
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Turtle Graphics

Conditional Statements, Loops

#3

2

Conditional Statements

3

Conditional Statements

if door is closed:

 if door is locked:

 unlock door()

 open door()

advance()

If This is True

Do This->
Do This->

This is not true. lt is False

4

Conditional Statements

As a programmer you will often find yourself needing to use a statement based on a
condition... if/else branches

Example:

 # age example 1

 age = int(input("How old are you? "))
 if age < 13:

 print ("Your age is ", age, “you are a children.”)

 else:

 print ("Your age is ", age, “you are an adult.”)

Output:

 >>>

How old are you? 5

your age is 5 you are a children

>>>
How old are you? 55

your age is 55 you are a adult

5

Conditional Statements

if/elif/else branches

Example:

 # age example 2

 age = int(input("How old are you? "))

 if age <= 13:

 print ("Your age is ", age, “you are a children.”)

 elif age >13 and age < 20
 print ("Your age is ", age, “you are a teenager.”)

 else:

 print ("Your age is ", age, “you are an adult.”)

What is wrong with this code?

6

Conditional Statements
Nested blocks of code

Python detects block boundaries automatically, by line indentation—that is, the empty
space to the left of your code.

x = 1

if x:

 y = 2

 if y:

 print('block2')

 print('block1')

print('block0')

This code contains three blocks: the first is
not indented at all, the second is indented
four spaces, and the third is indented
eight spaces.

7

Turtle Graphics

Seymour Papert at MIT developed the Logo language and used it

to teach programming to children, who used it to maneuver a

robotic “turtle” that could make drawings on paper. In 1980,

Professor Papert wrote a wonderful book called Mindstorms that

describes his experiences with the Logo turtle and offers several

important insights into the dynamics of learning.

8

The individual commands consist of a single

letter, which are usually followed by a

number. For example, the command F120

asks the turtle to move forward 120 pixels in

the direction it is facing. The command L90

asks the turtle to turn left 90 degrees. A

program is simply a sequence of these

commands.

The program

F120 L90 F120 L90 F120 L90 F120 L90

Turtle Graphics

9

Pen Plotter

10

Pen Plotter

11

Laser Cutter

12

Turtle Movement Commands

13

Turtle Drawing Commands

14

Turtle Graphics

15

Turtle Graphics

16

Turtle Graphics

17

Turtle Graphics

18

Turtle Graphics

To erase the canvas, enter
reset(). This clears the canvas
and puts the turtle back at its
starting position.

myPen ≠ mypen

19

Turtle Graphics

myPen.up()

20

Turtle Graphics

21

Turtle Graphics

myPen.down()

22

Turtle Graphics

draw a smiley face
from turtle import *

speed(10) # draw fast !

penup() # right s ide of face

forward(75)

pendown() # draw an eye

right(90)

circle(25)

circle(10)

penup() # left side of face

right(90)

forward(150)

pendown() # draw an eye

right(90)

circle(25)

circle(10)

penup() # center and down

right(90)

forward(75)

right(90)

forward(50)

23

Homework 1 : try to draw a smiley face

if/else in Turtle Graphics
from turtle import *

speed(10) # draw fast !

penup()

left(90) # look forward

direction = input('Left or Right ?')

if direction == 'Left':

 left(90)

 pendown()

 forward(50)

 penup

else:

 right(90)

 pendown()

 forward(50)

 penup()

24

25

Programs ends. It
has to be run again.

if/else in Turtle Graphics
from turtle import *

speed(10) # draw fast !

penup()

left(90) # look forward

direction = input('[L]eft [R]ight [U]p [D]own ? ')

if direction == 'Left' or direction == 'L':‘ :

 …

 …

?

26

today = 'Saturday'

if today == 'Sunday' or today == 'Saturday':

 print('Today is off. Rest at home.')

else:

 print('Go to work.')

27

today == 'Sunday'

today == 'Saturday'

28

How to ask 10 times
‘Left’ or ‘Right’

The in Operator

 in operator Returns True if a sequence with the specified value

is present in the object

>>> 'r' in 'serdar'

True

>>> isim = "serdar"
>>> 'e' in isim

True

not in operator Returns True if a sequence with the specified

value is NOT present in the object

>>> 'r' not in 'serdar'
False

>>> ‘t' not in 'serdar'

True

29

30

The in Operator

>>> yas = 58

>>> 5 in yas
Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 5 in yas

TypeError: argument of type 'int' is not iterable

>>> '5' in str(yas)

True

An iterator is an object that contains a countable number of

values.

An iterator is an object that can be iterated upon, meaning that

you can traverse through all the values.

31

Iterator vs Iterable

 Lists, tuples, dictionaries, sets

and strings are all iterable

objects. They are iterable

containers which you can get an

iterator from. All these objects
have a iter() method which is

used to get an iterator operator

>>> myname = "Serdar"

>>> my_iterator = iter(myname)

>>> print(next(my_iterator))

S

>>> print(next(my_iterator))

e

>>> print(next(my_iterator))

r

>>> print(next(my_iterator))

d

>>> print(next(my_iterator))

a

>>> print(next(my_iterator))

r

>>> print(next(my_iterator))

Traceback (most recent call last):

 File "<pyshell#16>", line 1, in
<module>

 print(next(my_iterator))

StopIteration

32

The For Loop

for loop: Repeats a set of statements over a group of values.

– Syntax:

 for variableName in groupOfValues:

 statements

We indent the statements to be repeated with tabs or spaces.

variableName gives a name to each value, so you can refer to
it in the statements.

groupOfValues can be a range of integers, specified with the
range function.

indent

33

The For Loop

– Example:
 for x in range(6):

 print (x)

 Output:

 0

 1

 2

 3

 4

 5

34

The For Loop

– Example:

 for harfler in 'Serdar':

 print('Harf : ', harfler)

Harf : S

Harf : e

Harf : r

Harf : d

Harf : a

Harf : r

35

range

The range() function returns a sequence of numbers, starting

from 0 by default, and increments by 1 (by default), and stops

before a specified number.
>>> mynumber = range(3)

>>> my_iterator = iter(mynumber)

>>> print(next(my_iterator))

0

>>> print(next(my_iterator))

1

>>> print(next(my_iterator))

2

>>> print(next(my_iterator))

Traceback (most recent call last):

 File "<pyshell#22>", line 1, in <module>

 print(next(my_iterator))

StopIteration

– Example:
 for x in range(1, 6):

 print (x, "squared is", x**2)

 Output:

 1 squared is 1

 2 squared is 4

 3 squared is 9

 4 squared is 16

 5 squared is 25

36

The For Loop

37

The For Loop

38

The For Loop

range

 range(start, stop) - the integers between start (inclusive) and stop (exclusive)

It can also accept a third value specifying the change between values.

• range(start, stop, step) - the integers between start (inclusive) and
stop (exclusive) by step

Example:
 for x in range(5, 0, -1):

 print(x)

 print ("Blastoff!“)

 Output:
 5
 4
 3
 2
 1
 Blastoff!

Example:

>>> for i in range(1,7):

 print (i, i**2, i**3, i**4)

 1 1 1 1

 2 4 8 16

 3 9 27 81

 4 16 64 256

 5 25 125 625

 6 36 216 1296

>>> for x in range(0, 5):

 print('hello %s' % x)

hello 0

hello 1

hello 2

hello 3

hello 4

39

The For Loop

range

40

The For Loop
Cumulative Loops

 Some loops incrementally compute a value that is initialized outside

the loop. This is sometimes called a cumulative sum.

 sum = 0

 for i in range(1, 11):

 sum = sum + (i * *2)

 print ("sum of first 10 squares is", sum)

 Output:

 sum of first 10 squares is 385

• Homework Exercise: Write a Python program that computes the

factorial of an integer. Factorial > 5! = 5 * 4 * 3 * 2 * 1 = 120

41

The For Loop

 for loop in Turtle Graphics

from turtle import *

speed(10) # draw fast !

for i in range(4):

 forward(50)

 left(90)

Variable ‘i’ is not used, so

for _ in range(4):

 forward(50)

 left(90)

42

The For Loop

for loop in Turtle Graphics

from turtle import *

speed(10) # draw fast !

penup()

left(90) # look forward

for i in range(10):

 direction = input('[L]eft [R]ight [U]p [D]own ? ')

 if direction == 'left' or direction == 'l':

?

43

The For Loop

from turtle import *

shape('arrow') # convert to arrow

speed(10) # draw fast !

left(90) # look forward

for i in range(10):

 direction = input('[L]eft [R]ight [F]orward [B]ackward ? ')

 if direction.lower() == 'left' or direction.lower() == 'l':

 left(90)

 forward(100)

 elif direction.lower() == 'right' or direction.lower() == 'r':

 left(90)

 forward(100)

 elif direction.lower() == 'forward' or direction.lower() == 'f':

 forward(100)

 elif direction.lower() == 'backward' or direction.lower() == 'b':

 backward(100)

 else:

 print('Wrong key: you can only choose [L]eft [R]ight [F]orward [B]ackward')

from turtle import *

speed(10) # draw fast !

for _ in range(4):

 forward(70)

 left(90)

for _ in range(4):

 forward(50)

 left(90)

for _ in range(4):

 forward(30)

 left(90)

44

The For Loop

from turtle import *

speed(10) # draw fast !

for _ in range(4):

 forward(70)

 left(90)

for _ in range(4):

 forward(50)

 left(90)

 for _ in range(4):

 forward(30)

 left(90)

45

The For Loop

from turtle import *

speed(10) # draw fast !

for _ in range(4):

 forward(70)

 left(90)

 for _ in range(4):

 forward(50)

 left(90)

 for _ in range(4):

 forward(30)

 left(90)

46

The For Loop

The For Loop

47

pass

It is used when a statement is required syntactically but you do
not want any command or code to execute. The pass statement

is a null operation; nothing happens when it executes.

for letter in 'Python’:

 if letter == 'h':

 pass

 print (‘This is pass block’)

 print('CurrentLetter:', letter)

print (‘Good bye!’)

The For Loop

48

continue

It returns the control to the beginning

of the while loop

The continue statement can be

used in both while and for loops.

for letter in 'Python’:

 if letter == 'h':

 continue

 print('CurrentLetter:', letter)

49

break

It terminates the current loop and

resumes execution at the next

statement.

The break statement can be used in

both while and for loops.

for letter in 'Python’

 if letter == 'h':

 break

 print('CurrentLetter:', letter)

The For Loop

50

pass, continue, break

for letter in 'Python':

 if letter == 'h':

 pass

 print('This is pass block')

 print('CurrentLetter:', letter)

print('Good bye!')

for letter in 'Python':

 if letter == 'h':

 continue

 print('This is continue block')

 print('CurrentLetter:', letter)

print('Good bye!')

for letter in 'Python':

 if letter == 'h':

 break

 print('This is break block')

 print('CurrentLetter:', letter)

print('Good bye!')

CurrentLetter: P

CurrentLetter: y

CurrentLetter: t

This is pass block

CurrentLetter: h

CurrentLetter: o

CurrentLetter: n

Good bye!

CurrentLetter: P

CurrentLetter: y

CurrentLetter: t

CurrentLetter: o

CurrentLetter: n

Good bye!

CurrentLetter: P

CurrentLetter: y

CurrentLetter: t

Good bye!

The While Loop

51

A while loop statement in Python

programming language repeatedly

executes a target statement as long
as a given condition is true.

The syntax of a while loop in Python

programming language is

while expression:

 statement(s)

The While Loop

As long as the condition is true, the while statement will execute the

action

Example:
>>> x = 1

>>> while x < 4: # as long as x < 4...

 print(x**2) # print the square of x

 x = x + 1 # increment x by +1

1 # only the squares of 1, 2, and 3 are printed, because

4 # once x = 4, the condition is false

9

52

53

The While Loop

Pitfall to avoid:

While statements are intended to be used with changing conditions.

If the condition in a while statement does not change, the program

will be stuck in an infinite loop until the user hits ctrl-C.

Example:
>>> x = 1

>>> while x == 1:

 print ('Hello world‘)

Since x does not change, Python will continue to print “Hello

world” until interrupted

54

The While Loop
Using else Statement

 Python supports to have an else statement associated with a loop

statement. The else statement is executed when the condition

becomes false.
count = 0

while count < 5:

 print (count, " is less than 5")

 count = count + 1

else:

 print(count, " is not less than 5")

0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

55

How to quit

prompt = "\nTell me something, and I will repeat it back to you:"

prompt += "\nEnter 'quit' to end the program."

message = ""

while message != 'quit':

 message = input(prompt)

 print(message)

Tell me something, and I will repeat it back to

you:

Enter 'quit' to end the program.

Tell me something, and I will repeat it back to

you:

Enter 'quit' to end the program. serdar

serdar

Tell me something, and I will repeat it back to

you:

Enter 'quit' to end the program. quit

quit

56

How to quit: using a flag

prompt = "\nTell me something, and I will repeat it back to you:"

prompt += "\nEnter 'quit' to end the program."

message = ""

active = True

while active:

 message = input(prompt)

 if message == 'quit':

 active = False

 else:

 print(message)

57

How to quit: using break

prompt = "\nPlease enter the name of a city you have visited:"

prompt += "\n(Enter 'quit' to end the program.)"

message = ""

while True :

 message = input(prompt)

 if message == 'quit':

 break

 else:

 print(f"I'd love to go to {message.title()}!")

Please enter the name of a city you have visited:

(Enter 'quit' when you are finished.) London

I'd love to go to London!

Please enter the name of a city you have visited:

(Enter 'quit' when you are finished.) paris

I'd love to go to Paris!

Please enter the name of a city you have visited:

(Enter 'quit' when you are finished.) istanbul

I'd love to go to Istanbul!

Please enter the name of a city you have visited:

(Enter 'quit' when you are finished.) quit

The != operator compares only the value of the objects being

compared.

The “is not” operator compares if the objects are pointing to the same

memory location or not.

It returns True if the value of both the objects are different and False

otherwise.

58

Python '!=' Is Not 'is not':

while message != 'quit':

while message is not 'quit':

59

String Formatting

In its simplest form, it is possible to use a string’s format method to
insert objects into it.
Example:

>>>'{} plus {} equals {} '.format(2, 3, 'five ')

'2 plus 3 equals five '

>>>'{1} plus {0} equals {2} '.format(2, 3, 'five ')

'3 plus 2 equals five '

>>>'{n_1} plus {n_2} equals {ans}'.format(n_1=2, n_2=3, ans='five ')

'2 plus 3 equals five '

>>>'{0} plus {0} equals {1} '.format(2, 2+2)

'2 plus 2 equals 4'

60

String Formatting

>>> '=== {0: <12} === '.format('Python ')

'=== Python === '

>>> '=== {0: >12} === '.format('Python ')

'=== Python === '

>>> '=== {0:^12} === '.format('Python ')

'=== Python === ‘

>>> '=== {0: -^12} === '.format ('Python ')

'=== ---Python --- === ‘

>>> a = 254

>> 'a ={0:5d}'.format(a) # decimal

'a = 254 '

>>> 'a = {0:10 b}'.format(a) # binary

'a = 11111110 '

>>> 'a = {0:5x}'.format(a) # hex (lower -case)

'a = fe'

61

String Formatting

Since version 3.6, Python has supported a further way of
interpolating values into strings: a string literal denoted with a f

before the quotes can evaluate expressions placed within braces,
including references to variables, function calls and comparisons.
Example:
>>> h = 6.62607015e-34

>>> unit = 'J.s'

instead of using the format function:
>>> 'h = {h:.3e} {unit}'.format(h=h, unit = unit)

'h = 6.626e-34 J.s'

one can simply write:
>>> f'h = {h:.3e} { h_units }'

'h = 6.626e-34 J.s'

62

String Formatting

>>> name = 'Elizabeth '

>>> f'The name {name} has {len(name)} letters and {name.lower().count("e")}

"e"s.'

'The name Elizabeth has 9 letters and 2 "e"s.'

or even:
>>> letter = 'k'

>>> f'{name} has {len(name)} letters and {name.lower().count(letter)}

"{letter}"s.'

'Elizabeth has 9 letters and 0 "k"s.‘

f-strings are evaluated once, at runtime, it is not possible to define a reuseable

“template”:
>>> radius = 2.5

>>> s = f'The radius is { radius } m.'

>>> print(s)

The radius is 2.5 m.

>>> radius = 10.3

>>> print(s)

The radius is 2.5 m.

• Please write a simple averaging code

Sample output:
Lütfen 10 adet sayı giriniz

1.sayıyı giriniz : 1

2.sayıyı giriniz : 2

3.sayıyı giriniz : 3

4.sayıyı giriniz : 4

5.sayıyı giriniz : 5

6.sayıyı giriniz : 6

7.sayıyı giriniz : 7

8.sayıyı giriniz : 8

9.sayıyı giriniz : 9

10.sayıyı giriniz : 10

10 sayının toplamı 55 ve ortalaması : 5.5

63

Exercises

64

Homework 2

Number guessing game in Python. Inputs range, let’s say from 1 to 100.

print ("you have only 7 chances to guess the integer!")

hidden_number = 23

your_guess = int(input ('Guess a number: '))

if your_guess == hidden_number:

 print ("Congratulations you did it in 1 try")

elif your_guess < hidden_number:

 print("You guessed too small")

else:

 print("You guessed too high")

65

Guessing Numbers : The problem is to guess what number a

computer has in mind. You will write a program that randomly

generates an integer between 0 and 100, inclusive. For each user

input, the program reports whether it is too low or too high, so the

user can choose the next input intelligently. Here is a sample run:

Guess a magic number between 0 and 100

Enter your guess: 50

Your guess is too high

Enter your guess: 25

Your guess is too low

Enter your guess: 42

Your guess is too high

Enter your guess: 39

Yes, the number is 39

import random

Integer from 1 to 100, endpoints included

number = random.randint(0, 100)

Homework 3

66

• Write a program that reads a word, and prints the number of

letters in the word, the number of vowels in the word, and the

percentage of vowels.

 Enter a word: sequoia

 Letters: 7

 Vowels: 5

 Percentage of vowels: 71.42

Homework 4

67

Exercises

• Write a Python script that calculates the average value of given

numbers. Please write the same code with - (minus) number

enterence

This is Output of the script

 enter your number: 12

 enter your number: -1

 average is 12.0

 enter your number: 12

 enter your number: 9

 enter your number: 18

 enter your number: -1

 average is 13.0

Exercises

68

import turtle

set up stage or canvas

turtle.setup(500, 500)

set the background color

turtle.bgcolor("yellow")

turtle.penup()

turtle.goto(-240, 240)

turtle.pendown()

turtle.forward(480)

turtle.right(90)

turtle.forward(10)

turtle.right(90)

turtle.forward(480)

.

.

.

.

• Write a program that draws the
shape below.

Exercises

69

• Write a program that draws the shape below.

Exercises

70

The random.randint() method returns an integer number selected

element from the specified range.

Exercises

71

import turtle

import random

turtle.title("Program Random Dots")

turtle.setup(500, 500)

for _ in range(100): # make it 10000

 # choose a random spot

 xpos = random.randint(-200,200)

 ypos = random.randint(-200,200)

 # goto this spot

 turtle.penup()

 turtle.goto(xpos, ypos)

 turtle.pendown()

 turtle.dot(5, "red")

Exercises

72

for _ in range(10000): for _ in range(100000):

• Write a program that draws the shape below.

73

Turtle Graphics

online learning during the COVID-19 pandemic

74

Turtle Graphics

import turtle

import time

define the countdown function

def countdown(t):

 while t:

 mins, secs = divmod(t, 60)

 timer = '{:02d}:{:02d}'.format(mins, secs)

 turtle.backward(150)

 turtle.write(timer, font=("Verdana", 85, "bold"))

 time.sleep(1)

 t -= 1

 turtle.reset()

 turtle.backward(400)

 turtle.write('The lecture is starting', font=("Verdana", 55, "normal"))

turtle.title('BCO601 Timer')

turtle.hideturtle()

turtle.bgpic("counterBack.png")

input time in seconds

t = input("Enter the time in seconds: ")

screen = turtle.Screen()

screen.tracer(False)

function call

countdown(int(t))

