
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Lists, Dictionaries and Tuples

#6

2

PEP 636 -- Structural Pattern Matching
Python Enhancement Proposal

A match statement takes an expression and compares it to

successive patterns given as one or more case blocks. This is

superficially similar to a switch statement in C, Java or

JavaScript (and many other languages), but much more

powerful. Python 3.10 introduced structural pattern-matching

syntax in python.
def http_error(status):

 match status:

 case 400:

 return "Bad request"

 case 401:

 return "Unauthorized"

 case 403:

 return "Forbidden"

 case 404:

 return "Not found"

 case 418:

 return "I'm a teapot"

 case _:

 return "Something else"

3

PEP 636 -- Structural Pattern Matching

 You can combine several literals in a single pattern using |

("or"):

 case 401 | 403 | 404:

 return "Not allowed“

Patterns can look like unpacking assignments, and can be used

to bind variables:
point is an (x, y) tuple

match point:

 case (0, 0):

 print("Origin")

 case (0, y):

 print(f"Y={y}")

 case (x, 0):

 print(f"X={x}")

 case (x, y):

 print(f"X={x}, Y={y}")

 case _:

 raise ValueError("Not a point")

4

PEP 636 -- Structural Pattern Matching

def switch(day):

 if day == 1:

 return "Sunday"

 elif day ==2:

 return "Monday"

 elif day == 3:

 return "Tuesday"

 elif day ==4:

 return "Wednesday"

 elif day == 5:

 return "Thursday"

 elif day ==6:

 return "Friday"

 elif day == 7:

 return "Saturday"

 else:

 return "Enter a Valid Day Number"

print(switch(1)) #Sunday

print(switch(4)) #Wednesday

print(switch(7)) #Saturday

print(switch(10)) #Enter a Valid Day Number

def weekday (day):

 match day:

 case 1:

 return "Sunday"

 case 2:

 return "Monday"

 case 3:

 return "Tuesday"

 case 4:

 return "Wednesday"

 case 5:

 return "Thursday"

 case 6:

 return "Friday"

 case 7:

 return "Saturday"

 case _:

 return "Enter a Valid Day Number"

print(weekday(1)) #Sunday

print(weekday(4)) #Wednesday

print(weekday(7)) #Saturday

print(weekday(10)) #Enter a Valid Day Number

5

PEP 636 -- Structural Pattern Matching

total = 200

extra_toppings_1 = 'pepperoni'

extra_toppings_2 = 'onions'

match [extra_toppings_1, extra_toppings_2]:

 case ['pepperoni', 'mushrooms']:

 extra = 79

 case ['pepperoni', 'onions']:

 extra = 49

 case ['pepperoni', 'bacon']:

 extra = 99

 case ['pepperoni', 'extra cheese', 'black olives']:

 extra = 149

print("Your total bill is:", total + extra)

Your total bill is: 249

key = 'A'

match key:

 case 'a' | 'A':

 print("Move Left")

 case 'w' | 'W':

 print('Move Forward')

 case 'd' | 'D':

 print("Move right")

 case 's' | 'S':

 print("Move Backward")

https://cscircles.cemc.uwaterloo.ca/visualize

6

https://cscircles.cemc.uwaterloo.ca/visualize

7

8

Lists

 Like a string, a list is a sequence of values. In a string, the values

are characters; in a list, they can be any type. The values in a list

are called elements or sometimes items.

Basic properties:

Lists are contained in square brackets []

Lists can contain numbers, strings, nested sublists, or nothing

Examples:

 L1 = [0,1,2,3]

 L2 = ['zero', 'one']

 L3 = [0,1,[2,3],'three',[‘four’, ‘one’]]

 L4 = []

9

List indexing works just like string indexing

Lists are mutable: individual elements can be reassigned in place.

Moreover, they can grow and shrink in place

Example:

>>> L1 = [0, 1, 2, 3]

>>> L1[0] = 4

>>> L1[0]

4

Lists

10

Lists Are Mutable : Unlike strings, lists are mutable. When the

bracket operator appears on the left side of an assignment, it

identifies the element of the list that will be assigned.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [17, 123]

>>> empty = []

>>> print (cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [17, 123] []

>>> numbers[1] = 5

>>> print (numbers)

[17, 5]

Lists

hangi_ay = int(input("Hangi Ay (1-12)? "))

aylar = ['Ocak','Subat','Mart','Nisan','Mayis','Haziran',\

 'Temmuz','Agustos','Eylul','Ekim','Kasim','Aralik']

if 1 <= hangi_ay <= 12:

 print("Sectiğiniz Ay ", aylar[hangi_ay - 1])

11

Lists

12

Lists

 >>> L = [1, 2, 3]

>>> for element in L:

... print(element)

...

1

2

3

>>> L.append(“I am a string.")

>>> for element in L:

... print(element)

...

1

2

3

I am a string.

13

Some basic operations on lists:
Indexing: L1[i], L2[i][j] Slicing: L3[i:j]

Concatenation:

 >>> L1 = [0,1,2]; L2 = [3,4,5]

 >>> L1+L2

 [0,1,2,3,4,5]

Repetition:

 >>> L1*3

 [0,1,2,0,1,2,0,1,2]

Appending:

 >>> L1.append(3)

 [0,1,2,3]

Sorting:

 >>> L3 = [2, 1, 4, 3]

 >>> L3.sort()

 [1,2,3,4]

Lists

14

Lists

 Reversal:

 >>> L4 = [4,3,2,1]

 >>> L4.reverse()

 >>> L4

 [1,2,3,4]

Append, Pop and Insert:

 >>> L4.append(5) # [1,2,3,4,5]

 >>> L4.pop() # [1,2,3,4]->5

 >>> L4.insert(0, 42) # [42,0,1,2,3,4]

 >>> L4.pop(0) # [1,2,3,4]

 >>> L4.pop(2) # [1,2,4]->3

15

Lists

list = []

list.append(1)

list.append(2)

list.append(6)

list.append(3)

print(list)

[1, 2, 6, 3]

list = ["dot", “4.5"]

Insert at index 1.

list.insert(1, "net")

print(list)

[‘dot’, ‘net’, ‘4.5’]

remove and del

names = ["Tommy", "Bill", "Janet",

"Bill", "Stacy"]

Remove this value

names.remove("Bill")

print(names)

Delete all except first two elements

del names[2:]

print(names)

Delete all except last element

del names[:1]

print(names)

0 1

0 1

16

Lists

 names = ['a', 'a', 'b', 'c', 'a']

Count the letter a.

value = names.count('a')

print(value)

Input list.

values = ["uno", "dos", "tres", "cuatro"]

Locate string.

n = values.index("dos")

print(n, values[n])

Locate another string.

n = values.index("tres")

print(n, values[n])

17

Lists, Sets

def remove_duplicates(values):

 output = []

 seen = set()

 for value in values:

 # If value has not been encountered yet, add it

 if value not in seen:

 output.append(value)

 seen.add(value)

 return output

Remove duplicates from this list.

values = [5, 5, 1, 1, 2, 3, 4, 4, 5]

result = remove_duplicates(values)

print(result)

Our input list.

values = [5, 5, 1, 1, 2, 3, 4, 4, 5]

Convert to a set and back into a list.

setvalue = set(values)

result = list(setvalue)

print(result)

>>> print(set("my name is Serdar and Serdar is my

name".split()))

{'name', 'my', 'is', 'Serdar', 'and'}

18

Lists, Sets

19

Lists, Sets

>>> seen = set()

>>> seen

set()

>>> seen.add(5)

>>> seen

{5}

>>> type(seen)

<class 'set'>

>>> seen.add(5)

>>> seen

{5}

>>> seen.add(4)

>>> seen

{4, 5}

>>> seenL = list(seen)

>>> seenL

[4, 5]

Set(): Sets are lists with no duplicate entries

20

Lists Objects and Values

If we execute these assignment statements:
a = 'banana'

b = 'banana'

We know that a and b both refer to a string, but we don’t know

whether they refer to the same string. There are two possible states.

To check whether two variables refer to the same object, you can use

the is operator.
>>> a is b

True

But when you create two lists, you get two objects:
>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

21

If a refers to an object and you assign b = a, then both variables refer

to the same object:
>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

The association of a variable with an object is called a reference. In

this example, there are two references to the same object. An object

with more than one reference has more than one name, so we say

that the object is aliased. If the aliased object is mutable, changes

made with one alias affect the other:
>>> b[0] = 17

>>> print (a)

[17, 2, 3]

Although this behavior can be useful, it is error-

prone. In general, it is safer to avoid aliasing

when you are working with mutable objects.

Lists Objects and Values

22

Lists Objects and Values

When you pass a list to a function, the function gets a reference to

the list. If the function modifies a list parameter, the caller sees the
change. For example, delete_head removes the first element

from a list:
def delete_head(t):

 del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print(letters)

['b', 'c']

>>> name = list('Serdar')

>>> delete_head(name)

>>> print(name)

['e', 'r', 'd', 'a', 'r']

The parameter t and the variable
letters are aliases for the same
object

23

Lists Objects and Values

def no_side_effects(cities):

 print(cities)

 cities = cities + ["Istanbul", "Ankara"]

 print(cities)

locations = ["London", "New York", "Paris"]

no_side_effects(locations) # passing a list to a function

?????

print(locations)

?????

24

Lists Objects and Values

def side_effects(cities):

 print(cities)

 cities += ["Istanbul", "Ankara"]

 print(cities)

locations = ["London", "New York", "Paris"]

side_effects(locations) # passing a list to a function

?????

print(locations)

?????

25

def side_effects(cities):

 print(cities)

 cities += ["Istanbul", "Ankara"]

 print(cities)

locations = ["London", "New York", "Paris"]

side_effects(locations[:])# shallow copy of the list

?????

print(locations)

?????

Lists Objects and Values

26

Classworks

ord(c)

Given a string representing one Unicode character, return an integer

representing the Unicode code point of that character. For example,
ord('a') returns the integer 97 and ord('€') (Euro sign) returns

8364. This is the inverse of chr().

chr(i)

Return the string representing a character whose Unicode code point is
the integer i. For example, chr(97) returns the string 'a', while

chr(957) returns the string 'ν'. This is the inverse of ord(). The

valid range for the argument is from 0 through 1,114,111 (0x10FFFF in
base 16). ValueError will be raised if i is outside that range.

27

Classworks

Create a List of number between 0 .. 255

>>> L = random.sample(range(65, 127), 30)

1. Convert the integer values of the List into the character

2. Sort the letters

3. Create a new List with unique letters

4. Count how many times each letter appears!!

number = 100

apply chr() function on integer value

result = chr(number)

print("Integer - {} converted to character -".format(number), result)

Integer - 100 converted to character - d

28

Dictionaries

 A dictionary is like a list, but more general. In a list, the indices have

to be integers; in a dictionary they can be (almost) any type. You can

think of a dictionary as a mapping between a set of indices (which

are called keys) and a set of values. Each key maps to a value. The

association of a key and a value is called a key-value pair or

sometimes an item.

The squiggly-brackets, {}, represent an empty dictionary

29

Dictionary vs List

Values in lists are accessed by means of integers called indices,

which indicate where in the list a given value is found.

Dictionaries access values by means of integers, strings, or other

Python objects called keys, which indicate where in the dictionary a

given value is found.

 Both lists and dictionaries can store objects of any type.

>>> x = []

>>> y = { }

30

Dictionaries

 As an example, we’ll build a dictionary that maps from English to

Spanish words, so the keys and the values are all strings. The

function dict creates a new dictionary with no items. Because dict

is the name of a built-in function, you should avoid using it as a

variable name.
>>> eng2sp = dict()

>>> print(eng2sp)

{}

>>> eng2sp['one'] = 'uno’

This line creates an item that maps from the key ’one’ to the value

'uno'.

31

Dictionaries

 >>> print(eng2sp)

{'one': 'uno'}

This output format is also an input format. For example, you can

create a new dictionary with three items:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print(eng2sp)

{'two': 'dos', 'three': 'tres', 'one': 'uno'}

The order of the key-value pairs is not the same. In fact, if you type

the same example on your computer, you might get a different result.

In general, the order of items in a dictionary is unpredictable.

32

Dictionaries

 But that’s not a problem because the elements of a dictionary are

never indexed with integer indices. Instead, you use the keys to

look up the corresponding values:

>>> print(eng2sp['two'])

dos

If the key isn’t in the dictionary, you get an exception:

>>> print(eng2sp['four'])

Traceback (most recent call last):

 File "<pyshell#24>", line 1, in <module>

 print (eng2sp['four'])

KeyError: 'four’

33

Dictionaries

 The len function works on dictionaries; it returns the number of

key-value pairs:

>>> len(eng2sp)

3

The in operator works on dictionaries; it tells you whether

something appears as a key in the dictionary.

 >>> 'one' in eng2sp
True

>>> 'uno' in eng2sp

False

34

Dictionaries

 To see whether something appears as a value in a dictionary, you

can use the method values, which returns the values as a list, and

then use the in operator:

>>> vals = eng2sp.values()

>>> 'uno' in vals

True

The in operator uses different algorithms for lists and dictionaries.

35

Dictionaries

 You can obtain all the keys in the dictionary with the keys

method.
>>> list(eng2sp.keys())

['two', 'three', 'one']

It’s also possible to obtain all the values stored in a dictionary,

using values:
>>> list(eng2sp.values())

['dos', 'tres', 'uno']

You can use the items method to return all keys and their

associated values as a sequence of tuples:
>>> list(eng2sp.items())

[('two', 'dos'), ('three', 'tres'), ('one', 'uno')]

36

Dictionaries

 If you want to safely get a key’s value in case of the key is not

already in dict, you can use the setdefault method:

>>> eng2sp.setdefault('four','No Translation')

'No Translation‘

>>> print (eng2sp['four'])

No Translation

defaultdict is useful for settings defaults before filling the dict

and setdefault is useful for setting defaults while or after filling the

dict.

new = {}

for (key, value) in data:

 group = new.setdefault(key, []) # key might exist already

 group.append(value)

37

Dictionaries

 You can obtain a copy of a dictionary using the copy method:
>>> x = {0: 'zero', 1: 'one'}

>>> y = x.copy()

>>> y

{0: 'zero', 1: 'one'}

This makes a shallow copy of the dictionary. This will likely be all

you need in most situations. The update method updates a first

dictionary with all the key/value pairs of a second dictionary. For

keys that are common to both, the values from the second

dictionary override those of the first:
>>> z = {1: 'One', 2: 'Two'}

>>> x = {0: 'zero', 1: 'one'}

>>> x.update(z)

>>> x

{0: 'zero', 1: 'One', 2: 'Two'}

38

Dictionaries and Lists

 You want to count how many times each letter appears. There are several ways

you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you

could traverse the string and, for each character, increment the corresponding

counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each

character to a number (using the built-in function ord), use the number as an

index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the

corresponding values. The first time you see a character, you would add an

item to the dictionary. After that you would increment the value of an existing

item.

39

Dictionaries and Lists

 An implementation is a way of performing a computation; some

implementations are better than others.

def histogram(s):

 d = dict()

 for c in s:

 if c not in d:

 d[c] = 1

 else:

 d[c] += 1

 return d

>>> h = histogram('brontosaurus')

>>> print(h)

{'t': 1, 'u': 2, 'r': 2, 's': 2, 'o': 2, 'n': 1, 'b': 1, 'a': 1}

40

Dictionaries and Lists

 def print_hist(h):

 for c in h:

 print(c, h[c])

>>> print_hist(h)

t 1

u 2

r 2

s 2

o 2

n 1

b 1

a 1

41

Dictionaries and Lists

42

Given a dictionary d and a key k, it is easy to find the corresponding

value v = d[k]. This operation is called a lookup.

But what if you have v and you want to find k? You have two

problems: first, there might be more than one key that maps to the

value v. Depending on the application, you might be able to pick one,

or you might have to make a list that contains all of them. Second,

there is no simple syntax to do a reverse lookup; you have to search.

def reverse_lookup(d, v):

 for k in d:

 if d[k] == v:

 return k

 raise ValueError

Dictionaries and Lists

43

Dictionaries and Lists

 >>> print(reverse_lookup(h, 2))

r

>>> print(reverse_lookup(h, 3))

Traceback (most recent call last):

 File "<pyshell#46>", line 1, in <module>

 print(reverse_lookup(h, 3))

 File "D:/Lectures/BCO 601 Python

Programming/dictExample1.py", line 18, in reverse_lookup

 raise ValueError

ValueError

>>>

44

Dictionaries and Lists

>>> d = {‘deniz':‘mavi', ‘ağaç':‘yeşil',‘ateş':‘kırmızı'}

>>> for k in d:

 print(k)

deniz

ağaç

ateş

>>> for k in d:

 print(k, '-->', d[k])

ağaç --> yeşil

deniz --> mavi

ateş --> kırmızı

45

Dictionaries and Lists

 >>> for k, v in d.items():

 print(k, '-->', v)

ağaç --> yeşil

deniz --> mavi

ateş --> kırmızı

>>> names = [‘deniz', ‘ağaç',‘ateş']

>>> colors = [‘mavi', ‘yeşil',‘kırmızı']

>>> d = dict(zip(names, colors))

>>> print(d)

{‘ateş': ‘kıtmızı', ‘ağaç': ‘yeşil', ‘deniz': ‘mavi'}

46

Tuples

 A tuple is a sequence of values. The values can be any type, and

they are indexed by integers, so in that respect tuples are a lot like

lists. The important difference is that tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e‘

>>> type(t)

<class 'tuple'>

Although it is not necessary, it is common to enclose tuples in

parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

47

Tuples

To create a tuple with a single element, you have to include a final

comma:
>>> t1 = 'a',

>>> type(t1)

<type 'tuple'>

A value in parentheses is not a tuple:
>>> t2 = ('a')

>>> type(t2)

<type 'str'>

48

Tuples

Another way to create a tuple is the built-in function tuple. With no

argument, it creates an empty tuple:

>>> t = tuple()

>>> print(t)

()

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

49

Tuples

 Because tuple is the name of a built-in function, you should avoid

using it as a variable name. Most list operators also work on tuples.

The bracket operator indexes an element:
>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print(t[0])

'a'

And the slice operator selects a range of elements.
>>> print(t[1:3])

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an

error:
>>> t[0] = 'A'

TypeError: object doesn't support item assignment

50

Tuples

 You can’t modify the elements of a tuple, but you can replace one

tuple with another:
>>> t = ('A',) + t[1:]

>>> print(t)

('A', 'b', 'c', 'd', 'e')

It is often useful to swap the values of two variables. With

conventional assignments, you have to use a temporary variable.
>>> temp = a

>>> a = b

>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:
>>> a, b = b, a

The left side is a tuple of variables; the right side is a tuple of

expressions. Each value is assigned to its respective variable.

51

Tuples

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first
element is assigned to uname, the second to domain.

>>> print(uname)

monty

>>> print(domain)

python.org

52

Tuples

 A function can only return one value, but if the value is a tuple, the

effect is the same as returning multiple values. For example, if you

want to divide two integers and compute the quotient and

remainder, it is inefficient to compute x//y and then x%y. The built-

in function divmod takes two arguments and returns a tuple of two

values, the quotient and remainder. You can store the result as a

tuple:

>>> t = divmod(7, 3)

>>> print(t)

(2, 1)

53

Tuples

 Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> print (quot, rem)

2 1

Here is an example of a function that returns a tuple:

def min_max(t):

 return min(t), max(t)

54

Namedtuple

 import the collections module and then specify the Type name. And

pass a string list of all the field names—these can then be directly
used as fields:

import collections

Specify the Student namedtuple.

Student = collections.namedtuple("Student",["id","name", "course"])

Create Student instance.

s = Student(1, "Serdar Aritan", "BCO601")

>>> s

Student(id=1, name='Serdar Aritan', course='BCO601')

Display Student.

print(s)

print("Student", s.name, "has taken the course", s.course)

55

Namedtuple

 With _make() we create a namedtuple from an iterable (like a list).

The list elements are turned into tuple fields.

import collections

A namedtuple type.

Style = collections.namedtuple("Style", ["color", "size", "width"])

A list containing three values.

values = ["red", 10, 15]

Make a namedtuple from the list.

ntuple = Style._make(values)

print(ntuple)

56

Namedtuple

 Benchmark tests how long it takes to create a namedtuple versus

a regular tuple.
import collections

import time

The namedtuple instance.

Animal = collections.namedtuple("Animal", ["size", "color"])

start = time.time()

Version 1: create namedtuple.

i = 0

while i < 10000000:

 a = Animal(100, "blue")

 if a[0] != 100:

 raise Exception()

 i += 1

print("namedtuple : ", time.time() - start)

Benchmark tests how long it takes to create a namedtuple versus

a regular tuple..
start = time.time()

Version 2: create tuple

i = 0

while i < 10000000:

 a = (100, "blue")

 if a[0] != 100:

 raise Exception()

 i += 1

print("tuple : ", time.time() - start)

namedtuple : 6.765365839004517

tuple : 2.1561741828918457

57

Namedtuple

58

Turtle Graphics

 Remember the random shapes.
import turtle

import random

turtle.title("Polygon Random Pattern")

turtle.setup(500, 500, 0, 0)

def polygon(sides, length):

 for x in range(sides):

 turtle.forward(length)

 turtle.right(360/sides)

turtle.setup(600, 600)

hide the turtle

turtle.hideturtle()

tell python to no longer update the graphics

turtle.tracer(0)

Polygon Function

59

Turtle Graphics

side_len = 50

function names are references to functions

and that we can assign multiple names to the same function

def besgen(): return polygon(5, side_len)

def kare(): return polygon(4, side_len)

def ucgen(): return polygon(3, side_len)

besgen = lambda : polygon(5, side_len)

kare = lambda : polygon(4, side_len)

ucgen = lambda : polygon(3, side_len)

shape_list = [besgen, kare, ucgen]

60

Turtle Graphics

for _ in range(1000):

 # choose a random spot

 xpos = random.randint(-200,200)-(side_len/2)

 ypos = random.randint(-200,200)+(side_len/2)

 # goto this spot

 turtle.penup()

 turtle.goto(xpos, ypos)

 turtle.pendown()

 # generate a random color

 red = random.random() # returns a number between 0 and 1

 green = random.random()

 blue = random.random()

61

Turtle Graphics

 # fill in our shape

 turtle.fillcolor(red, green, blue)

 # draw the shape

 turtle.begin_fill()

 shape_list[random.randint(0,1)]()

 turtle.end_fill()

 # update the screen with our drawing

 turtle.update()

turtle.exitonclick()

62

Turtle Graphics

63

import turtle

import random

def polygon(sides, length):

 for x in range(sides):

 turtle.forward(length)

 turtle.right(360/sides)

side_len = 50

Assign functions to the dictionary

gens = {3 : lambda : polygon(3, side_len),

 4 : lambda : polygon(4, side_len),

 5 : lambda : polygon(5, side_len),

 }

gens[random.randint(3,5)]()

Assign functions to the dictionary

64

import turtle

import random

import functools

functools.partial lets you attach arguments to an existing function.

def polygon(sides, length):

 for x in range(sides):

 turtle.forward(length)

 turtle.right(360/sides)

side_len = 50

values = [functools.partial(polygon,x, side_len) for x in range(3, 9)]

gens = dict(list(enumerate(values,3))) # Assign functions to the dictionary

gens[random.randint(3,8)]()

Assign functions to the dictionary

65

menu_item = 0

namelist = []

while menu_item != 9:

 print("--------------------")

 print("1. Liste Ciktisi")

 print("2. Listeye Isim Ekle")

 print("3. Listeden Isim Sil")

 print("4. Isim Guncelle")

 print("9. Cikis")

 menu_item = int(input("Islem Seciniz : "))

 print(menu_item)

 if menu_item == 1:

 current = 0

 if len(namelist) > 0:

 while current < len(namelist):

 print(current, ".", namelist[current])

 current = current + 1

 else:

 print("Bos Liste")

 elif menu_item == 2:

 name = input("Eklemek icin Isim Giriniz : ")

 namelist.append(name)

List Example

66

List Example

67

 elif menu_item == 3:

 del_name = input("Hangi Ismi Silmek Istersiniz: ")

 if del_name in namelist:

 namelist.remove(del_name)

 else:

 print(del_name, "bulunamadi")

 elif menu_item == 4:

 old_name = input("Hangi Ismi Guncellemek Istersiniz : ")

 if old_name in namelist:

 item_number = namelist.index(old_name)

 new_name = input("Yeni Ismi Giriniz : ")

 namelist[item_number] = new_name

 else:

 print(old_name, "bulunamdi")

print("Hoscakalin")

Oops…… There a is slight problem!!

List Example

68

elif menu_item == 3:

 del_name = input("Hangi Ismi Silmek Istersiniz: ")

 if del_name in namelist:

 item_number = namelist.index(del_name)

 while del_name in namelist:

 item_number = namelist.index(del_name)

 del namelist[item_number]

 else:

 print(del_name, "bulunamadi")

