
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

 Debugger and Profiler

 Regular Expression

#9

2

Using Debugger

Using the debugger is a good way to figure out what is causing bugs in

your program. As an example, here is a small program that has a bug

in it. The program comes up with a random addition problem for the

user to solve.

import random

number1 = random.randint(1, 10)

number2 = random.randint(1, 10)

print('What is ' + str(number1) + ' + ' + str(number2) + '?')

answer = input()

if answer == (number1 + number2):

 print('Correct!')

else:

 print('Nope! The answer is ' + str(number1 + number2))

3

This is a simple arithmetic game that comes up with two random

numbers and asks you to add them. Here's what it might look like

when you run the program:

What is 5 + 1?

6

Nope! The answer is 6

That's not right! This program has a semantic bug in it. Even if the

user types in the correct answer, the program says they are wrong.

You could look at the code and think hard about where it went wrong.

That works sometimes. But you might figure out the cause of the bug

quicker if you run the program under the debugger.

Using Debugger

4

Using Debugger

5

Checked

Using Debugger

6

The debugger starts at the import random line. Nothing special

happens here, so just click Step to execute it. You should see the

random module at the bottom of the Debug Control window in the

Globals area.

Using Debugger

7

Using Debugger

8

another buggy code

my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

del my_list[3]

del my_list[4]

del my_list[6] # this is the bug

print(my_list)

Traceback (most recent call last):

 File "D:/Lectures/BCO 601 Python Programming/buggy_another.py",

line 6, in <module>

 del my_list[6] # this is the bug

IndexError: list assignment index out of range

Using pdb

9

one solution to check where the bug is to use print

my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

del my_list[3]

print(my_list)

del my_list[4]

print(my_list)

del my_list[6]

print(my_list)

Using pdb

10

using pdb

import pdb

my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

pdb.set_trace()

del my_list[3]

del my_list[4]

del my_list[6]

> buggy_another.py(6)<module>()

-> del my_list[3]

(Pdb)

Using pdb

11

Using pdb

12

Using pdb

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(6)<module>()

-> del my_list[3]

(Pdb)

13

Using pdb

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(6)<module>()

-> del my_list[3]

(Pdb) my_list

[5, 2, 1, True, 'abcdfg', 3, False, 4]

(Pdb)

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(6)<module>()

-> del my_list[3]

(Pdb) my_list

[5, 2, 1, True, 'abcdfg', 3, False, 4]

(Pdb) next # or you can type n instead.

14

Using pdb

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(6)<module>()

-> del my_list[3]

(Pdb) my_list

[5, 2, 1, True, 'abcdfg', 3, False, 4]

(Pdb) n

> buggy_another.py(7)<module>()

-> del my_list[4]

15

Using pdb

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(7)<module>()

-> del my_list[4]

(Pdb) my_list

[5, 2, 1, 'abcdfg', 3, False, 4]

(Pdb) n

> buggy_another.py(8)<module>()

-> del my_list[6]

16

Using pdb

1 # using pdb

2 import pdb

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 pdb.set_trace()

6 del my_list[3]

7 del my_list[4]

8 del my_list[6]

> buggy_another.py(7)<module>()

-> del my_list[6]

(Pdb) my_list

[5, 2, 1, 'abcdfg', False, 4]

(Pdb) c # continue

Traceback (most recent call last):

IndexError: list assignment index out of range

17

Using pdb

1 # using pdb

2

3 my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

4

5 import pdb; pdb.set_trace()

6

7 del my_list[3]

8 del my_list[4]

9 del my_list[6]

18

Using pdb

This is the only time you can use ;

Make debugging options in one line command

19

Using pdb

Starting in Python 3.7, there’s another way to enter the debugger.
PEP 553 describes the built-in function breakpoint(), which

makes entering the debugger easy and consistent:

breakpoint()

By default, breakpoint() will import pdb and call

pdb.set_trace(), as shown above. However, using

breakpoint() is more flexible and allows you to control debugging

behavior via its API and use of the environment variable

PYTHONBREAKPOINT.

For example, setting PYTHONBREAKPOINT=0 in your environment
will completely disable breakpoint(), thus disabling debugging.

20

Using pdb

my_list = [5, 2, 1, True, “abcdfg”, 3, False, 4]

breakpoint()

del my_list[3]

del my_list[4]

del my_list[6]

-> del my_list[3]

(Pdb) p my_list

[5, 2, 1, True, 'abcdfg', 3, False, 4]

(Pdb) n

-> del my_list[4]

(Pdb) l

 1 my_list = [5, 2, 1, True, "abcdfg", 3, False, 4]

 2 breakpoint()

 3 del my_list[3]

 4 -> del my_list[4]

 5 del my_list[6]

21

Using pdb

Command Description

p Print the value of an expression.

pp Pretty-print the value of an expression.

n Continue execution until the next line in the current function is reached or it returns.

s Execute the current line and stop at the first possible occasion (either in a function that is

 called or in the current function).

c Continue execution and only stop when a breakpoint is encountered.

unt Continue execution until the line with a number greater than the current one is reached.

 With a line number argument, continue execution until a line with a number greater or

 equal to that is reached.

l List source code for the current file. Without arguments, list 11 lines around the current

 line or continue the previous listing.

ll List the whole source code for the current function or frame.

b With no arguments, list all breaks. With a line number argument, set a breakpoint at this

 line in the current file.

w Print a stack trace, with the most recent frame at the bottom. An arrow indicates the

 current frame, which determines the context of most commands.

22

Using Profiler

23

Using profile

import profile

import re

profile.run('re.compile("foo|bar")')

 221 function calls (214 primitive calls) in 0.016 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 48 0.000 0.000 0.000 0.000 :0(append)

 1 0.000 0.000 0.000 0.000 :0(compile)

 1 0.000 0.000 0.000 0.000 :0(exec)

 5 0.000 0.000 0.000 0.000 :0(find)

 29 0.000 0.000 0.000 0.000 :0(isinstance)

 1 0.000 0.000 0.000 0.000 :0(items)

 30/27 0.000 0.000 0.000 0.000 :0(len)

The first line indicates that 221 calls were monitored. Of those calls,

214 were primitive, meaning that the call was not induced via

recursion.

24

Using profile

ncalls : for the number of calls.

Tottime : for the total time spent in the given function (and excluding time made in

calls to sub-functions)
Percall : is the quotient of tottime divided by ncalls

cumtime : is the cumulative time spent in this and all subfunctions (from invocation

till exit). this figure is accurate even for recursive functions.
Percall : is the quotient of cumtime divided by primitive calls

filename: lineno(function) provides the respective data of each function

When there are two numbers in the first column (for example 3/1), it means that the

function recursed. The second value is the number of primitive calls and the

former is the total number of calls. Note that when the function does not recurse, these

two values are the same, and only the single figure is printed.

Using profile

25

import profile

def fib(n):

 return n if n < 2 else fib(n - 2) + fib(n - 1)

print(fib(35))

profile.run('fib(35)‘, sort='tottime')

 29860707 function calls (5 primitive calls) in 44.094 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)

29860703/1 44.094 0.000 44.094 44.094 profileCode_2.py:5(fib)

 0 0.000 0.000 profile:0(profiler)

 1 0.000 0.000 44.094 44.094 profile:0(fib(35))

 1 0.000 0.000 44.094 44.094 :0(exec)

 1 0.000 0.000 44.094 44.094 <string>:1(<module>)

 1 0.000 0.000 0.000 0.000 :0(setprofile)

Using profile

26

import profile

def fib(n):

 return n if n < 2 else fib(n - 2) + fib(n - 1)

profile.run('fib(35)')

9227465

 29860707 function calls (5 primitive calls) in 42.734 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.000 0.000 42.719 42.719 :0(exec)

 1 0.016 0.016 0.016 0.016 :0(setprofile)

 1 0.000 0.000 42.719 42.719 <string>:1(<module>)

 1 0.000 0.000 42.734 42.734 profile:0(fib(35))

 0 0.000 0.000 profile:0(profiler)

29860703/1 42.719 0.000 42.719 42.719 profileCode_2.py:3(fib)

27

File and Text Operations

A file is a stream of text or bytes that a program can read and/or

write; a filesystem is a hierarchical repository of files on a computer

system.

Files and streams come in many flavors. Their contents can be

arbitrary bytes, or text. They may be suitable for reading, writing, or

both, and they may be buffered, so that data is temporarily held in

memory on the way to or from the file.

Files may also allow random access, moving forward and back within

the file, or jumping to read or write at a particular location in the file.

28

File and Text Operations

To create a Python file object, call open with the following syntax:

open(file,mode='r',buffering=-1,encoding=None, errors='strict',

 newline=None, closefd=True, opener=os.open)

file can be a string or an instance of pathlib.

Opening a File Pythonically

open is a context manager: use with open(...) as f:,

not f = open(...),

to ensure the file f gets closed as soon as the with statement’s body

is done.

29

File and Text Operations

mode is an optional string indicating how the file is to be opened (or

created).

File and Text Operations

The mode string may include any of the values in the previous slide,

followed by a b or t.

b indicates that the file should be opened (or created) in binary

mode, while t indicates text mode.

When neither b nor t is included, the default is text (i.e., 'r’ is like

'rt', 'w+' is like 'w+t', and so on), but per The Zen of Python,

“explicit is better than implicit.”

30

File and Text Operations

buffering is an integer value that denotes the buffering policy

you’re requesting for the file. When buffering is 0, the file (which

must be binary mode) is unbuffered; the effect is as if the file’s buffer

is flushed every time you write anything to the file.
When buffering is 1, the file (which must be open in text mode) is

line buffered, which means the file’s buffer is flushed every time you

write \n to the file. When buffering is greater than 1, the file uses a

buffer of about buffering bytes, often rounded up to some value
convenient for the driver software. When buffering is <0, a default

is used, depending on the type of file stream. Normally, this default is

line buffering for files that correspond to interactive streams, and a

buffer of io.DEFAULT_BUFFER_SIZE bytes for other files.

31

File and Text Operations

Iteration on File Objects

A file object f, open for reading, is also an iterator whose items are

the file’s lines.

Thus, the loop:

for line in f:

iterates on each line of the file.

Due to buffering issues, interrupting such a loop prematurely (e.g.,
with break), or calling next(f) instead of f.readline(), leaves the

file’s position set to an arbitrary value.

32

33

Regular Expressions

34

Regular Expressions

In computing, a regular expression, also referred to as "regex" or
"regexp", provides a concise and flexible means for matching strings

of text, such as particular characters, words, or patterns of characters.

A regular expression is written in a formal language that can be

interpreted by a regular expression processor.

• Very powerful and quite cryptic

• Fun once you understand!! them

• Regular expressions are a language unto themselves

• A language of "marker characters" - programming with characters

• It is kind of an "old school" language - compact

35

Regular Expressions

.NET : The System.Text.RegularExpressions package provides

various search-and replace functions.

Java : The java.util.regex package has built-in search-and-

replace functions.

Perl : Perl has built-in support for regular expression substitution via
the s/regex/ replace/ operator.

Python : Python’s re module provides a sub function to search and

replace.

Ruby : Ruby’s regular expression support is part of the Ruby language

itself, including the search-and-replace function.

36

Regular Expressions

RegexBuddy is the most full-featured tool available for creating,

testing, and implementing regular expressions.

Regular Expressions

37

https://regexr.com

Regular Expressions

38

http://www.pyregex.com/

^ Matches the beginning of a line

$ Matches the end of the line

. Matches any character

\s Matches whitespace

\S Matches any non-whitespace character

* Repeats a character zero or more times

*? Repeats a character zero or more times (non-greedy)

+ Repeats a character one or more times

+? Repeats a character one or more times (non-greedy)

[aeiou] Matches a single character in the listed set

[^XYZ] Matches a single character not in the listed set

[a-z0-9] The set of characters can include a range

(Indicates where string extraction is to start

) Indicates where string extraction is to end

39

Regular Expressions

40

Regular Expressions

Before you can use regular expressions in your program, you must
import the library using "import re“

You can use re.search() to see if a string matches a regular

expression similar to using the find() method for strings

You can use re.findall() extract portions of a string that match

your regular expression similar to a combination of find() and

slicing: var[5:10]

41

Regular Expressions
re.search()

For quick one-off tests, you can use the global function

if re.search("regex pattern", subject):

 # Successful match

else:

 # Match attempt failed

To use the same regex repeatedly, use a compiled object

reobj = re.compile("regex pattern")

if reobj.search(subject):

 # Successful match

else:

 # Match attempt failed

42

Using re.search() like find()

filename = 'alice.txt'

try:

 with open(filename, encoding='utf-8') as f:

 contents = f.readlines()

except FileNotFoundError:

 print(f'Sorry, the file {filename} does not exist.')

else:

 for line in contents:

 line = line.rstrip()

 if line.find('“poison,”') >= 0:

 print(line)

43

Using re.search() like find()

filename = 'alice.txt'

try:

 with open(filename, encoding='utf-8') as f:

 contents = f.readlines()

except FileNotFoundError:

 print(f'Sorry, the file {filename} does not exist.')

else:

 for line in contents:

 line = line.rstrip()

 if re.search('“poison,”', line):

 print(line)

44

Wild-Card Characters

• The dot character matches any character

• If you add the asterisk character, the character is “any number of
times”

^X.*:

45

Wild-Card Characters

46

Wild-Card Characters

X-Sieve: CMU Sieve 2.3

X-DSPAM-Result: InnocentX-DSPAM-Confidence: 0.8475X-

Content-Type-Message-Body: text/plain

^X.*:

Match the start of the line

Match any character

Many times

47

Wild-Card Characters

The re.search() returns a True/False depending on whether the

string matches the regular expression

If we actually want the matching strings to be extracted, we use
re.findall()

[0-9]+

One or more digits

>>> import re

>>> x = 'My 2 favorite numbers are 19 and 42‘

>>> y = re.findall('[0-9]+',x)

>>> print(y)

>>> ['2', '19', '42']

48

Wild-Card Characters

>>> import re

>>> x = 'My 2 favorite numbers are 19 and 42‘

>>> y = re.findall('[0-9]+', x)

>>> print(y)

['2', '19', '42']

>>> y = re.findall('[AEIOU]+', x)

>>> print(y)

>>> []

When we use re.findall() it returns a list of zero or more sub-

strings that match the regular expression

49

Warning: Greedy Matching

The repeat characters (* and +) push outward in both directions

(greedy) to match the largest possible string

>>> import re

>>> x = 'From: Using the : character‘

>>> y = re.findall('^F.+:', x)

>>> print(y)

>>> ['From: Using the :']

Expecting ‘From:’ ?
^F.+:

One or more characters

First character in the match is an F

Last character in the match is a :

50

Warning: Greedy Matching

Not all regular expression repeat codes are greedy! If you add a ?

character - the + and *

>>> import re

>>> x = 'From: Using the : character‘

>>> y = re.findall('^F.+?:', x)

>>> print(y)

>>> ['From:']

^F.+?:

One or more characters

First character in the match is an F

Last character in the match is a :

51

Fine Tuning String Extraction

You can refine the match for re.findall() and separately

determine which portion of the match that is to be extracted using

parenthesis

>>> y = re.findall('\S+@\S+',x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

>>> y = re.findall('^From:.*? (\S+@\S+)', x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

\S+@\S+

At least one non-whitespace character

52

Fine Tuning String Extraction

Parenthesis are not part of the match - but they tell where to start and

stop what string to extract

>>> y = re.findall('\S+@\S+',x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

>>> y = re.findall('^From:.*? (\S+@\S+)', x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

^From(\S+@\S+)

53

Fine Tuning String Extraction

import re

txt = """

xenarthral xerically xenomorphically xebec xenomania

xenogenic xenogeny xenophobically xenon xenomenia

xylotomy xenogenies xenografts xeroxing xenons xanthous

xenoglossy xanthopterins xenoglossy xeroxed xenophoby

xenoglossies xanthoxyls xenoglossias xenomorphically

xeroxes xanthopterin xebecs xenodochiums xenodochium

xylopyrography xanthopterines xerochasy xenium xenic

""“

pat1 = re.compile(r'x.*y') # greedy quantifier

for i, match in enumerate(re.findall(pat1, txt), 1):

 print(str(i) + '.' + match)

54

Fine Tuning String Extraction

xenarthral xerically xenomorphically xebec xenomania

xenogenic xenogeny xenophobically xenon xenomenia

xylotomy xenogenies xenografts xeroxing xenons xanthous

xenoglossy xanthopterins xenoglossy xeroxed xenophoby

xenoglossies xanthoxyls xenoglossias xenomorphically

xeroxes xanthopterin xebecs xenodochiums xenodochium

xylopyrography xanthopterines xerochasy xenium xenic

pat1 = re.compile(r'x.*y') # greedy quantifier

1.xenarthral xerically xenomorphically

2.xenogenic xenogeny xenophobically

3.xylotomy

4.xenoglossy xanthopterins xenoglossy xeroxed xenophoby

5.xenoglossies xanthoxyls xenoglossias xenomorphically

6.xylopyrography xanthopterines xerochasy

xenarthral xerically xenomorphically xebec xenomania

xenogenic xenogeny xenophobically xenon xenomenia

xylotomy xenogenies xenografts xeroxing xenons xanthous

xenoglossy xanthopterins xenoglossy xeroxed xenophoby

xenoglossies xanthoxyls xenoglossias xenomorphically

xeroxes xanthopterin xebecs xenodochiums xenodochium

xylopyrography xanthopterines xerochasy xenium xenic

pat2 = re.compile(r'x.*?y') # non-greedy quantifier

1.xenarthral xerically

2.xenomorphically

3.xenogenic xenogeny

4.xenophobically

5.xy

6.xenoglossy

7.xanthopterins xenoglossy

8.xeroxed xenophoby

9.xenoglossies xanthoxy

10.xenoglossias xenomorphically

11.xy

12.xanthopterines xerochasy

55

Fine Tuning String Extraction

xenarthral xerically xenomorphically xebec xenomania

xenogenic xenogeny xenophobically xenon xenomenia

xylotomy xenogenies xenografts xeroxing xenons xanthous

xenoglossy xanthopterins xenoglossy xeroxed xenophoby

xenoglossies xanthoxyls xenoglossias xenomorphically

xeroxes xanthopterin xebecs xenodochiums xenodochium

xylopyrography xanthopterines xerochasy xenium xenic

pat3 = re.compile(r'x[a-z]*y')

1.xerically

2.xenomorphically

3.xenogeny

4.xenophobically

5.xylotomy

6.xenoglossy

7.xenoglossy

8.xenophoby

9.xanthoxy

10.xenomorphically

11.xylopyrography

12.xerochasy

56

Fine Tuning String Extraction

txt_short = "breathiness xenogeny randed xyxyblah xylotomy"

for i, match in enumerate(re.findall(pat3, txt_short), 1):

 print(str(i) + "." + match)

1.xenogeny

2.xyxy The prefix xyxy is not a full word

3.xylotomy

pat4 = re.compile(r"\b[x][a-z]*[y]\b")

for i, match in enumerate(re.findall(pat4, txt_short), 1):

 print(str(i) + "." + match)

1.xenogeny

2.xylotomy

57

Fine Tuning String Extraction

The easiest is to use the explicit “word
boundary” special zero-width match
pattern, spelled as \b in Python and
many other regular expression engines:

58

Fine Tuning String Extraction

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

>>> data = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008’

>>> atpos = data.find('@')

>>> print(atpos)

>>> 21

>>> sppos = data.find(' ',atpos)

>>> print(sppos)

>>> 31

>>> host = data[atpos+1 : sppos]

>>> print(host)

>>> uct.ac.uk

21 31

Extracting a host name -

using find and string slicing.

59

The Double Split Version

Sometimes we split a line one way and then grab one of the pieces of

the line and split that piece again

>>> line = ‘From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008’

>>> words = line.split()

>>> print(words)

['From', 'stephen.marquard@uct.ac.uk', 'Sat', 'Jan', '5',

'09:14:16', '2008']

>>> email = words[1]

>>> pieces = email.split('@')

>>> print(pieces[1])

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

60

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

'@([^]*)'

Look through the string until you find an at-sign

61

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

'@([^]*)'

Match non-blank character Match many of them

62

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

'@([^]*)'

Extract the non-blank characters

63

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('^From.*@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

‘^From.*@([^]*)'

Starting at the beginning of the line, look for the string 'From '

64

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('^From.*@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

‘^From.*@([^]*)'

Skip a bunch of characters, looking for an at-sign

65

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('^From.*@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

‘^From.*@([^]*)'

Start 'extracting' Stop 'extracting'

66

Regex Version

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008‘

>>> y = re.findall('^From.*@([^]*)', lin)

>>> print(y)

['uct.ac.uk']

‘^From.*@([^]*)'

Match non-blank character Match many of them

67

Regex Metacharacters

68

Regex Special Sequences

69

Regex Sets
A set is a set of characters inside a pair of square brackets []

with a special meaning

70

Regex Version

import re

first5letters = input('enter only letters a to e ')

if not re.match('^[abcde]*$', first5letters):

 print("Error! Only letters (a , b, c, d, e) are allowed!")

else:

 print(f'You entered : {first5letters}')

enter only letters a to e merhaba

Error! Only letters (a , b, c, d, e) are allowed!

enter only letters a to e baba

You entered : baba

enter only letters a to e BABA

Error! Only letters (a , b, c, d, e) are allowed!

71

Regex Examples
sub() function

 import re

txt = "The rain in Ankara“

The sub() function replaces the matches with the text

x = re.sub("\s", “.", txt)

print(x)

The.rain.in.Ankara

Replace the first 2 occurrences

x = re.sub("\s", “.", txt, 2)

print(x)

The.rain.in Ankara

72

import re

txt = "The rain in Turkey“

Do a search

x = re.search("ai", txt)

print(x)

<re.Match object; span=(5, 7), match='ai'>

.span() returns a tuple containing the start-, and end

x = re.search("ai", txt)

print(x.span())

(5, 7)

Regex Examples
search() function

73

import re

subject = "Please visit http://www.regexcookbook.com for more

information. The part of the regex inside the first capturing

group matches www.regexcookbook.com, and you want to retrieve

the domain name captured by the first capturing group into a

string variable.”

matchobj = re.search("http://([a-z0-9.-]+)", subject)

if matchobj:

 result = matchobj.group(1)

else:

 result = ""

print(result)

Regex Examples
search() function

74

import re

text = 'The vote was 65 in favour, 43 against and 21

abstentions'

match = re.search(r'(\d+).*(\d+).*(\d+)', text)

print(match.group(1), match.group(2), match.group(3))

This code will print: 65 2 1

You might have expected to see 65 43 21. The reason for this

output is that the

.* regular expression is greedy, which means it will match as much as it

can.

Here’s what happened:

• The first .*(\d+) will match 65.

• The .* after it will match in favour, 43 against and.

• The next .*(\d+) will match 2.

• The .* after it will match the empty string since * means zero or more.

• The final .*(\d+) will match 1.

Regex Examples
search() function

