
1

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Functions, Turtle Graphics

#4

2

>>> print()

>>> x = 'spam‘ # String

>>> y = 91 # Integer

>>> z = ['hello'] # List

>>> print(x, y, z)

spam 91 ['hello']

>>> print(x, y, z, sep='') # Suppress separator

spam91[‘hello']

>>>

>>> print(x, y, z, sep=', ')# Custom separator

spam, 91, [‘hello']

Print

Printing in Python is probably simpler than some of its details may

imply. To illustrate, let’s run some quick examples.

3

print("one",1)

print("two",2)

print("three",3)

one 1

two 2

three 3

What if you would rather not have this behavior? A special syntax
for this in Python3 is the following:
print("one",1, end='')

print("two",2, end='')

print("three",3)

Print

Automatic Newline. Normally, any print command automatically
adds a newline ('\n') character at the end of what is printed

4

Print

>>> print(x, y, z, end='')

spam 91 ['hello']

>>> print(x, y, z, end='...\n') # Custom line end

spam 91 ['hello']...

>>> print(x, y, z, sep='...', end='!\n')

Multiple keywords

spam...91...['hello']!

>>> print(x, y, z, end='!\n', sep='...')

Order doesn't matter

spam...91...['hello']!

Finally, keep in mind that the separator and end-of-line options

provided by print operations are just conveniences.

Also by default, print adds an end-of-line character to terminate the

output line.

5

Print

>>> import os, sys

>>> print('my os.getcwd =>', os.getcwd()) #show my cwd execution dir

my os.getcwd => C:\Program Files\Python312

>>> print('my sys.path =>', sys.path[:6]) #show first 6 import paths.

my sys.path => ['', 'C:\\Program Files\\Python312\\Lib\\idlelib',

'C:\\Program Files\\Python312\\python312.zip', 'C:\\Program

Files\\Python312\\DLLs', 'C:\\Program Files\\Python312\\Lib',

'C:\\Program Files\\Python312']

When you run a Python script by typing a shell command line such
as python dir1\dir2\file.py, the CWD is the directory you

were in when you typed this command, not dir1\dir2.

6

Print

Print to a file

>>> print(x, y, z, sep='...', file=open('data.txt', 'w'))

>>> print(x, y, z) # Back to stdout

spam 91 ['hello']

>>> print(open('data.txt').read()) # Display file text

spam...91...['hello']

Here is how the file keyword argument is used—it directs the

printed text to an open output file or other compatible object for the

duration of the single print (this is really a form of stream

redirection, a topic we will revisit later)

7

Print

>>> print('hello world') # Print a string object in 3.X

hello world

Because expression results are echoed on the interactive command line,

you often don’t even need to use a print statement there
>>> 'hello world' # Interactive echoes

'hello world‘

if you enjoy working harder than you must, you can also code print

operations this way:
>>> import sys # Printing the hard way

>>> sys.stdout.write('hello world\n')

hello world

12

This code explicitly calls the write method of sys.stdout

!

8

Print

import sys

sys.stdout = open('log.txt', 'a')

Redirects prints to a file

...

print(x, y, x) # Shows up in log.txt

we reset sys.stdout to a manually opened file named log.txt, located in

the script’s working directory and opened in append mode

The long form isn’t all that useful for printing by itself. However, it is

useful to know that this is exactly what print operations do because
it is possible to reassign sys.stdout to something different from

the standard output stream.

!

9

Print

>>> import sys

>>> temp = sys.stdout # Save for restoring later

>>> sys.stdout = open('log.txt', 'a')

Redirect prints to a file

>>> print('spam')

>>> print(1, 2, 3)

>>> sys.stdout.close() # Flush output to disk

>>> sys.stdout = temp # Restore original stream

>>> print('back here') # Prints show up here again

back here

>>> print(open('log.txt').read())

Result of earlier prints

spam

1 2 3

!

10

Pretty Print

Suppose we need to print something in a complicated list, for
instance a list that contains tuples, strings, and a dictionary. A

typical interactive session might be:

>>> a = ("R",False,78)

>>> b = { "white":(255,255,255), "black":(0,0,0) }

>>> c = [a, b, "+++", b]

>>> print(c)

[('R',False,78), {'white':(255,255,255), 'black':(0,0,0)},

'+++', {'white':(255,255,255), 'black':(0,0,0)}]

>>> from pprint import *

>>> pprint(c)

[('R', False, 78),

{'black': (0, 0, 0), 'white': (255, 255, 255)},

'+++',

{'black': (0, 0, 0), 'white': (255, 255, 255)}]

11

Strings

>>>"hello"+"world" "helloworld“ # concatenation

>>> "hello"*3 "hellohellohello" # repetition

>>> "hello"[0] "h" # indexing

>>> "hello"[-1] "o" # (from end)

>>> "hello"[1:4] "ell" # slicing

>>> len("hello") 5 # size

>>> "hello" < "jello" 1 # comparison

>>> "e" in "hello" 1 # search

12

String Index Positions

• Characters in a string are numbered with indexes starting at 0:

– Example:

 name = “S.Arıtan“

• Accessing an individual character of a string:

 variableName [index]

– Example:

 print (name, "starts with", name[0])

 Output:

 S.Arıtan starts with S

Be Careful: Starts from 0

13

String Index Positions

The slice operator has three syntaxes:
 seq[start]

 seq[start:end]

 seq[start:end:step]

The seq can be any sequence, such as a list, string, or tuple. The start,

end, and step values must all be integers (or variables holding integers).

14

String Index Positions

>>> s = s[:12] + "wo" + s[12:]

>>> s

'The waxwork woman‘

In fact, since the text “wo” appears in the original string, we could

have achieved the same effect by assigning
 s[:12] + s[7:9] + s[12:]

>>> s

'The waxwork woman‘

15

Functions

A program routine is a named group of instructions that

accomplishes some task. A routine may be invoked (called) as

many times as needed in a given program. A function is Python’s

version of a program routine.

16

Functions

 The first step to code reuse is the function: a named piece of code,

separate from all others. A function can take any number and type

of input parameters and return any number and type of output

results. You can do two things with a function:

• Define it
• Call it
>>> def do_nothing():

 pass

>>> do_nothing()

>>> type(do_nothing)

<class 'function'>

>>> do_nothing

<function do_nothing at 0x00000001036AFD90>

>>>

17

Functions

 Just like a value can be associated with a name, a piece of logic can

also be associated with a name by defining a function.

>>> def square(x):

 return x * x

>>> square(5)

25

The body of the function is indented. Indentation is the Python’s way

of grouping statements.

The functions can be used in any expressions.
>>> square(2) + square(3)

 13

>>> square(square(3))

 81

18

def name(arg1, arg2,... argN):

 statements

As with all compound Python statements, def consists of a header

line followed by a block of statements, usually indented (or a simple

statement after the colon).

Functions

>>> num1 = 10

>>> num2 = 25

>>> num3 = 16

>>> avg(num1,num2,num3)

Function names have the same rules as variable names (they must

start with a letter or _ and contain only letters, numbers, or _).

19

Functions

Call to Value-Returning Function

20

Functions

 define and call another function that has no parameters but prints

a single word:
>>> def make_a_sound():

 print('quack')

>>> make_a_sound()

quack

When you called the make_a_sound() function, Python ran the

code inside its definition. A function that has no parameters but

returns a value:
>>> def agree():

 return True

21

Functions

 We can call this function and test its returned value by using if:

>>> if agree(): # if True:

 print('Splendid!')

 else:

 print('That was unexpected.')

Splendid!

22

Functions

 it’s time to put something between those parentheses

>>> def echo(anything):

 return anything + ' ' + anything

>>>echo(‘Is there anybody’)

'Is there anybody Is there anybody‘

>>> echo(1500)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

23

Functions

 a function that takes an input argument and does something with it

def commentary(color):

 if color == 'red':

 return "It's a tomato."

 elif color == "green":

 return "It's a green pepper."

 elif color == 'bee purple':

 return "I don't know what it is, but only bees can see it."

 else:

 return "I've never heard of the color " + color + "."

24

None is Useful

 None is a special Python value that holds a place when there is

nothing to say. It is not the same as the boolean value False

>>> None == False

False

>>> thing = None

>>> if thing:

 print("It's some thing")

 else: # It is like False

 print("It's no thing")

It's no thing

25

To distinguish None from a boolean False value, use Python’s is

operator:

>>> thing = None

>>> if thing is None:

 print("It's nothing")

 else: # It is like False

 print("It's something")

It's nothing

None is Useful

Functions

Functions in Python are first-class objects. Programming language

theorists define a “first-class object” as a program entity that can

be:

• Created at runtime

• Assigned to a variable or element in a data structure

• Passed as an argument to a function

• Returned as the result of a function

26

27

Functions

 When to Use a Function

Only one purpose: A function should be the encapsulation of a single, identifiable

operation.

Readable: A function should be readable.

Not too long: A function shouldn’t be too long.

Reusable: A function should be reusable in contexts other than the program it was written

for originally.

Complete: A function should be complete, in that it works in all potential situations. If you

write a function to perform one thing, you should make sure that all the cases where it

might be used are taken into account.

Able to be refactored: Refactoring is the process of taking existing code and modifying it

such that its structure is somehow improved but the functionality of the code remains the

same.

28

Functions

 Functions are generally defined at the top of a program. However,

every function must be defined before it is called .

def Executes at Runtime

The Python def is a true executable statement: when it runs, it creates a

new function object and assigns it to a name. Because it’s a statement, a
def can appear anywhere a statement can—even nested in other

statements
if test:

 def func(): # Define func this way

 ...

else:

 def func(): # Or else this way

 ...

func() # Call the version selected and built

29

Generally, defs are not evaluated until they are reached and run,

and the code inside defs is not evaluated until the functions are

later called. Because function definition happens at runtime,

there’s nothing special about the function name. What’s important

is the object to which it refers:

othername = func # Assign function object

othername() # Call func again

Functions

Here, the function was assigned to a different name and called

through the new name. Like everything else in Python, functions

are just objects; they are recorded explicitly in memory at

program execution time.

def func(): ... # Create function object

func() # Call object

func.attr = value # Attach attribute

30

Functions

>>> def func():

 pass

>>> func()

>>> func.value = 1

>>> dir(func)

['__annotations__', '__builtins__', '__call__', '__class__', '__closure__',

'__code__', '__defaults__', '__delattr__', '__dict__', '__dir__',

'__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribute__',

'__getstate__', '__globals__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__kwdefaults__', '__le__', '__lt__', '__module__',

'__name__', '__ne__', '__new__', '__qualname__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__type_params__', 'value']

>>> func.value

1

>>> func.value += 1

>>> func.value

2

31

Functions

32

Functions

 The first statement in the body of a function is usually a string,
which can be accessed with function_name.__doc__
This statement is called Docstring.
>>> def hello(name):

 """ Greets a person """

 print('Hello', name + '!')

>>>

>>> hello(name = ‘Serdar’)

>>>

>>> print("The docstring of the function : "+ Hello.__doc__)

Docstring

33

Functions

We can even create more functions using the existing ones.

>>> def sum_of_squares(x, y):

 return square(x) + square(y)

>>> sum_of_squares(2, 3)

13

Functions are just like other values, they can assigned, passed as

arguments to other functions etc.
>>> f = square

>>> f(4)

16

>>> def fxy(f, x, y):

 return f(x) + f(y)

>>> fxy(square, 2, 3)

13

>>> def square(x):

 return x * x

Functions

>>>def cube(x):

 return x * x * x

>>> fxy(cube, 2, 3)

35

There is another way of creating functions, using the lambda

operator.

>>>forthpower = lambda x: x ** 4

>>> fxy(forthpower, 2, 3)

97

>>> fxy(lambda x: x ** 5, 2, 3)

275

The lambda operator becomes handy when writing small functions to

be passed as arguments etc.

34

https://cscircles.cemc.uwaterloo.ca/visualize

Functions

35

Functions

36

Functions

n! = n * (n-1)!, if n > 1 and f(1) = 1

Example:

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1

>>> def factorial(n):

 f = 1

 while (n > 0):

 f = f * n

 n = n - 1

 return f

Recursion has

something to

do with infinity

37

38

Functions

Treating a Function Like an Object

>>> def factorial(n):

 '''returns n!'''

 return 1 if n < 2 else n * factorial(n - 1)

>>> factorial(42)

1405006117752879898543142606244511569936384000000000

>>> factorial.__doc__

'returns n!'

>>> type(factorial)

<class 'function‘>

>>> f = lambda x: x and x * f(x - 1) or 1

39

TURTLE BASICS

>>> import turtle as t

>>> dir (t)

['Canvas', 'Pen', 'RawPen', 'RawTurtle', 'Screen', 'ScrolledCanvas', 'Shape', 'TK', 'TNavigator',

'TPen', 'Tbuffer', 'Terminator', 'Turtle', 'TurtleGraphicsError', 'TurtleScreen',

'TurtleScreenBase', 'Vec2D', '_CFG', '_LANGUAGE', '_Root', '_Screen', '_TurtleImage', '__all__',

'__builtins__', '__cached__', '__doc__', '__file__', '__forwardmethods', '__func_body',

'__loader__', '__methodDict', '__methods', '__name__', '__package__', '__spec__', '__stringBody',

'_alias_list', '_make_global_funcs', '_screen_docrevise', '_tg_classes', '_tg_screen_functions',

'_tg_turtle_functions', '_tg_utilities', '_turtle_docrevise', '_ver', 'addshape', 'back',

'backward', 'begin_fill', 'begin_poly', 'bgcolor', 'bgpic', 'bk', 'bye', 'circle', 'clear',

'clearscreen', 'clearstamp', 'clearstamps', 'clone', 'color', 'colormode', 'config_dict',

'deepcopy', 'degrees', 'delay', 'distance', 'done', 'dot', 'down', 'end_fill', 'end_poly',

'exitonclick', 'fd', 'fillcolor', 'filling', 'forward', 'get_poly', 'get_shapepoly', 'getcanvas',

'getmethparlist', 'getpen', 'getscreen', 'getshapes', 'getturtle', 'goto', 'heading',

'hideturtle', 'home', 'ht', 'inspect', 'isdown', 'isfile', 'isvisible', 'join', 'left', 'listen',

'lt', 'mainloop', 'math', 'mode', 'numinput', 'onclick', 'ondrag', 'onkey', 'onkeypress',

'onkeyrelease', 'onrelease', 'onscreenclick', 'ontimer', 'pd', 'pen', 'pencolor', 'pendown',

'pensize', 'penup', 'pos', 'position', 'pu', 'radians', 'read_docstrings', 'readconfig',

'register_shape', 'reset', 'resetscreen', 'resizemode', 'right', 'rt', 'screensize', 'seth',

'setheading', 'setpos', 'setposition', 'settiltangle', 'setundobuffer', 'setup',

'setworldcoordinates', 'setx', 'sety', 'shape', 'shapesize', 'shapetransform', 'shearfactor',

'showturtle', 'simpledialog', 'speed', 'split', 'st', 'stamp', 'sys', 'textinput', 'tilt',

'tiltangle', 'time', 'title', 'towards', 'tracer', 'turtles', 'turtlesize', 'types', 'undo',

'undobufferentries', 'up', 'update', 'width', 'window_height', 'window_width', 'write',

'write_docstringdict', 'xcor', 'ycor']

In order to make our drawing appear almost immediately we can
make use of the tracer() method. tracer() takes two

arguments. One controls how often screens should be updated and

the other controls the delay between these update. To obtain the

fastest possible rendering, both these arguments should be set to

zero.
>>> tracer(0, 0)

By calling tracer() with bother arguments set to zero, we are

essentially turning off all animation and our drawings will be drawn

“immediately.” However, if we turn the animation off in this way we
need to explicitly update the image with the update() method after

we are done issuing drawing commands.

40

TURTLE BASICS

If you want to reset tracer() to its original settings, its arguments

should be 1 and 10.

>>> tracer(1, 10)

If we want to erase everything that we previously drew, we can use
either the clear() or reset() methods. clear() clears the

drawing from the graphics window but it leaves the turtle in its
current position with its current heading. reset() clears the

drawing and also returns the turtle to its starting position in the

center of the screen.

41

TURTLE BASICS

42

TURTLE BASICS

 >>> t.reset()

>>> t.color("blue")

>>> t.pensize(100)

>>> t.fd(100)

>>> t.color("red")

>>> t.fd(100)

43

TURTLE BASICS

 >>> help(t.seth)
Help on function seth in module turtle:

seth(to_angle)

 Set the orientation of the turtle to to_angle.

 Aliases: setheading | seth

 Argument:

 to_angle -- a number (integer or float)

 Set the orientation of the turtle to to_angle.

 Here are some common directions in degrees:

 standard - mode: logo-mode:

 -------------------|--------------------

 0 - east 0 - north

 90 - north 90 - east

 180 - west 180 - south

 270 - south 270 - west

 Example:

 >>> setheading(90)

 >>> heading()

 90

44

TURTLE BASICS

 >>> t.reset()

>>> t.color("red")

>>> for angle in range(0, 360, 15):

 t.seth(angle)

 t.circle(100)

45

TURTLE BASICS

 >>> t.reset()

>>> colors = ["blue", "green", "purple", "cyan", "magenta", "violet"]

>>> t.tracer(0, 0)

>>> for i in range (45):

 t.color(colors[i % 6])

 t.pendown()

 t.fd(2 + i * 5)

 t.left(45)

 t.width(i)

 t.penup()

>>> t.update()

46

Write a function that takes a 2D coordinate point (x, y) and side length to

draw a square.

TURTLE BASICS

47

For colorstrings, Python accepts any of the standard color strings

provided by Python’s built-in drawing module, Tk. Common strings such

as “green,” “blue,” “red,” and “yellow” are obvious, but others such as

“BlanchedAlmond” or “CornflowerBlue” are less so. The full list can be

found at
http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm

TURTLE BASICS

48

TURTLE BASICS

49

TURTLE BASICS

50

TURTLE BASICS

51

import turtle

set up a title

turtle.title("BCO601 Python Programming")

set up our stage or canvas

turtle.setup(500, 500, 0, 0)

Square - 4 sides

turtle.forward(50) # move forward

turtle.right(90) # turn 90 degrees

turtle.forward(50) # move forward again

turtle.right(90) # turn 90 degrees again

turtle.forward(50) # move forward again !

turtle.right(90) # turn 90 degrees again !

turtle.forward(50) # move forward again !

turtle.right(90) # turn 90 degrees again

let the user close the turtle window when they click

turtle.exitonclick()

TURTLE BASICS

52

import turtle

set up a title

turtle.title("BCO601 Python Programming")

set up your stage or canvas

turtle.setup(500, 500, 0, 0)

Pentagon - 5 sides

turtle.forward(50) # move forward

turtle.right(360/5) # turn 360/5 degrees

turtle.forward(50) # move forward again

turtle.right(360/5) # turn 360/5 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/5) # turn 360/5 degrees again !

turtle.forward(50) # move forward again !

turtle.right(360/5) # turn 360/5 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/5) # turn 360/5 degrees again

turtle.exitonclick()

TURTLE BASICS

53

import turtle

turtle.title("BCO601 Python Programming")

turtle.setup(500, 500, 0, 0) # set up your stage or canvas

Octagon - 8 sides

turtle.forward(50) # move forward

turtle.right(360/8) # turn 360/8 degrees

turtle.forward(50) # move forward again

turtle.right(360/8) # turn 360/8 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again !

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again

turtle.forward(50) # move forward again !

turtle.right(360/8) # turn 360/8 degrees again

turtle.exitonclick()

TURTLE BASICS

54

import turtle

polygon function

input: accepts two integers

sides - defines how many sides we need to draw

length - defines the length of each side

def polygon(sides, length):

 for x in range(sides):# loop through each side

 # draw the side

 turtle.forward(length)

 # rotate the requisite number of degrees

 turtle.right(360/sides)

set up a title

turtle.title(" BCO601 Python Programming ")

set up your stage or canvas

turtle.setup(500, 500, 0, 0)

Octagon - 8 sides

polygon(8, 50)

let the user close the turtle window when they click

turtle.exitonclick()

TURTLE BASICS

55

TURTLE BASICS

56

TURTLE BASICS

def polygon(sides, length):

 for x in range(sides):# loop through each side

 # draw the side

 turtle.forward(length)

 # rotate the requisite number of degrees

 turtle.right(360/sides)

def besgen(): return polygon(5, 50)

def kare(): return polygon(4, 50)

def ucgen(): return polygon(3, 50)

57

TURTLE BASICS

def wrapper(func, *args): # The * next to args means

 func(*args) # "take the rest of the

 # parameters given and put them

 # in a list called args

def polygon(sides, length):

 for x in range(sides):# loop through each side

 # draw the side

 turtle.forward(length)

 # rotate the requisite number of degrees

 turtle.right(360/sides)

create wrapper functions

def besgen(): wrapper(polygon, 5, 50)

def kare(): wrapper(polygon, 4, 50)

def ucgen(): wrapper(polygon, 3, 50)

58

TURTLE BASICS

 Homework : Try to write randomly position shapes with random color.

59

TURTLE BASICS

 Homework : Try to write randomly position random shapes with random

color.

60

TURTLE BASICS

 Homework : Try to write checker board with random color.

TURTLE BASICS

 Homework : Try to write randomly position random circles with random

color..

61

turtle.shape(name=None)

Initially there are the following polygon shapes: “arrow”, “turtle”, “circle”, “square”,
“triangle”, “classic”.

>>> turtle.shape()

'classic'

>>> turtle.shape("square")

>>> turtle.shape()

'square'

62

TURTLE BASICS

63

TURTLE BASICS

turtle.shapesize(stretch_wid=None, stretch_len=None, outline=None)

Return or set the pen’s attributes x/y-stretchfactors and/or outline.

>>> turtle.shapesize(5, 5, 12)

>>> turtle.shapesize()

(5, 5, 12)

>>> turtle.shapesize(outline=8)

>>> turtle.shapesize()

(5, 5, 8)

64

TURTLE BASICS

turtle.onkey(fun, key)

Bind fun to key-release event of key. If fun is None, event bindings are removed.

>>> def f():

... fd(50)

... lt(60)

...

>>> screen.onkey(f, "Up")

>>> screen.listen()

turtle.listen(xdummy=None, ydummy=None)

Set focus on TurtleScreen

65

TURTLE BASICS

turtle.tracer(n=None, delay=None)

Turn turtle animation on/off and set delay for update drawings. If n is given, only each
n-th regular screen update is really performed. (Can be used to accelerate the drawing
of complex graphics.)
>>> screen.tracer(8, 25)

>>> dist = 2

>>> for i in range(200):

... fd(dist)

... rt(90)

... dist += 2

66

TURTLE BASICS

turtle.mainloop()

Starts event loop - calling Tkinter’s mainloop function. Must be the last statement in a
turtle graphics program.

>>> screen.mainloop()

turtle.bye()

Shut the turtlegraphics window.

from turtle import *

width, height = 800, 600

maxx, maxy = width/2, height/2

minx, miny = -maxx, -maxy

startx, starty = 0, 0

dx, dy = 10, 10

wn = Screen()

box=Turtle()

67

TURTLE BASICS

68

def setup(width, height, startx, starty, shape, col, s):

 box.penup()

 box.shape(shape)

 box.shapesize(*s)

 box.color(col)

 wn.setup(width, height, startx, starty)

 wn.title ("BCO601")

 wn.bgcolor('grey')

 wn.onkey(up, "Up")

 wn.onkey(left, "Left")

 wn.onkey(right, "Right")

 wn.onkey(back, "Down")

 wn.onkey(quitTurtles, "Escape")

 wn.listen()

 wn.mainloop()

TURTLE BASICS

#Event handlers

def up():

 box.fd(45)

def left():

 box.lt(45)

def right():

 box.rt(45)

def back():

 box.bk(45)

def quitTurtles():

 wn.bye()

setup(width, height, startx, starty, "square", "red", (3,3,3))

69

TURTLE BASICS

70

TURTLE BASICS

Press    

