x>5

These logical operators generally mean the same thing in programming as they do in
English.

RI=TES

File Edit Shell Debug Options Windows Help

i ﬂ

>¥»>» G9«<19

True

»er» ®<10 and =x»5

False

i ’_j
|Lr1: 64 Col: 4

Serdar ARITAN

PYTHON Operators
PROGRAMMING

>>> 1 < 2 # Less than

True

>>> 2.0 >= 1 # Greater than or equal: mixed-type 1 converted to 1.0
True

>>> 2.0 == 2.0 # Equal value

True

>>> 2.0 '= 2.0 # Not equal value

False
>>> X
>>> Y
>>> 2 =
>>> X <
True
>>> X < Y anc ¥Y < Z
True

I
Ko N

< 2 # Chained comparisons: range tests

Serdar ARITAN

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Serdar ARITAN

PYTHON Operators
PROGRAMMING

int (False)
?

int (True)
o Try these..

1.10t 1 .

> What is the answer?

not ™
?

not "This is some text"
?

float (True)

2

PROGRAMMING

print : Produces text output on the console.

Syntax:
print (" “)
print (Expression)
Prints the given text message or expression value on the
console, and moves the cursor down to the next line.

print (Iteml, Item2, ..., ItemN)
Prints several messages and/or expressions on the same line.
Examples:
>>> print (" ")
>>> age = 50
>>> print ;" ", 65 - age, "
Output:

Hello, world!
You have 15 years until retirement

Serdar ARITAN

PYTHON The print Function
PROGRAMMING

The standard output function print displays its arguments on the console. This
function allows a variable number of arguments. Python automatically runs the str
function on each argument to obtain its string representation and separates each
string with a space before output. By default, print terminates its output with a
newline.

Line 1| message = " "
| print (mesage)

Traceback (most recent call last):

File "hello world.py", , in <module>
print (mesage)

NameError: name 'mesage' 1s not defined

Serdar ARITAN

PROGRAMMING

print : Produces text output on the console.

>>> print('This is a string using a single quote!')

This is a string using a single quote!

>>> print("This is a string using ‘a double’ quote!")

This is a string using 'a double' quote!

>>> print("""This string has three “quotes\n Look” at what
it can do!""")

This string has three “quotes
Look” at what it can do!

>>> print ("I §aid,.“Don’t do it?) : o the double quote as a
SyntaxError: invalid character identifier character, and not as a
>>> print ("I said, \"Don’'t do it\"") data type indicator

I said, "Don’'t do it"

When Python saw the
backslash (\), or escape

character, it knew to treat

Serdar ARITAN

PYTHON Variables
PROGRAMMING

>>> print (" ")

>>> print (' ")

>>> print ("

>>> print (" \n \n")
>>> print ("""

mwwn ")

Output:

Using double quotes

Using single quotes

Mentioning the word 'Python' by quoting it
Embedding a

line break with \n

Embedding a

line break with triple quotes

>>>

Serdar ARITAN

")

PYTHON Variables
 PROGRAMMING

>>> print ("Example Heading\n\nFollowed by a line\nor two
of text\n \\tName\n\tRace\n\tGender\nDon\'t forget to
escape \'\\\'.W)

Example Heading

Followed by a line
or two of text

Name
Race
Gender
Don't forget to escape '\'.
>>>
Serdar ARITAN

o PROGRAMMING Basic Escape Sequences
Escape sequence Character represented
\ ! Single-quote character
\" Double-quote character
AR Backslash character
\a Bell character
\b Backspace character
\E Formfeed character
I \n Newline character I
\r Carriage return character (not the same as \n)
I \t Tab character I
\V Vertical tab character

Serdar ARITAN

PYTHON
PROGRAMMING

print()

Basic Escape Sequences

A string can represent characters by preceding them with a backslash.

Serdar ARITAN

\t tab character

\n new line character

\" quotation mark character ,
\\ backslash character .

Example:

>>> print("Hello\tthere\nHow are you?")
Hello there
How are you?

PROGRAMMING

Basic Escape Sequences

>>> start = 'Ya' * 3 + '"\n'

>>> middle = ‘Sa' * 3 + '"\n'
>>> end = ‘En Buyik. .

>>> print(start + middle + end)
>>> °?

Serdar ARITAN

Serdar ARITAN

PROGRAMMING

Write a program that prints a face similar to the following:

/1111 W \V//

+IIIIIIIIII+ +||||||||||+ +I|llllllll+

(o o]) (o o) (o o])

Serdar ARITAN

PROGRAMMING

Ulasim Masrafi

1. Cumartesi - Pazar gunleri calismiyoruz.

2. Dolayisiyla ayda 22 guin calisiyoruz.

3. Evden ise gitmek i¢in kullandigimiz aracin Ucreti 2.5 TL

4. isten eve dénmek icin kullandigimiz araclarin ticreti 3.4 TL

gun = 22

gidisg Ucreti = 2.5

donus ucreti = 3.4

masraf = gun * (gidisg Ucreti + donus ucreti)

print (masraf)

Serdar ARITAN

PROGRAMMING

gun = 22

gidis uUcreti = 2.5

donus ucreti = 3.4

masraf = gun * (gidis Ucreti + donis lUcreti)
print ("-"*30)

(
print("calisilan giun sayisi\t:", giin)

print ("ise gidis uUcreti\t:", gidis ucreti)
print ("isten donus iucreti\t:", donis Ucreti)
print ("-"*30)

print ("AYLIK ULASIM MASRAFI\t:", masraf)

PROGRAMMING

>>> "gerdar“™ + "aritan"

'serdararitan'
>>> "serdar™ + " ™ + "aritan"
'serdar aritan'
>>> "serdar™ + ".™ + "aritan"

'serdar.aritan’

Using a Format Specifier to Populate a String

>>> "%s %s %10s" % ("Serdar" , "Aritan",

'Serdar Aritan Hacettepel

>>> "%s %$s %$20s™ % ("Serdar"™ , "Aritan",
'Serdar Aritan Hacettepe'

Serdar ARITAN

PYTHON print()

"Hacettepe")

"Hacettepe")

PYTHON
PROGRAMMING

print()

Format Specifier
>>> num =1 / 3.0

>>> num # Auto-echoes

0.3333333333333333

>>> print (num) # Print explicitly
0.3333333333333333

>>> '%e' % num # String formatting expression
'3.333333e-01"

>>> '%4.2f' % num # Alternative floating-point
format

'0.33"

>>> '{0:4.2f)"'.format (num) # String formatting method

'0.33"

Serdar ARITAN

PROGRAMMING

Format Specifier

Format String Sample Output Comments
"%d" 2 4 Use d with an integer.
"%5d" 2 4 Spaces are added so that the field width is 5.
"%05d" 0/0|0(2|4 If you add 0 before the field width, zeroes
are added instead of spaces.
Suaneity:2sall Q ulan|t|i|t|y|: 2 4 Characters inside a format string but outside
aformat specifier appear in the output.
"%f" 1(.12|1|9|9|7 Use f with a floating-point number.
"%.2f" | . f2 |2 Prints two digits after the decimal point.
"%7.2f" 1. 2|2 Spaces are added so that the field width is 7.
"%s" Hiell|l1|o Use s with a string.
"% %.2f" 2 4 1/./2]/2 You can format multiple values at once.
"%9s" Hle(T|1]|0o Strings are right-justified by default.
"%-9s" Hielllllo Use a negative field width to left-justify.

"og o 2 4 % To add a percent sign to the output, use %%.

Serdar ARITAN

Serdar ARITAN

¥ PROGRAMMING

Format Specifier
>>> myscore = 1000

>>> message = 'I scored %s points'

>>> print (message % myscore)

I scored 1000 points

TRY These..

| scored 1000 points, how about you Serdar

Your height 1.80 cm

Your name [Serdar Antan)

PROGRAMMING

F-Strings Format Specifier
Strings in Python

Python 3.6 introduced an alternative, more compact, way to build string expressions. An
f-string consists of the character £ (or F) following by a special kind of string literal
called a formatted string literal. Formatted string literals contain both sequences of
characters (like other string literals) and expressions bracketed by curly braces. These
expressions are evaluated at runtime and automatically converted to strings. The code.

print(f'{int (num*fraction)} is {fraction*100}% of {num}’)

Serdar ARITAN

PYTHON
PROGRAMMING

>>> msg = 'hello world'
>>> 'msg: %s' % msg
'msg: hello world'

>> msg = 'hello world'
>>> 'msg: {}'.format (msqg)
'msg: hello world'

>>> msg = 'hello world'

>>> f'msg: {msg}'
'msg: hello world'

Serdar ARITAN

print()

F-Strings Format Specifier

Serdar ARITAN

PYTHON print()
PROGRAMMING

F-Strings Format Specifier

>>> book = "The dog guide"

>>> num pages = 124

>>> f"The book {book} has {num pages} pages"

'The book The dog guide has 124 pages'

>>> F"The book {book} has {num pages} pages"

'The book The dog guide has 124 pages'

>>> print (Fr"The book {book} has {num pages} pages\n")
The book The dog guide has 124 pages\n

>>> print (FR"The book {book} has {num pages] pages\n")
The book The dog guide has 124 pages\n

>>> print (f"The book {book} has {num pages} pages\n")
The book The dog guide has 124 pages’'

l
>>>

Serdar ARITAN

PYTHON
PROGRAMMING

>>> f"4 * 4 is {4 * 4}
'4 * 4 is 16"
>>>

>>> n = 4
>>> f"4 * 4 is {n * n}"
'4 * 4 is 16"

>>> def magic_number() :

“ e return 42
>>> f"{magic_number() =
'magic_number () = 42°
>>> f"{magic_number() }"
I42|

print()

F-Strings Format Specifier

}\\

PYTHON input()
PROGRAMMING

input : Reads a number from user input.

You can assign (store) the result of input into a variable.

Example:
age = 1input ("How old are you? ")
print ("Your age 1is", age)
print ("You have", 65 - age, "years until retirement”)
Output: What wrong with this?

How old are you? 53
Your age 1is 53
You have 12 years until retirement

Why it does not run?

Serdar ARITAN

PYTHON input()
PROGRAMMING

input : Reads a number from user input.

You can assign (store) the result of input into a variable.

Example:
age = 1input ("How old are you? ")
print ("Your age 1is", age)
print ("You have", 65 - int(age), "years until
retirement”)
Qutput:

How old are you? 55
Your age 1is 55
You have 10 years until retirement

Serdar ARITAN

PROGRAMMING

Calculate the area and circumference of a circle from its radius
Step 1: Prompt for a radius.

Step 2: Apply the area formula.

Step 3: Print out the results.

math
radius str = input ("Enter the radius of your circle: ")
radius_int = int(radius_str)
circumference = 2 * math.pi * radius int
area = math.pi * (radius int ** 2)
print ("The cirumference is:",circumference, \
", and the area 1is:",area)

>>>
Enter the radius of your circle: 20

The cirumference is: 125.66370614359172 , and the area 1is:
1256.6370614359173

Serdar ARITAN

PYTHON Resources
Y PROGRAMMING

https://cscircles.cemc.uwaterloo.ca/visualize

Computer Science Circles Homepage | Contact Us

Write your Python 3 code here:
1

Visualize Execution

* Enter optional text input for the program to read with input():

» Examples

:Generate URL] |

To share this visualization, click the 'Generate URL' button abowve and share that URL. You can use it to share with
others or report a bug.

For more information about this tool (including Python 2 usage), visit www.pythontutor.com.

Original tool @ 2010-2013 Philip Guo. This version by CS Circles.

Serdar ARITAN

Serdar ARITAN

PYTHON Online Resources
PROGRAMMING

https://runestone.academy/ns/books/published/pythonds/index.html

roblem solving
algorithms
data structures
using python

Bradiey N. Miller
David L Ranum

https://www.youtube.com/user/gjenkinslbcc

PYTHON Online Resources
PROGRAMMING

https://runestone.academy/ns/books/published/pythonds/Introduction/GettingStartedwithData.html
1.8. Getting Started with Data

We stated above that Python supports the object-oriented programming paradigm. This means that Python
considers data to be the focal point ofthe problem-solving process. In Python, as well as in any other
object-oriented programming language, we define a class to be a description of what the data look like
(the state) and whatthe data can do (the behavior). Classes are analogous to abstract data types because
auser of a class only sees the state and behavior of a data item. Data items are called objects in the
object-oriented paradigm. An object is an instance of a class.

1.8.1. Built-in Atomic Data Types

We will begin our review by considering the atomic data types. Python has two main buili-in numeric
classes thatimplement the integer and floating point data types. These Python classes are called int

and float . The standard arithmetic operations, +, -, * /, and ** (exponentiation), can be used with
parentheses forcing the order of operations away from noermal operator precedence. Other very useful
operations are the remainder (modulo) operator, %, and integer division, /. Note that when two integers are
divided, the result is a floating point. The integer division operator returns the integer portion of the quotient
by truncating any fractional part

m Load History Show in Codelens

print(2+3*4)
print((2+3)*4)
print(2*+*18)
print(6/3)
print(7/3)
print(7//3)
print(7%3)
print(3/6)
print(3//6)
print(3%6)
print(2**188)

Activity: 1.8.1.1 Basic Arithmetic Operators (intro_1)

Serdar ARITAN

PYTHON Vocabulary Review
PROGRAMMING

Boolean data type is referring to two possible values; or
Comparison operators are for comparing things, (<, >, ==, I=, etc.).
Compound condition is a comparison using more than two values, (x<10 x>5)

Conditional expressions (also called Boolean expressions), are based on the
condition that something is either true or false.

Delimiters quotation marks to tell the computer we are entering a string.

Serdar ARITAN

PYTHON Vocabulary Review
PROGRAMMING

Float non-whole numbers like decimals.

Floating point numbers with a decimal point
Identifiers are names
Integer a complete number as opposed to part of a number like %

Logical operators the words “and, or,” and “

Operators do something, like add, multiply, divide, subtract, or compare.

Serdar ARITAN

