PYTHON
PROGRAMMING

Functions, Turtle Graphics
#4

Serdar ARITAN

Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON Print
PROGRAMMING

Printing in Python is probably simpler than some of its details may
imply. To illustrate, let’s run some quick examples.

>>> print()

>>> x = 'spam' # String
>>> y = 91 # Integer
>>> z = ['hello'] # List

>>> print(x, y, 2z)

spam 91 ['hello']

>>> print(x, y, z, sep='"') # Suppress separator
spam9l[‘hello']

>>>

>>> print(x, y, z, sep=', ')# Custom separator
spam, 91, [‘hello']

Serdar ARITAN

PYTHON Print
PROGRAMMING

Automatic Newline. Normally, any print command automatically
adds a newline ('\n') character at the end of what is printed

print("one",1)
print("two",2)
print("three", 3)
one 1

two 2

three 3

What if you would rather not have this behavior? A special syntax
for this in Python3 is the following:

print("one",1, end='")

print("two",2, end='")

print("three", 3)

Serdar ARITAN

PYTHON Print
PROGRAMMING

Also by default, print adds an end-of-line character to terminate the
output line.

>>> print(x, y, z, end="")

spam 91 ['hello']

>>> print(x, y, z, end='...\n') # Custom line end
spam 91 ['hello']...
>>> print(x, y, z, sep='..."', end='!\n")

Multiple keywords
spam...91...['hello']!

>>> print(x, y, z, end=''\n', sep='...")
Order doesn't matter
spam...91...['hello']!

Finally, keep in mind that the separator and end-of-line options
provided by print operations are just conveniences.

Serdar ARITAN

PYTHON Print
PROGRAMMING

When you run a Python script by typing a shell command line such
as python dirl\dir2\file.py, the CWD is the directory you
were in when you typed this command, not dirl\dir2.

>>> Lmport os, sys

>>> print('my os.getcwd =>', os.getcwd()) #show my cwd execution dir
my os.getcwd => C:\Program Files\Python31l2

>>> print('my sys.path =>', sys.path[:6]) #show first 6 import paths.
my sys.path => ['', 'C:\\Program Files\\Python312\\Lib\\idlelib',
'C:\\Program Files\\Python312\\python31l2.zip', 'C:\\Program
Files\\Python312\\DLLs', 'C:\\Program Files\\Python312\\Lib',
'C:\\Program Files\\Python312']

Serdar ARITAN

PYTHON Print
PROGRAMMING

Here is how the file keyword argument is used—it directs the
printed text to an open output file or other compatible object for the
duration of the single print (this is really a form of stream
redirection, a topic we will revisit later)

Print to a file

>>> print(x, y, z, sep='..."', file=open('data.txt', 'w'))
>>> print(x, y, z) # Back to stdout

spam 91 ['hello']

>>> print(open('data.txt') .read()) # Display file text
spam...91...['hello']

Serdar ARITAN

PYTHON Print
PROGRAMMING

>>> print('hello world') # Print a string object in 3.X
hello world

Because expression results are echoed on the interactive command line,
you often don’t even need to use a print statement there

>>> 'hello world' # Interactive echoes
Ahello world?

if you enjoy working harder than you must, you can also code print
operations this way:

>>> import sys # Printing the hard way

>>> sys.stdout.write('hello world\n')

hello world

12

This code explicitly calls the write method of sys.stdout

Serdar ARITAN

PYTHON Print
PROGRAMMING

The long form isn’t all that useful for printing by itself. However, it is
useful to know that this is exactly what print operations do because
it is possible to reassign sys.stdout to something different from

the standard output stream.

import sys
sys.stdout = open('log.txt', 'a') s —ome
STREAM _—

Redirects prints to a file s _sue—"|
STDIPRN \©

print(x, y, x) # Shows up in log.txt $

we reset sys.stdout to a manually opened file named log.txt, located in
the script’s working directory and opened in append mode

Serdar ARITAN

PYTHON Print
PROGRAMMING

>>> lmport sys

>>> temp = sys.stdout # Save for restoring later
>>> sys.stdout = open('log.txt', 'a')

Redirect prints to a file

>>> print('spam')

>>> print (1, 2, 3)

>>> sys.stdout.close() # Flush output to disk

>>> sys.stdout = temp # Restore original stream
>>> print('back here') # Prints show up here again
back here

>>> print(open('log.txt') .read()) gi}
Result of earlier prints Qb\\ﬂmk* ::$$;:Ei>
spam

e~ STREAM L

123 <& = R
(2

Gy

Serdar ARITAN

PYTHON Pretty Print
PROGRAMMING

Suppose we need to print something in a complicated list, for
iInstance a list that contains tuples, strings, and a dictionary. A
typical interactive session might be:

>>> a = ("R", ,78)
>>> b = { "white": (255,255,255), "black":(0,0,0) }
>>c=[a, b, "+++", b]

>>> print(c)

[('R',False,78), {'white':(255,255,255), 'black':(0,0,0)},
'+++', {'white':(255,255,255), 'black':(0,0,0)}]

>>> pprint *

>>> pprint(c)

[('R', False, 78),

{'black': (0, 0, 0), 'white': (255, 255, 255)},

R

{'black': (0, 0, 0), 'white': (255, 255, 255)}]

Serdar ARITAN

PYTHON

PROGRAMMING
>>>"hello"+"world"
>>> "hello"*3
>>> "hello"[0]
>>> "hello"[-1]
>>> "hello"[1:4]
>>> len("hello")
>>>
>>>

I|e|l in llhello"

"helloworld"
"hellohellohello"
nh"

ngn

"ell"

5

"hello" < "jello"l

1

Python Shell

File Edit Shel Debug Options Windows Help

Strings

concatenation
repetition
indexing
(from end)
slicing

size
comparison

3= 3= = I = F = I

search

b
x

'helloworld'
>>> "hello"*3

>>> "hello"[0]
T
>>» "hello"[-1]
igt

o

>>> "hello"[1:4]
'ell!

>»> len{"hello™)
5

>>> "hellao"”
True

True

Serdar ARITAN

'hellohellchello!

>>> "e" in "hello"

>>> "hello"+"world"™

< "jellao"™

b

Ln: 23|Col: 4

PYTHON

PROGRAMMING
« Characters in a string are numbered with indexes starting at O:

String Index Positions

— Example:
_ . “ Be Careful: Starts from 0
name = “S.Araitan
index 0 1 2 3 4 5 6 7
Character S . A r | t a n

« Accessing an individual character of a string:
variableName [index]

— Example:
print (name, "starts with", name[0])
Qutpult:
S.Aritan starts with S

Serdar ARITAN

PYTHON String Index Positions
PROGRAMMING

s[-9] s[-8] s[-7] s[-6] s[-5] s[-4] s[-3] s[-2] s[-1]

Li1|g|lh|t rajly

s[0] s[1] s[2] s[3] s(4] S[5] s[6] s[7] s[8]

The slice operator has three syntaxes:

seq[start]
seg[start:end]
seg[start:end:step]

The seq can be any sequence, such as a list, string, or tuple. The start,
end, and step values must all be integers (or variables holding integers).

Serdar ARITAN

PYTHON String Index Positions
PROGRAMMING

> s[4:11] > 4— s[-3:] —»
Tlhle|l [wla|x|w|o|r|k| [m|a|n
I s[:7] »> < s[7:] >
>>> s = s[:12] + "wo" + s[l2:]

>>> S
'The waxwork woman'

In fact, since the text “wo” appears in the original string, we could
have achieved the same effect by assigning
s[:12] + s[7:9] + s[l1l2:]
>>> s
'The waxwork woman'

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

\

: T e
Call to Routine A — /

. /
/

Call to Routine A

Call to Routine A

A program routine iIs a named group of instructions that
accomplishes some task. A routine may be invoked (called) as

many times as needed in a given program. A function is Python’s
version of a program routine.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

The first step to code reuse is the function: a named piece of code,
separate from all others. A function can take any number and type
of input parameters and return any number and type of output
results. You can do two things with a function:

 Define it

e Call it

>>> def do_nothing():

Nnasse
VAo o

>>> do_nothing()

>>> type (do_nothing)

<class 'function'>

>>> do_nothing

<function do nothing at 0x00000001036AFD90>
>>>

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Just like a value can be associated with a name, a piece of logic can
also be associated with a name by defining a function.

>>> square (x) :
X * x

>>> square (95)
25
The body of the function is indented. Indentation is the Python’s way
of grouping statements.
The functions can be used in any expressions.
>>> square(2) + square(3)

13
>>> square (square (3))

81

Serdar ARITAN

PYTHON Functions
PROGRAMMING

name (argl, arg2,... argN):
statements
As with all compound Python statements, consists of a header

line followed by a block of statements, usually indented (or a simple
statement after the colon).

Function Header def avg(nl, n2, n3): >>> numl = 10
N | >>> num2 = 25

FunctonBody @ =-—=——-
y >>> num3 = 16

(sute) @~ | TTTTTF
------ >>> avg (numl,num2 , num3)

Function names have the same rules as variable names (they must
start with a letter or _ and contain only letters, numbers, or).

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Function Definition

Function Value
—> def avg(nl, n2, n3): —>
return (nl + n2 + n3) / 3.0

y 2760

result = avg(10, 25, 16) * factor

- - .

/N

Function Call

,<__.
Call to Value-Returning Function

Serdar ARITAN

PYTHON Functions
PROGRAMMING

define and call another function that has no parameters but prints

a single word:
>>> def make_a sound():
print('guack')

>>> make a sound()
quack

When you called the make a sound() function, Python ran the
code inside its definition. A function that has no parameters but

returns a value:
>>> def agree():

recurn True

Serdar ARITAN

PYTHON Functions
PROGRAMMING

We can call this function and test its returned value by using if:

>>> if agree(): # if True:
print ('Splendid!"')

lse:

print ('That was unexpected.')

Splendid!

Serdar ARITAN

PYTHON Functions
PROGRAMMING

it’s time to put something between those parentheses

>>> def echo(anything):
return anything + ' ' + anything

>>>echo (‘'Is there anybody’)
'Is there anybody Is there anybody'

>>> echo (1500)
TypeError: unsupported operand type(s) for +: 'int'

Serdar ARITAN

and

'str'

PYTHON Functions
PROGRAMMING

a function that takes an input argument and does something with it

def commentary (color):

if color == 'red':

) return "It's a tomato."
elif color == "green":
— return "It's a green pepper."

elif color == 'bee purple':
—>

return "I don't know what it is, but only bees can see it."
else:
return "I've never heard of the color " + color + "."

l

Serdar ARITAN

PYTHON None is Useful

PROGRAMMING
vone is a special Python value that holds a place when there is
nothing to say. It is not the same as the boolean value ralse

>>> None == False

= ‘ St=
ol &

>>> thing = lNone
>>> 1f thing:

print("It's some thing")
e: # It is like False

al e
al eca
 etn b e o

print("It's no thing")

It's no thing

Serdar ARITAN

PYTHON
PROGRAMMING

To distinguish mone from a boolean
operator:

>>> thing = llone
>>> if thing is None:
print("It's nothing")
else: # It is like False
print("It's something")

It's nothing

Serdar ARITAN

-
I

None is Useful

alse value, use Python’s is

PYTHON Functions
PROGRAMMING

Functions in Python are first-class objects. Programming language
theorists define a “first-class object” as a program entity that can
be:

 Created at runtime

» Assigned to a variable or element in a data structure
* Passed as an argument to a function

» Returned as the result of a function

Serdar ARITAN

PYTHON Functions
PROGRAMMING

When to Use a Function

Only one purpose: A function should be the encapsulation of a single, identifiable
operation.

Readable: A function should be readable.

Not too long: A function shouldn’t be too long.

Reusable: A function should be reusable in contexts other than the program it was written
for originally.

Complete: A function should be complete, in that it works in all potential situations. If you
write a function to perform one thing, you should make sure that all the cases where it
might be used are taken into account.

Able to be refactored: Refactoring is the process of taking existing code and modifying it
such that its structure is somehow improved but the functionality of the code remains the
same.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

A Functions are generally defined at the top of a program. However,
every function must be defined before it is called .

def Executes at Runtime I gi
]

The Python def is a true executable statement: when it runs, it creates a
new function object and assigns it to a name. Because it's a statement, a
Jdef can appear anywhere a statement can—even nested in other
statements
L test:

def func(): # Define func this way

def func|(): # Or else this way

func () # Call the version selected and built
Serdar ARITAN

PYTHON Functions
PROGRAMMING

Generally, s are not evaluated until they are reached and run,
and the code inside s is not evaluated until the functions are
later called. Because function definition happens at runtime,
there’s nothing special about the function name. What’s important
IS the object to which it refers:

othername = func # Assign function object
othername () # Call func again

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Here, the function was assigned to a different name and called
through the new name. Like everything else in Python, functions
are just objects; they are recorded explicitly in memory at
program execution time.

def func(): ... # Create function object
func () # Call object
func.attr = value # Attach attribute

Serdar ARITAN

PYTHON Functions
PROGRAMMING

>>> def func():

>>> func()
>>> func.value =1
>>> dir (func)

['__annotations ', '_builtins ', ' call ', ' class_ ', '_closure_ ',
' code ', ' defaults ', ' delattr ', ' diect ', ' dir ',

' doc_ ', ' eq ', ' format ', ' ge ', ' get ', ' getattribute ',
' getstate_ ', ' globals ', ' gt ', ' hash ', ' init ',

' _init subclass ', ' kwdefaults ', ' le ', ' 1t ', ' module ',

' mame ', ' ne ', ' new_ ', ' qualname ', ' reduce ',

' reduce ex ', ' repr ', ' setattr ', ' sizeof ', ' str ',

' _subclasshook ', ' type params ', 'value']

>>> func.value

1

>>> func.value +=1
>>> func.value
2

Serdar ARITAN

PYTHON Functions
PROGRAMMING

The first statement in the body of a function is usually a string,
which can be accessed with function name. doc
This statement is called pocstring.

>>> def hello(name) : Docstring
"h% Greets a person """
print('Hello', name + '!")
>>>
>>> hello(name = ‘Serdar’)
>>>
>>> print ("The docstring of the function : "+ Hello. doc)
Serdar ARITAN

PYTHON Functions
PROGRAMMING

We can even create more functions using the existing ones.

>>> def square(x):
return x * x

>>> def sum of squares (x.-¥J~
return square (x) + square(y)

>>> sum of squares (2, 3)

13

Functions are just like other values, they can assigned, passed as
arguments to other functions etc.
>>> f = square
>>> f(4)
16
>>> def fxy(f, x, y):
return £(x) + £(y)
>>> fxy(square, 2, 3)
13

Serdar ARITAN

PYTHON Functions
PROGRAMMING

>>> cube (x) :

X * x * x
>>> fxy(cube, 2, 3)

35

There is another way of creating functions, using the
operator.

>>>forthpower = X: X ** 4

>>> fxy (forthpower, 2, 3)

97

>>> fxy (X: x ** 5 2, 3)

275

The operator becomes handy when writing small functions to

be passed as arguments etc.

Serdar ARITAN

PYTHON Functions
PROGRAMMING https://cscircles.cemc.uwaterloo.ca/visualize

Write your Python 3 code here:

1 def square(x):

2 return x * x

4 def sum_of_squares(x, y):
return square(x) + square(y)

7 def fxy(f, x, y):
8 return f(x) + f(y)

10 def cube(x):
11 return x * x * x

13 forthpower = lambda x: x ** 4

15 ¥ = square

16 fxy(square, 2, 3)

17 fxy(cube, 2, 3)

18 fxy(forthpower, 2, 3)

19 fxy(lambda x: x ** 5, 2, 3)

Visualize Execution

Serdar ARITAN

PYTHON Functions
PROGRAMMING

uT syuar TyA .

Frames Objects
return x * x
Global frame function
def sum_of squares(x, y): square square (x)
return square(x) + square(y) sum_of_squares function
sum_of_squares(x, v)
fy
def fxy(f, x, y): cube function
t f f fxy(f, x,
return f(x) + f(y) forthpower xy(f, %, v)
f function
def cube(x): cube(x)
return x ¥ x * x .
Xy function
A(x)
forthpower = lambda x: x ** 4
x |2 function
A
f = square y [3 ()

fxy(square, 2, 3)

fxy{cube, 2, 3)
fxy(forthpower, 2, 3)
fxy(lambda x: x ** 5, 2, 3)

Serdar ARITAN

PYTHON Functions CAUTION

PROGRAMMING
WATCH YOUR

n! =n * (n-1)!', if n > 1 and £(1) = 1 STEP

Example: Recursion has
41 = 4 * 3| something to
31=3*2 do with infinity
2'1=2*1
>>> (n) :
£f=1

(n > 0):

f=f *n

n=n-1

£

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Treating a Function Like an Object

>>> def factorial(n):

' " "raturns n!'!' |

= ~
: |

rm 1l if n< 2 else n * factorial(n - 1)

s |

>>> factorial (42)
1405006117752879898543142606244511569936384000000000
>>> factorial. doc_

'returns n!'

>>> type (factorial)

<class 'function'‘'>

>>> f = lambhda x: x and x * £f(x - 1) or 1

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

>>> import turtle as t

>>> dir (t)

['Canvas', 'Pen', 'RawPen', 'RawTurtle', 'Screen', 'ScrolledCanvas', 'Shape', 'TK', 'TNavigator',
'"TPen', 'Tbuffer', 'Terminator', 'Turtle', 'TurtleGraphicsError', 'TurtleScreen',
'TurtleScreenBase', 'Vec2D', ' CFG', ' LANGUAGE', ' Root', ' Screen', ' TurtleImage', ' all '
' builtins ', ' cached ', ' doc ', ' file ', ' forwardmethods', ' func body',

' loader ', ' methodDict', ' methods', ' name ', ' package ', ' spec ', ' stringBody',
' alias list', ' make global funcs', ' screen docrevise', ' tg classes', ' tg screen functions',
' tg turtle functions', ' tg utilities', ' turtle docrevise', ' ver', 'addshape', 'back',
'backward', 'begin fill', 'begin poly', 'bgcolor', 'bgpic', 'bk', 'bye', 'circle', 'clear',
'clearscreen', 'clearstamp', 'clearstamps', 'clone', 'color', 'colormode', 'config dict',
'deepcopy', 'degrees', 'delay', 'distance', 'done', 'dot', 'down', 'end fill', 'end poly',
'exitonclick', 'fd', 'fillcolor', 'filling', 'forward', 'get poly', 'get shapepoly', 'getcanvas',
'getmethparlist', 'getpen', 'getscreen', 'getshapes', 'getturtle', 'goto', 'heading',
'hideturtle', 'home', 'ht', 'inspect', 'isdown', 'isfile', 'isvisible', 'Jjoin', 'left', 'listen',
'1t', 'mainloop', 'math', 'mode', 'numinput', 'onclick', 'ondrag', 'onkey', 'onkeypress',
'onkeyrelease', 'onrelease', 'onscreenclick', 'ontimer', 'pd', 'pen', 'pencolor', 'pendown',
'pensize', 'penup', 'pos', 'position', 'pu', 'radians', 'read docstrings', 'readconfig',
'register shape', 'reset', 'resetscreen', 'resizemode', 'right', 'rt', 'screensize', 'seth',
'setheading', 'setpos', 'setposition', 'settiltangle', 'setundobuffer', 'setup',
'setworldcoordinates', 'setx', 'sety', 'shape', 'shapesize', 'shapetransform', 'shearfactor',
'showturtle', 'simpledialog', 'speed', 'split', 'st', 'stamp', 'sys', 'textinput', 'tilt',
'tiltangle', 'time', 'title', 'towards', 'tracer', 'turtles', 'turtlesize', 'types', 'undo',
'undobufferentries', 'up', 'update', 'width', 'window height', 'window width', ‘'write',

'write docstringdict', 'xcor', 'ycor']
Serdar ARITAN 39

14

PYTHON TURTLE BASICS
PROGRAMMING

In order to make our drawing appear almost immediately we can
make use of the tracer() method. tracer() takes two
arguments. One controls how often screens should be updated and
the other controls the delay between these update. To obtain the
fastest possible rendering, both these arguments should be set to

2ero.
>>> tracer (0, 0)

By calling tracer () with bother arguments set to zero, we are
essentially turning off all animation and our drawings will be drawn

“immediately.” However, if we turn the animation off in this way we
need to explicitly update the image with the update () method after

we are done issuing drawing commands.

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

If you want to reset tracer() to its original settings, its arguments
should be 1 and 10.

>>> tracer(l, 10)

If we want to erase everything that we previously drew, we can use
either the clear () or reset() methods. clear() clears the

drawing from the graphics window but it leaves the turtle in its
current position with its current heading. reset () clears the

drawing and also returns the turtle to its starting position in the
center of the screen.

Serdar ARITAN

>>>
>>>
>>>
>>>
>>>
>>>

Serdar ARITAN

PYTHON
PROGRAMMING

t.

reset ()

t.color("blue")

t o o ot

.pensize (100)
.£4(100)
.color ("red")
.£d4(100)

TURTLE BASICS

PYTHON
PROGRAMMING

>>> help(t.seth)

Help on function seth in module turtle:

seth (to_angle)

Set the orientation of the turtle to to_angle.

Aliases: setheading | seth

Argument:
to_angle -- a number (integer or float)

Set the orientation of the turtle to to_angle.

Here are some common directions in degrees:

standard - mode: logo-mode:
___________________ l ————————————————————
0 - east 0 - north
90 - north 90 - east
180 - west 180 - south
270 - south 270 - west
Example:

>>> setheading (90)
>>> heading()
90

Serdar ARITAN

TURTLE BASICS

PYTHON TURTLE BASICS
PROGRAMMING

>>> t.reset()
>>> t.color("red")
>>> for angle in range(0, 360, 15):

t.seth (angle)

¢ Python Turtle Graphics

t.circle(100)

S
e

E\E\‘:‘ “’

i
s,

/]
N
[]
L7

=N
s

TN

SIS

Q?’ TN
W N
= “’::ﬂ

/7

)

N

!

7

Wiee
.

<=

e

P

e

2y
9

5
5

N
i

Sl eteteg

O
i
1

w‘

=

|

";/?4
9

(7
L7

S

<

e
T

SN
=

)
=

4
iy
e~

i
5
=
NG

8

—_—
/7
\\\\“

T
zee:
an
=
FER

v

[T
22

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

>>> t.reset()
>>> colors = ["blue", "green", "purple", "cyan", "magenta", "violet"]

>>> t.tracer (0, 0) PV —

>>> for i in range (45):
.color(colors[i % 6])
.pendown ()

.fd(2 + i * 5)

.left (45)

.width (i)

.penup ()

o of of of o ot

>>> t.update()

Serdar ARITAN

PROGRAMMING

Write a function that takes a 2D coordinate point (x, y) and side length to

draw a square.

La Python 3.4.0: mdSqNofFill.py - D:/Lectures/BCO 601 Python Programming/turtle/rndSqNoFill.py
File Edit Format Run Options Windows Help

m turtle im t *

lef drSquare(x, vy, sl):

? Python Turtle Graphics E
=
B
=

K 2

drSquare (100, 100, 50)
drsquare (0, 100, 50)

PYTHON TURTLE BASICS

ol]| =)
Ln: 14|Cok: 19

Serdar ARITAN

PYTHON
PROGRAMMING

pencolor(a_color)

fillcolor(a_color)

colormode(255)

color(pen_color, fill_color) |
begin_fill() |
end_fill()

TURTLE BASICS

a_color is either a colorstring or an rgb tuple.
a_color is either a colorstring or an rgb tuple.
Sets rgb values to be 0-255 (defaults to 0.0-1.0,
better to set to 255).

Set both with one function.

Mark where region to color in begins.

Mark where region to color in ends.

For colorstrings, Python accepts any of the standard color strings
provided by Python’s built-in drawing module, Tk. Common strings such
as “green,” “blue,” “red,” and “yellow” are obvious, but others such as
“BlanchedAlmond” or “CornflowerBlue” are less so. The full list can be

found at

http://lwww.tcl.tk/man/tcl8.5/TkCmd/colors.htm

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

L& twoSquare.py - D:/Lectures/BCO 601 Python Programming/turtle/twoSquare.py (3.4.2) Sl@]==

File Edit Format Run Options Windows Help
m turtle import * Al

lef square (length, scolor):
'''" Draw a square , side length , color fill tuple '''
fillcolor (scolor)
begin fill()
for i in range(4):
forward (length)
right (90)
end fill()

square (50, (1,0,0))
penup ()
forward(100)
pendown ()

square (50, (0,1,0))
penup ()
forward(100)
pendown ()

square (50, (0,0,1))

¢ python Turtle Graphics = |I=8 =
=]

g = -

Ln: 18 Col: 10

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

|.& chessBoard.py - DA\Lectures\BCO 601 Python Programming\turtle\chessBoard.py (3.4.2) (=1 =]==]
File Edit Format Run Options Windows Help
from turtle import * =

import random
colormode (255) # colors in range 0-255

def sguare (length, scolor):
""" Draw a square , side length , color fill tuple "'!'
fillcolor(scolor)
begin fill()
for i in range(4):
forward (length)
right (90)
end fill()

or 1 in range(8):
init values , fun to change
red = random.randrange (1, 255)
green = random.randrange(l, 255)
blue = random.randrange(l, 255)
square (50, (red, green, blue))

forward (50)

? Python Turtle Graphics = e
=]
=

-« |

T -
Ln: 19 |Col: 35

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

La drawSquare.py - Di/Lectures/BCO 601 Python Programming/turtle/drawSquare.py (3.4.2) =% |ECR[==
File Edit Format Run Options Windows Help
from turtle import * =}

colormode (255) # colors in range 0-255

del square (length, scolor):

74 python Turte Graphics EpEgEglor fill tuple "'

> 0-254

side length += 3

range l-pen limit

pen width = ((pen width + pen inc) % pen limit) + 1
pensize(pen width)

Ln; 19|Col: 0

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

import turtle

set up a title

- turtle.title ("BCO601 Python Programming")
set up our stage or canvas
turtle.setup (500, 500, 0, 0)
Square - 4 sides
turtle. forward (50)
turtle.right (90)
turtle. forward (50)
turtle.right (90)
turtle. forward (50)
turtle.right (90)

move forward

turn 90 degrees

move forward again

turn 90 degrees again

move forward again !

turn 90 degrees again !

turtle. forward (50) move forward again !
turtle.right (90) turn 90 degrees again

let the user close the turtle window when they click
turtle.exitonclick()

3= 3= 3= IS

Serdar ARITAN

=

PYTHON TURTLE BASICS
PROGRAMMING

import

turtle

set up a title

turtle.

title ("BCO601 Python Programming")

set up your stage or canvas

turtle.

setup (500, 500, O, 0)

Pentagon - 5 sides

turtle.
turtle.
turtle.
.right (360/5) # turn 360/5 degrees again
turtle.
turtle.
turtle.
turtle.
turtle.
.right(360/5) # turn 360/5 degrees again
turtle.

turtle

turtle

Serdar ARITAN

forward (50) # move forward
right(360/5) # turn 360/5 degrees
forward (50) # move forward again

forward (50) # move forward again !
right (360/5) # turn 360/5 degrees again !
forward (50) # move forward again !
right (360/5) # turn 360/5 degrees again
forward (50) # move forward again !

exitonclick()

PYTHON
PROGRAMMING

MpoOL

- turtle

TURTLE BASICS

turtle.title ("BCO601 Python Programming")

turtle.setup (500, 500, 0, 0) # set up your stage or canvas

Octagon - 8 sides

turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.

turtle

Serdar ARITAN

forward(50)
right(360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)
forward(50)
right (360/8)

.exitonclick()

I I I T

move
turn
move
turn
move
turn
move
turn
move
turn
move
turn
move
turn
move
turn

forward

360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees
forward again
360/8 degrees

again
'

again !

again
!

again
!

again
!

again
!

again

PYTHON TURTLE BASICS
PROGRAMMING

import turtle
polygon function
input: accepts two integers

i sides - defines how many sides we need to draw
length - defines the length of each side
Jdef polygon(sides, length):

for x in range (sides) :# loop through each side

draw the side
turtle. forward (length)
rotate the requisite number of degrees
turtle.right (360/sides)
set up a title
turtle.title (" BCO601 Python Programming ")
set up your stage or canvas
turtle.setup (500, 500, 0, 0)
Octagon - 8 sides
polygon (8, 50)
let the user close the turtle window when they click
turtle.exitonclick()

Serdar ARITAN

PYTHON
" PROGRAMMING

| § BCOBOL Python Programming

TURTLE BASICS

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

polygon(31des, length) :
or X range (sides) :# loop through each side
draw the side
turtle. forward(length)
rotate the requisite number of degrees
turtle.right (360/sides)

besgen () : r«¢ n polygon (5, 50)
kare() : =z« polygon (4, 50)
ucgen () : return polygon (3, 50)

Serdar ARITAN

PYTHON
PROGRAMMING

wrapper (func, *args):
func (*args)

TURTLE BASICS

The * next to args means
"take the rest of the
parameters given and put them
in a list called args

H= H= H=

polygon (sides, length):
X range (sides) : # loop through each side
draw the side
turtle. forward(length)
rotate the requisite number of degrees

turtle.right (360/sides)
create wrapper functions

besgen () : wrapper (polygon, 5, 50)
kare () : wrapper (polygon, 4, 50)
ucgen () : wrapper (polygon, 3, 50)

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

Homework : Try to write randomly position shapes with random color.

Serdar ARITAN

PYTHON TURTLE BASICS
" PROGRAMMING

Homework : Try to write randomly position random shapes with random
color.

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

Homework : Try to write checker board with random color.

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

Homework : Try to wrlte randomly position random circles with random
color.. T - o x]

File Edit Shell Debug Options Window Help

Number of Circle is 498
Number of Circle is 4098
Number of Circle is 499
Number of Mirmla i= AQG
Number o § Program Random Circle =

Number
Number o
Number o b
Number o .O
Number o
Number o
Number of Circle is 499

Number of Circle is 499 [
Number of Circle is 500

Ln: 10519 Col: 25 |

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle. shape (name=None)

”n u n u n u

Initially there are the following polygon shapes: “arrow”, “turtle”, “circle”, “square”,

n u

“triangle”, “classic”.

>>> turtle.shape ()
'classic'

>>> turtle.shape("square")
>>> turtle.shape ()
'square'’

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle.shapesize (stretch wid= , Stretch len= , outline=
Return or set the pen’s attributes x/y-stretchfactors and/or outline.

>>> turtle.shapesize (5, 5, 12)
>>> turtle.shapesize()

(5, 5, 12)

>>> turtle.shapesize (outline=8)
>>> turtle.shapesize()

(5, 5, 8)

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle.onkey (fun, key)

Bind fun to key-release event of key. If fun is None, event bindings are removed.
>>> £():

£d4(50)

1t (60)

>>> screen.onkey(f, "Up")
>>> screen.listen|()

turtle. listen (xdummy=None, ydummy=None)

Set focus on TurtleScreen

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle. tracer (n= , delay=)

Turn turtle animation on/off and set delay for update drawings. If n is given, only each
n-th regular screen update is really performed. (Can be used to accelerate the drawing
of complex graphics.)
>>> screen.tracer (8, 25)
>>> dist = 2
>>> i range (200) :

fd (dist)

rt (90)

dist += 2

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle.mainloop ()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a
turtle graphics program.

>>> screen.mainloop ()

turtle.bye ()

Shut the turtlegraphics window.

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

turtle *

width, height 800, 600

maxx, maxy = width/2, height/2
minx, miny = -maxx, -maxy
startx, starty =0, 0

dx, dy = 10, 10

wn Screen ()
box=Turtle ()

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

setup (width, height, startx, starty, shape, col, s):
box.penup ()

box. shape (shape)

box.shapesize(*s)

box.color (col)

wn.setup (width, height, startx, starty)
wn.title ("BCO601")

wn.bgcolor ('grey')

wn.onkey (up, "Up")

wn.onkey (left, "Left")

wn.onkey (right, "Right")

wn.onkey (back, "Down")

wn.onkey (quitTurtles, "Escape")
wn.listen()

wn.mainloop ()

Serdar ARITAN

PYTHON TURTLE BASICS
PROGRAMMING

#Event handlers

S up():
box.£d(45)

- left():
box.1t (45)

right():
box.rt (45)

back () :
box.bk (45)

quitTurtles() :
wn .bye ()

setup (width, height, startx, starty, "square", "red", (3,3,3))

Serdar ARITAN m

PYTHON

~ PROGRAMMING

scosot

Serdar ARITAN

TURTLE BASICS

