PYTHON
PROGRAMMING

Functions
#5

Serdar ARITAN

Department of Computer Graphics
Hacettepe University,

Ankara,

Turkey

Serdar ARITAN

PYTHON The Quiz
PROGRAMMING

What will be the output if you run this code?

1 numbers = range (3)
2 output = {numbers}
3 print (output)

{range}
(range (0, 3))
[0, 1, 2]

(0, 1, 2)

{0, 1, 2}

HOoOQwWy

Serdar ARITAN

PYTHON The Quiz
PROGRAMMING

What will be the output if you run this code?

1 numbers = range (3)
2 output = {*numbers}
3 print (output)

{range}
(range)
[0, 1, 2]
(0, 1, 2)
{0, 1, 2}

HOoOQwWy

Serdar ARITAN

PYTHON The Quiz
PROGRAMMING

What will be the output if you run this code?

1 print("{2}, {1}, {0}".format("abc"))

. a, b, ¢

. ¢, b, a

. IndexError: Replacement index 2 out of range for positional args tuple
{0}, {1}, {2}

. {2}, {1}, {0}

HOoOQwWy

Serdar ARITAN

PYTHON The Quiz
PROGRAMMING

What will be the output if you run this code?

1 print("{2}, {1}, {0}".format(*"abc"))

. a, b, ¢

. ¢, b, a

. IndexError: Replacement index 2 out of range for positional args tuple
{0}, {1}, {2}

. {2}, {1}, {0}

HOoOQwWy

Serdar ARITAN

PYTHON The single asterisk to pass in three parameters
PROGRAMMING

1 >>> def my func(*args):
2 ... print(args)
3 .

4 >>> my func(*"abc")
5 (Ial’ |bl’ lcl)

Serdar ARITAN

PYTHON Functions
PROGRAMMING

| have never considered Python to be heavily influenced by
functional languages, no matter what people say or think. | was
much more familiar with imperative languages such as C and
Algol 68 and although | had made functions first-class objects, |
didn’t view Python as a functional programming language.

— Guido van Rossum
Python BDFL

“Origins of Python’s Functional Features”, from Guido’s The
History of Python blog.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Functions in Python are first-class objects. Programming language
theorists define a “first-class object” as a program entity that can
be:

 Created at runtime

» Assigned to a variable or element in a data structure
* Passed as an argument to a function

» Returned as the result of a function

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Treating a Function Like an Object

factorial, in mathematics, the product of all positive integers less than or equal to a given positive integer and
denoted by that integer and an exclamation point.

>>> def factorial(n):
'‘"'"returns n!''''
return 1 if n < 2 else n * factorial(n - 1)

>>> factorial (42)
1405006117752879898543142606244511569936384000000000
>>> factorial. doc_

'returns n!'

>>> type (factorial)

<class 'function'>

Serdar ARITAN

PYTHON Functions
PROGRAMMING

When to Use a Function

Only one purpose: A function should be the encapsulation of a single, identifiable
operation.

Readable: A function should be readable.

Not too long: A function shouldn’t be too long.

Reusable: A function should be reusable in contexts other than the program it was written
for originally.

Complete: A function should be complete, in that it works in all potential situations. If you
write a function to perform one thing, you should make sure that all the cases where it
might be used are taken into account.

Able to be refactored: Refactoring is the process of taking existing code and modifying it
such that its structure is somehow improved but the functionality of the code remains the
same.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

>>> def times(x, y): # Create and assign function
return x * y # Body executed when called

>>> times('i', 4) # Functions are "typeless"

"NiNiNiNi

>>> def intersect(seql, seq2?):

res = [] # Start empty list
for x in seql: # Scan seql
if x in seq2: # Common item?
res.append (x) # Add to end

Serdar ARITAN

PYTHON Functions
PROGRAMMING

>>> sl = "Spaum
>>> s2 = "SCrM
>>> intersect(sl, s2) # Strings
[|.3l’ '_'L_" |leI]

the function could be replaced with a single list
comprehension expression ‘c

>>> [x for x in sl if x in s2]&

['s*, 'a', 'M']

lee all good functions in Python, intersect is

polymorphic

>>> x = intersect([1l, 2, 3], (1, 4)) # Mixed types
>>> x # Saved result object

[1]

Serdar ARITAN

PYTHON Functions
PROGRAMMING

We can even create more functions using the existing ones.

>>> def square(x):
return x * x

>>> def sum of squares (x.-¥J~
return square (x) + square(y)

>>> sum of squares (2, 3)

13

Functions are just like other values, they can assigned, passed as
arguments to other functions etc.
>>> f = square
>>> f(4)
16
>>> def fxy(f, x, y):
return £(x) + £(y)
>>> fxy(square, 2, 3)
13

Serdar ARITAN

PYTHON Functions
PROGRAMMING

>>>def cube (x):
return x * x * x
>>> fxy(cube, 2, 3)
35
There is another way of creating functions, using the lambda

operator.

>>>forthpower = lambda x: x ** 4 # inline function

>>> fxy(forthpower, 2, 3)

97

>>> fxy(lambda x: x ** 5, 2, 3) # fifth power < lambda
275

The lambda operator becomes handy when writing small functions to

be passed as arguments etc.

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

functions are anonymous functions that are not defined in
the namespace. Roughly speaking, they are functions without
names, intended for single use.

<arguments> : < expression>

A lambda function can have one or multiple arguments, separated

by commas.

>>> print ((x: x + 3)(3))

6

>>> print((X, rx +y)(3, 4))
7

Serdar ARITAN

PROGRAMMING

>>> is_anagram = lambda x1, x2: sorted(xl)

>>> print(is_anagram("elvis", "lives"))
???

>>> print(is_anagram("elvise", "livees"))
2%

>>> print(is_anagram("elvis", "dead"))
???

Serdar ARITAN

PYTHON Functions

sorted (x2)

L

Anagrams

S

X

S

L

T

N

N

T

PYTHON Functions madam |, did
PROGRAMMING level
pop
radar
noon .
>>> is _palindrome = lambda phrase: phrase == phrase[::-1]

>>> print(is_palindrome ("anna"))

?2??

>>> print(is_palindrome ("kdljfasjif"))

?2??

>>> print(is_palindrome ("rats live on no evil star"))
?2??

Serdar ARITAN

PYTHON Functions
PROGRAMMING

What does this function do? What does it return if x = 5?

>>> func (x) :
total =0
i range (x) :
total += 1 * (i-1)
total

What does this function do? What number is returned by this

function?
>>> func () :
number = 1.0
total = 0
number < 100:
total = 1//number
number+=1
total

Serdar ARITAN

PYTHON Functions
PROGRAMMING

What will be the output of the following programs?

x=1

def £():
X

S ||
TN

~

recurn XxX
print(x) °?°?
print(£()) 2?7
<CRTL>F6 # restart
x=1
def £():
Yy X
X 2
return X + y
print(x) ?°?
print(£()) ??

Serdar ARITAN

PYTHON Functions
PROGRAMMING

What will be the output of the following program?
x =2
def £(a):
X = a%*a
recurn X
>>> y = £(3)
>>> print(x, y) ?

Serdar ARITAN

PYTHON Functions
PROGRAMMING

What will be the output of the following program?

>>> b = 6

>>> def £l (a):
print(a)
print(b)

>>> £1(3) ?°

<CRTL>F6 # restart

>>> b = 6

>>> def f£2(a):
print(a)
print(b)
b=29

>>> £2(3)??

UnboundLocalError: cannot access local variable 'b' where it is not associated with a wvalue

Serdar ARITAN

PYTHON
PROGRAMMING

Comparing Bytecodes

>>> from dis import dis
>>> dis(fl)
1 0 RESUME
2 2 LOAD GLOBAL
12 LOAD FAST
14 CALL
22 POP TOP
3 24 LOAD GLOBAL
34 LOAD GLOBAL
44 cALL
52 POP TOP
54 RETURN CONST
Serdar ARITAN

o

N -

(NULL + print)
(a)

(NULL + print)
(b)

(None)

Functions

Fl16= T

£fl(a):
print(a)
print (b)

Load global name print
Load local name a
(1 positional, 0 keyword pair)

(print)
Load global name b
(1 positional, 0 keyword pair)

PYTHON Functions

def £2(a):
Comparmg BYIECOdES print (a)
print (b)
>>> dis (£2) b=29
1 0 RESUME 0
2 2 LOAD_ GLOBAL 1 (NULL + print) Load global name print
12 LOAD_ FAST 0 (a) Load local name a
14 CALL 1 (1 positional, 0 keyword pair)
22 POP_TOP
3 24 LOAD_ GLOBAL 1 (NULL + print)
34 LOAD_FAST_ CHECK 1 (b) Load local name b
36 CALL 1 .)
44 POP_TOP This shows that the compiler
considers - a local variable,
‘ 46 LOAD_cCONST 1 (9) even if the assignment to
48 STORE FAST 1 (b)
50 RETURN CONST 0 (None) occurs later, because the nature

of the variable— whether it is
local or not—cannot change the
body of the function.

Serdar ARITAN

PYTHON
PROGRAMMING

#import the disfunction
from dis import dis
#pass code to dis() as a string

dis("while True : x=10")

0 0 RESUME
1 >> 2 LOAD CONST

4 STORE NAME
6 JUMP BACKWARD

Serdar ARITAN

Functions

1 (10)
0 (x)
3 (to 2)

PYTHON Functions
PROGRAMMING

What will be the output of the following program?

x = 99

def funcl()
global x
X = 88

def func2()
global x
X = 77

>>> x °?

>>> funcl ()

>>> x °?

>>> func2 ()

>>> x °?

Serdar ARITAN

PYTHON Functions
PROGRAMMING

What will be the output of the following program?

def scoping():
x=0
Jdef increment () :
x =5 1 X = 5
nonlocal x nonlocal x
x += 1

increment ()
increment ()
recurn xX

print(scoping()) ?°

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Write a function which calculates the arithmetic mean of a
variable number of values.

arithmetic mean(x, *liste):

sum = X
i liste:
sum += 1

sum / (1.0 + len(liste))

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

Functions can be called with keyword arguments.

>>> def difference(x, y):

recurn X - y

>>> difference (5, 2)

i>> difference (x=5, y=2)
i>> difference (5, y=2)
i>> difference (y=2, x=5)
3

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

And some arguments can have default values.

222> «

>>>
11
>>>
15
>>>
12
>>>
17

Serdar ARITAN

increment (x, amount=l):
X + amount

increment (10)
increment (10, 5)
increment (10, amount=2)

increment (amount=2, x=15)

PYTHON Functions CAUTION

PROGRAMMING .
Recursion WATCH YOUR
n! =n * (n-1)!, if n>1 and £(1) =1 STEP
Example: Recursion has
4! = 4 * 3 something to
31=3*2 do with infinity
21=2*1
>>> (n) :
£f=1

(n > 0):

f=f *n

n=n-1

f

Serdar ARITAN

PYTHON Functions
PROGRAMMING Recursion

>>> def factorial(n):
if n == 0:
return 1

y =

e & = o

return n * factorial (n-1)

>>> f= lambda x: x and x * £f(x - 1) or 1

Serdar ARITAN

PYTHON Functions
PROGRAMMING Recursion

loopnum = int (input (
counter =1
recurr (loopnum, counter)

(loopnum, counter):
loopnum > O0:
print (" " ,counter)
recurr (loopnum - 1, counter + 1)
print ()
main ()

Enter :10, 100 then 1200

Serdar ARITAN

PYTHON Functions
PROGRAMMING Recursion

The Fibonacci sequence is a sequence of numbers such that any
number, except for the first and second, is the sum of the prevuous
two:0,1,1, 2,3,5,8, 13, 21... -

fib(n) = fib(n - 1) + fib(n - 2))
>>> def f£ibl(n):

return f£ibl(n-1) + £ibl (n-2)
>>> fibl (5)

The recursive function £ib (n)
calls itself with the arguments n-2 and n-1.

return £fibl(n-1) + £fibl (n-2)
[Previous line repeated 1022 more times]
RecursionError: maximum recursion depth exceeded

Serdar ARITAN

PYTHON Functions
PROGRAMMING Recursion

£fib2 (n) :
n < 2:

n
fib2 (n-1) + fib2(n-2)

print (£ib2 (4)) fib2(4

/\

fib2 (4) -> fib2(3), fib2(2) fib2(3) fib2(2
£fib2(3) -> fib2(2), fib2(1) / \ / \
£ib2(2) -> £ib2(1), £ib2(0) fib2(2) fib2(1 fib2(1 fib2(0)
fib2(2) -> £ib2(1), £ib2(0)

fib2(1l) -> 1 / \ T T ‘
fib2(1) > 1 fib2(1) fib2(0 1 1 0
fib2(1l) -> 1

fib2(0) -> 0 ‘ I

£fib2(0) -> 0 1 0

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Recursion
Dependencies
functools reduce
n =10
fibs = reduce (x, x +[x[-2]+x[-1]], [0]*(n-2), [O, 1])
print (fibs)

The reduce (fun, seq) function is used to apply a particular function passed

in its argument to all of the list elements mentioned in the sequence passed
along. This function is defined in “functools” module.

Serdar ARITAN

PYTHON Functions
PROGRAMMING Recursion
python code to demonstrate working of reduce ()
importing functools for reduce()

import functools

initializing list
lis = [1, 3, 5, 6, 2]

using reduce to compute sum of list
print ("The sum of the list elements is : ", end="")
print (functools.reduce (lamhda a, b: at+b, 1lis))

using reduce to compute maximum element from list

print ("The maximum element of the list is : ", end="")
print (functools.reduce (lamhda a, b: a if a > b else b, lis))

Serdar ARITAN

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Built-in (Python)
Names preassigned in the built-in names module: open, range,
SyntaxError....

Global (module)

Names assigned at the top-level of a module file, or declared
global in a def within the file.

Enclosing function locals

Names in the local scope of any and all enclosing functions
(def or Lambda), from inner to outer.

Local (function)

Names assigned in any way within a function (def
or lambda), and not declared global in that function.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Higher-Order Functions : A function that takes a function as argument
or returns a function as the result is a higher-order function.

>>> fruits=|['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 'banana'’]
>>> sorted(fruits, key=len)

['fig', 'apple', 'cherry', 'banana', 'raspberry', 'strawberry']
>>> def reverse (word) :
return word[::-1]
>>> reverse('serdar')
'radres’
>>> sorted(fruits, key=reverse)
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']
>>> sorted(fruits, key=lambda word: word[::-1])
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry']

PYTHON Functions
* PROGRAMMING

Function objects have many attributes beyond doc . See
what the dir function reveals about our factorial:

>>> dir (factorial)

[['__annotations_'|, ' _call ', ' class_ ', ' _closure ',
' code ', ' defaults ', ' delattr ', ' diect ', ' dir ‘',
]__doq__], ' _eq ‘', ' _format_ ‘', ' _ge ‘', ' _get ‘',
' _getattribute ‘', ' _globals ', ' gt ‘', ' _hash ‘',
' _init_ ', ' kwdefaults ', ' le ', ' 1t ', ' module ‘',
' _ _name ‘', ' _ne ‘', ' _new_ ‘', ' __qualname ‘', ' _reduce_ ‘',
' reduce ex ‘', ' _repr ‘', ' _setattr_ ‘', ' _sizeof ‘',
' _str_ ', ' subclasshook ']

Serdar ARITAN

PYTHON
PROGRAMMING

Function Annotations

Adding arbitrary metadata annotations to Python functions.

Allowing us to attach metadata to functions describing their
parameters and return values.

funcdef: 'def' NAME parameters ['->' test] ':' suite
>>> def kinetic energy(m:'in KG', v:'in M/S')->'Joules':
return 1/2*m*v**2

>>> kinetic energy._ annotations

{'return': 'Joules', 'v': 'in M/S', 'm': 'in KG'}

Serdar ARITAN

PYTHON Function Annotations
PROGRAMMING

def kinetic _energy(m:'in KG', v:'in M/S')->'Joules':
return 1/2*m*v*x*2

. . . . This is a dictionary.
print (kinetic_energy. annotations_)

{'return': 'Joules', 'v': 'in M/S', 'm': 'in

key : value

print (kinetic_energy. annotations_ ['return'])
Joules

print("Hinetic Energy is {} {]".format(kinetic_energy (5, 20),
kinetic_energy._ annotations_['return']))

Kinetic Energy is 1000.0 Joules

Serdar ARITAN

PYTHON Function Annotations
PROGRAMMING

def int return(x)-> int:

return int(x)

the -> int just tells that int return() returns an integer (but it doesn't force the
function to return an integer).

print(int return(5)) # Ok
print (int _return('cS'))
ValueError: invalid literal for int() with base 10: 'S'

def int return(x: (int, float))-> int:

1f isinstance(x, (int return. annotations_ ['x'])):
return int(x)
The isinstance() function returns True if the specified object is of the specified type,

otherwise Ffalse.
isinstance (object, type)

Serdar ARITAN

PYTHON Function Annotations
PROGRAMMING

int return(x: (int, fleoat))-> int:

isinstance(x, (int return._ annotations ['x'])):
int (x)
print (int_return. annotations_ ['xz'])

(<class 'int'>, <class 'float'>)

print (int_ return(5))
5

print (int_return(5.95))
5

print(int _return('cS'))
None

Serdar ARITAN

PYTHON Function Annotations
PROGRAMMING

It is also possible to have a python data structure rather than just a

string:

Rd = {' ':float,"’ Vol LI e
'}

£() ->rd:

print(f. annotations [10 '1)

<class 'float'>

print(f. annotations [11 '1)

Joules

print(f. annotations ["1 '1)

Given mass and velocity returns kinetic energy in Joules

Serdar ARITAN

PYTHON

Functions
PROGRAMMING

'C‘F Decorators are a way to modify the behavior of an object by
A § X wrapping it within a function.

def my function():
print ("Function called")

print("Script start")
my function()
print("Script end")

_____ RUN -----
Script start
Function called
Script end

Serdar ARITAN

PYTHON Functions
PROGRAMMING

¢F A decorator is a callable that takes another function as argument
4 | X (the decorated function).

my_ decorator (fn):
def wrapper():

D
h

=

print("entering the function...")
£n ()
print ("exiting the function...")

return wrapper
@my decorator
def my function():

print("inside the function...")
entering the function..
my_£function () EEIINNTTINN) inside the function.
- exiting the function..

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Decorators can also be stacked

A1X

def decorator_1(fn):

def wrapper():
print ("entering the decorator 1...")
fn()
print ("exiting the decorator 1...")
return wrapper

def decorator_ 2(fn):

def wrapper():
print ("entering the decorator 2...")
£n ()
print ("exiting the decorator 2...")
return wrapper

def decorator_ 3(fn):
lef wrapper():

print ("entering the decorator 3...")

fn ()

print ("exiting the decorator 3...")
CeTurn wrapper

Serdar ARITAN

PYTHON
PROGRAMMING

* @decorator_l
4 fx @decorator_2

@decorato:_3

>>>

Serdar ARITAN

my function():
print ("inside the function.")

my function()

entering decorator 1...
entering decorator 2...
entering decorator 3...
inside the function
exiting decorator 3...
exiting decorator 2...
exiting decorator 1...

Functions

PYTHON Functions
PROGRAMMING

'C‘F It's important to note that decorators are a syntactic sugar,
A § Xmeaning they make a particular design pattern more elegant, but

they do not add any additional functionality to the language.
def dec(£fn):
def wrapper():
£fn ()

return wrapper

syntactic sugar, because this...
@dec
def £n():

PaSS

is functionally equivalent to this.
fn = dec(£fn)

Serdar ARITAN

PYTHON Functions
PROGRAMMING

'C‘F A decorator usually replaces a function with a different one. A
A | X key feature of decorators is that they run right after the
decorated function is defined.

registry = [] # registry will hold references to functions decorated by @register
def register(func): # register takes a function as argument
print (f'running register{func}') # Display what function is being decorated, for demonstration
registry.append (func) # Include func in registry
sturn func # we must return a function; here we return the same received as argument
@register # f1 are decorated by @register
def £1():
print('running £1()"')
@register # £2 are decorated by @register
def £2():
print('running £2()"')
£ £3(): # £3 is not decorated
print ('running £3()"')
f main() : # main displays the registry, then calls f1(), £2(), and £3()

print('running main() ')
print('registry ->', registry)
£1()

£2()

£3()

L £ name =='main_':

main () # main() is only invoked if registration.py runs as a script

Serdar ARITAN

PYTHON Functions
PROGRAMMING

¢ Note that register runs (twice) before any other function in the
A fx module. When register is called, it receives as an argument the
function object being decorated—for example, <function f£1 at
0x100631b£8>. After the module is loaded, the registry holds
references to the two decorated functions: £1 and £2. These
functions, as well as £3, are only executed when explicitly called

by main.

$ python3 registration.py

running register (<function f1 at 0x100631bf8>)

running register (<function £2 at 0x100631c80>)

running main ()

registry -> [<function fl at 0x100631bf8>, <function £f2 at 0x100631c80>]
running £1 ()

running £2 ()

running £3()

Serdar ARITAN

4

PYTHON Functions
PROGRAMMING

@myLog_decorator
def twoSum(x, y):
return X + y

¢f # adding decorator to the functions

@myLog_decorator
def twoMultiply(x, y):
return x * y

a, b=5, 3

getting the value through return of the function
print("Sum =", twoSum(a, b))

twoMultiply(a, b)

Serdar ARITAN

PYTHON
PROGRAMMING

{ lf def myLog decorator (func) :

‘ def inner (*args, **kwargs):

Functions

print ("1l : before Execution")

getting the returned value
returned value = func(*args, **kwargs)
ch open('myLog.txt', 'a') as f:
f.write(func._name_ +

' is called : result ' +
str (returned value) + ' \n')

print ("2 : after Execution")

returning the value to the original frame
ceturn returned value

return inner

Serdar ARITAN

4

b

PYTHON

PROGRAMMING

Sum
1
2

Serdar ARITAN

before Execution
after Execution

= 8

before Execution
after Execution

Functions

mylLog.txt X +

File Edit View

twoSum is called : result 8§
twoMultiply is called : result 15

Ln 2, Col 3! 100% Windows (CRLF)

UTF-8

PYTHON Functions
PROGRAMMING

How to unpack more than one variable when functions return
multiple values.

get stats (numbers) :
minimum = min (numbers)
maximum = max (numbers)
minimum, maximum

lengths = [63, 73, 72, 60, 67, 66, 71, 61, 72, 70]

minimum, maximum = get stats(lengths) # Two return values
print (minimum maximum) ')

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Keyword Arguments

def describe pet(animal_ type, pet name):
"""Display information about a pet."""
print (£"\nI have a {animal_ type}.")
print (£"My {animal type}'s name is {pet name}.")

‘Bruno')

describe pet('dog',
describe pet(‘Brunc', 'dog')

I have a dog.
My dog's name is Bruno.

I have a bruno.
My bruno's name is Dog.

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

When you use keyword arguments, be sure to use the exact
names of the parameters in the function’s definition.

describe_pet (animal_type=‘dog', pet name=‘Brunc')
describe pet (pet name=‘Erunc', animal type=‘dog')

I have a dog.
My dog's name is Bruno.

I have a dog.
My dog's name is Bruno.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Default Values

def describe pet(pet name, animal type=‘dog’):

Display information about a pet."""

WY WY

print (£"\nI have a {animal_type? ")
print (f"My [{animal type) 's name is {pet name)

describe pet (pet name=‘Erunc')

I have a dog.
My dog's name is Bruno.

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Making an Argument Optional

get formatted name (first name, middle name, last name):

full_name = first_name middle_name last_name
full name.title()

musician = get formatted name (' . ! ")
print (musician)

John Lee Hooker

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Making an Argument Optional

get formatted name (first name, last name, middle name = ‘‘'):

middle_name:
full_name = first_name middle_name last_pame

full_name = first_pame last_name
full name.title()

musician = get formatted name (' ! ")
print (musician)
musician = get formatted name (' v, 'y ")

print (musician)

Serdar ARITAN

PYTHON
PROGRAMMING

Functions

Passing a List

5

lef greet users (names):
"""Print a simple greeting to each user in the
TOr name 11N names:
msg = f"Hello, {name. titl]
print (msg)

usernames = ['bruno', 'kuki', 'malikal]
greet users (usernames)

Hello, Bruno!

Hello, Kuki'!
Hello, Malika'

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Modifying a List in a Function
Jdef greet users (names):

ANl

"Print a simple greetgng to
names . append (‘\benak’) _
for name 1in names:

msg = f"Hello, {name.title()}!'"
print (msg)

' .
aCil user i1

("
5=
-
()

1)

usernames = ['bruno', 'kuki', 'malikal]
greet_users (usernames)

print (usernames)

Hello, Bruno!

Hello, Kuki!

Hello, Malika!

Hello, Benek!
['bruno', 'kuki', 'malika’',

Serdar ARITAN

{_‘
=t
‘v

PYTHON Functions
PROGRAMMING

Modifying a List in a Function
def greet users (names):

"""Print a simple greetli
I,I]
Jd

. ‘ J o 13 el
ng to each user in the list.

=
=

names = names + ['ben

Tor name 1n names:
msg = f"Hello, {name.title()}!'"
print (msg)

usernames = ['bruno', 'kuki', 'malikal]
greet_users (usernames)

print (usernames)

Hello, Bruno!

Hello, Kuki!

Hello, Malika!

Hello, Benek!
['brano', 'kuki', 'malika’] m

Serdar ARITAN

W\

PYTHON
PROGRAMMING

Modifying a List in a Function
def greet users (names):
"""Print a simple greeti

4 L1
names += ['benek']
Tor name n names:

print (msg)

usernames = ['bruno', 'kuki', 'malikal]
greet_users (usernames)

print (usernames)

Hello, Bruno!

Hello, Kuki!

Hello, Malika!

Hello, Benek!

['bruno', 'kuki', 'malika'’',

Serdar ARITAN

PYTHON Functions
Y PROGRAMMING

Modifying a List in a Function
def greet users (names):

"""Print a simple greeiging to each user in the list."""
names . append (‘benclk’)

for name n names:
msg = f"Hello, {name.title()}!'"

print (msg)
usernames = ['bruno', 'kukil, 'malikal]
greeg_users(usernames[:]ﬂ Shallow copy of list
print (usernames)

Hello, Bruno!
Hello, Kuki!
Hello, Malika!

Hello, Benek!
['bruno', 'kuki', 'malika'] m

Serdar ARITAN

PYTHON Functions
PROGRAMMING

Passing an Arbitrary Number of Arguments
def makg;plzza(*topplngs)

"Print the list of toppings that have been requested.""

-

print (toppings)

make pizza('pepperoni')
- ' =T 1 1 - e 1 Vo s de e T e
make pizza('mushrooms', 'green peppers', 'extra cheese')

()

('pepperoni',)
('mushrooms', 'green peppers', 'extra cheese')

Serdar ARITAN

PYTHON
- PROGRAMMING

Functions

Passing an Arbitrary Number of Arguments
def make pizza(*toppings) :
"“”Summarize the pizza we are about to make."""“
print ("\nMaking a pizza with the following toppings:")
for topping in toppings:
print(f"- {topping)"

make pizza('pepperoni')
make pizza('mushrooms', 'green peppers', 'extra cheese')

Making a pizza with the following toppings:
- pepperoni

Making a pizza with the following toppings:
- mushrooms

- green peppers

- extra cheese

Serdar ARITAN

PYTHON
- PROGRAMMING

Functions

Passing an Arbitrary Number of Arguments
def make pizza(size, *toppings):
"“”Summarize the pizza we are about to make."""“
print (£"\nMaking a {size)}-inch pizza with the following toppings:")
for topping in toppings:
print(f"- {topping)"

make pizza(l6, 'pepperoni')
make pizza(l2 'mushrooms', 'green peppers', 'extra cheese')

Making a 16-inch pizza with the following toppings:
- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms

- green peppers

- extra cheese

Serdar ARITAN

PYTHON
~ PROGRAMMING

Functions

Importing an Entire Module

def make_pizza(size, *toppings):
"“”Summarize the pizza we are about to make."""“
print (£"\nMaking a {size)}-inch pizza with the following toppings:") &k save as “pizza.py”
for topping in toppings:
print(£"- [topping!”

import pizza
pizza.make pizza(l6, 'pepperoni')
pizza.make pizza(l2 'mushrooms', 'green peppers', 'extra cheese')

Making a 16-inch pizza with the following toppings:
- pepperoni

Making a 12-inch pizza with the following toppings:
- mushrooms

- green peppers

- extra cheese

Serdar ARITAN m

PYTHON
PROGRAMMING

Importing Specific Functions

pizza make pizza
make pizza(l6, ' ")
make pizza(l2 ' v,
pizza make pizza mp
mp (16, ' ")
mp(lz)] , L L

Serdar ARITAN

Functions

")

")

PYTHON Functions Examples
PROGRAMMING

def drawBox() :
print ("% e % % e e v % ")
print ("* ")
print ("* ")
print (" ¥ e % % e e v % ")

The drawBox function works correctly. It draws the particular
box that it was intended to draw, but it is not flexible, and as a
result, it is not as useful as it could be.

Serdar ARITAN

PYTHON Functions Examples
PROGRAMMING

drawBox (width, height):
draw a box by using ‘*’ with given width / height

box that is smaller than 2x2 cannot be drawn by
this function '’

r
’

if width < 2 or height < 2:
print ("Error: The width or heigh:
quit ()

Draw the top of the box

print ("*" * width)

Draw the sides of the box

for i1 in range (height - 2):
print("*“ + ¥ " * (width - 2) + "*")

Draw the bottom of the box

print ("*" * width)

drawBox (15, 4)
Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

Exercises

drawBox (width, height, outline="*", fill=" "):

drawBox (14, 5,

@RRREREREERRERRQE

@RRERERERERREAEE

4

" ")

Write a function drawBox that takes four arguments and draw a
box.

PYTHON

Exercises

PROGRAMMING

« Write a function from roman number (roman number) that

computes the corresponding decimal number from a textually
valid Roman number.

« Write function to roman number (value) that converts a
decimal number to a (valid) Roman number.

Arabic Roman
For syntactically invalid Roman
17 “XviI” numbers, such as IXD, an incorrect
444 “«CDXLIV” result, here 489, can be computed by
applying subtraction rule twice in a row:
1911 “MCMLXXI" 0-1-10+500.
2020 “MMXX"

Serdar ARITAN

PYTHON Exercises
PROGRAMMING

Write a functions that takes a word as an input argument and returns
the number of letters in the word, the number of vowels in the word,
and the percentage of vowels.

>>> letterStats(‘sequoia’)
>>> (7, 5, 71.42)

Serdar ARITAN

