PYTHON
PROGRAMMING

Debugger and Profiler

Regular Expression

Serd%QARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON Using Debugger
PROGRAMMING

Using the debugger is a good way to figure out what is causing bugs in
your program. As an example, here is a small program that has a bug
In it. The program comes up with a random addition problem for the
user to solve.

random

numberl = random.randint(l, 10)
number2 = random.randint(l, 10)
print('What is ' + str(numberl) + ' + ' + str(number2) + '?')
answer = input()
answer == (numberl + number2):
print ('Correct!')

print('Nope! The answer is ' + str(numberl + number2))

Serdar ARITAN

PYTHON Using Debugger
PROGRAMMING

This is a simple arithmetic game that comes up with two random
numbers and asks you to add them. Here's what it might look like
when you run the program:

What is 5 + 1°?
6
Nope! The answer is 6

That's not right! This program has a semantic bug in it. Even if the
user types in the correct answer, the program says they are wrong.
You could look at the code and think hard about where it went wrong.
That works sometimes. But you might figure out the cause of the bug
quicker if you run the program under the debugger.

Serdar ARITAN

PYTHON Using Debugger
PROGRAMMING

 |DLE Shell 3.10.0 - O X
File Edit Shell Debug Options Window Help
Pythd GotoFile/Line /v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (A
MDe4 Debugger
Type| StackViewer ight", "credits"™ or "license ()" for more information.
S5 Auto-open Stack Viewer

======== RESTART: C:\Lectures\BCO 601 Python Programming\buggyCode 1l.py ========
What is 1 + 672

7

Nope! The answer is 7

>

Ln: 8 Col:0

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

Using Debugger

A |DLE Shell 3.10.0

File Edit Shell Debug Options Window Help
Python 3.10.0 (tags/v3.10.0:b494f59, Oct 4 2021, 19:00:18) [MSC v

===

===
===

- [} X

MD64)] on win32

.1929 64 bit (A

Type "help", "copyrigl

======== RESTART: C:\I

Debug Control

Go | Step | O\rerl Outl Cluitl

What is 1 + 672
7
Nope! The answer is 7

- O X

¥ stack [Source

v Locals [Globals—CheCked

[DEBUG ON]

(Mone)

ation.

Locals

Mone

Ln:9 Col:0

PYTHON
PROGRAMMING

The debugger starts at the import random line. Nothing special
happens here, so just click Step to execute it. You should see the

random module at the bettom Of the Debug Control window in the

Globals area. . L I 0
File Edit Format Run Options Window Help W stack W Ssou
- W Locals ™ Globals

Using Debugger

buggyCode_1.py:1: <module>()

3numberl = random.randint (1, 10)

4 nurtLber2 = rahdom.randlnt(l, 10) bdb OI 537 execiamd, g‘ obals, loc \J
S|lprint ("What is ' + str(numberl) + ' + ' + str(numberz) + '7?') > '_main_'.<module: CI 1: prt andorr
6lanswer = input ()

7/1f answer == (numberl + number?2):

. print ('Correct!’")
Slelse:

10 print ("Nope! The answer is ' + str (numberl + number2))
11
L Local
MNon
|
Globals
‘ _annotations__ {
| _ builtins_ <module 'builtins' (built-in)>
doc MNone
file 'CA\\\Lectures...uggyCode_1.py"
I _loader__ <class ' _froz.ltinlmporter's
‘ __hame__ '_main_'
package Mone
‘ - N i Ln: 4 Col: 20 | _spec_ Non

Serdar ARITAN

PYTHON Using Debugger
PROGRAMMING

& buggyCode_1.py - C\Lectures\BCO 601 Python Programming\buggyCode_1.py - O * & Debug Control - O *
File Edit Format Run Options Window Help ¥ stack W Source
llimport random = | s | O\rerl Ou‘tl Clurtl W Locals ¥ Globals
_2 . buggyCode_1.py:7: <module=()
3lnumberl = random.randint (1, 10)
4/number2 = random.randint (1, 10) 'bdb'.runf), line 597: exec{cmd, globals, locals)
S|lprint ('What is ' 4+ str(numberl) + ' + ' + str(number2) + '?2'") > '_main_'.<module>(), line 7: if answer == (number1 + number2)
olanswer = input ()
~ if answer == (numberl + number2):
8 print ('Correct!’")
9lelse:
10 print ('Nope! The answer is ' + str(numberl + number?2))
11
12 Locals |
|DLE Shell 3.10.0 — O * None
File Edit Shell Debug Options Window Help
m=—————— nLolIANL. C. \LUSCLUL=5\DUw UUL CyLiIull £LUgLauiliilig \ouy .
gyCode_l .py ======== Globals |
What is 9 + 1072 _annotations__ §
19 _ builtins__ <module 'builtins' (built-in)=
Nope! The answer is 19 _doc_ Nane
>>>| [DEBUG ON] _file_ ‘CAVWLectures..uggyCode_1.py'
>>> _loader__ <class '_froz..tinlmporter'=
======== RESTART: C:\Lectures\BCO 601 Python Programming\bug |_name_ '_main_'
gyCode 1.py ======== _package_ None
What is 2 + 62 _spec_ None
8 answer 8
numberi 2
| + | number2 6
Ln: 14 col: 0 | random <module ‘rand..b\\\\random.py'>

Serdar ARITAN

PYTHON
PROGRAMMING

another buggy code

my list = [5, 2, 1]>1;ﬂe rabcdfg”, 3, False,
L my list[3] [>

my list[4]
my list[6] # this is the bug

s st

2 Qo
® ® O
[_

{_‘

print (my_ list)

Traceback (most recent call last):

File "D:/Lectures/BCO 601 Python Programming/buggy another.py",
line 6, in <module>

del my list[6] # this is the bug
IndexError: list assignment index out of range

Serdar ARITAN

PYTHON Using de
PROGRAMMING

one solution to check where the bug is to use print
my_list = [5, 2, 1, T)%e, “abgffa”, 3, Fyise, 4]

del my list[3]

mm)print (my list)
del my list[4]

mmpprint (my list)
del my list[6]

mm)print (my list)

Serdar ARITAN

PYTHON
PROGRAMMING
using pdb

import pdb
my list = [5, 2, 1, True, “abecdfg”,

pdb.set trace()
del my list[3]
del my list[4]
del my list[6]

Using pdb

3, False, 4]

> buggy another.py (6)<module> () i’

=> del my list[3]
(Pdb)

Serdar ARITAN

PYTHON Using pdb
PROGRAMMING

A *IDLE Shell 3.13.0* — [m] X

BCO 601 Python Programming\bug

File Edit Shell Debug Options Window Help
| Python 3.13.0 (tags/v3.13.0:60403a5, Oct 7 2024, 09:38:07) [MSC v.l1941 64

bit (AMD64)] on win32

File Edit Format Run Options Window Help

1| import pdb
2 Type "help", "copyright", "credits" or "license ()" for more information.
3lmy list = [5, 2, 1, True, "abecdfg", 3, False, 4]>>>|[DEBUG ON]
4 >>>
»5 pdb.set trace() RESTART: C:\Lectures\BCO 601 Python Programming\buggyCode 1l.py ===
6/del my list[3]
] my list[4] What is 3 + 17
my list[6] 4
Nope! The answer is 4

>>>| [DEBUG ON]
>»>| [DEBUG OFF]
>

—————————— RESTART: C:\Lectures\BCO 601 Python Programming\buggyCode 2.py =

> c:\lectures\bco 601 python programming\buggycode_Z.py<module>()
-> pdb.set trace()
(Pdb)

Ln:15 Coke,

Serdar ARITAN

PYTHON
PROGRAMMING
using pdb

import pdb
my list = [5, 2, 1, True, “abecdfg”,

.set_trace()
del my list[3]
2l my list[4]
2l my list[6]

O ~JooU b WwhPE
B

> buggy another.py (6)<module> ()
=> del my list[3]
(Pdb)

Serdar ARITAN

PROGRAMMING

using pdb
import pdb

.set_trace()

L my list[3]
del my list[4]
del my list[6]

00 ~JooUn s WK
B

> buggy another.py (6)<module> ()

=> del my list[3]

(Pdb) my list

[5, 2, 1, True, 'abcdfg', 3, False, 4]
(Pdb)

Serdar ARITAN

PYTHON lJSﬁﬂ@;]pCﬂo

PROGRAMMING

using pdb
import pdb
my list = [5, 2, 1, True, “abecdfg”, 3, False,

.set_trace()
Jel my list[3]
Jel my list[4]
Jel my list[6]

00 ~JooUn s WK
B

> buggy another.py (6)<module> ()

=> del my list[3]

(Pdb) my list

[5, 2, 1, True, 'abcdfg', 3, False, 4]
(Pdb) next # or you can type n instead.

Serdar ARITAN

PYTHON llSinE]]?CnD

PROGRAMMING

using pdb
import pdb
my list = [5, 2, 1, True, “abecdfg”,

.set_trace()
Jel my list[3]
Jel my list[4]
Jel my list[6]

00 ~JooUn s WK
B

> buggy another.py (6)<module> ()

=> del my list[3]

(Pdb) my list

[5, 2, 1, True, 'abcdfg', 3, False, 4]
(Pdb) n

> buggy_ another.py (7)<module> ()

-> del my list[4]

Serdar ARITAN

PYTHON llSinE]]?CnD

00 ~JooUn s WK
B

PYTHON
PROGRAMMING

using pdb
import pdb

my list = [5, 2, 1, True, “abecdfg

.set_trace()
Jel my list[3]
Jel my list[4]
Jel my list[6]

> buggy another.py (7)<module> ()

-> del my list[4]

(Pdb) my list

[5, 2, 1, 'abcdfg', 3, False, 4]
(Pdb) n

> buggy_ another.py (8)<module> ()

=> del my list[6]

Serdar ARITAN

PYTHON llSiﬂ@]]?CﬂD
PROGRAMMING

using pdb
import pdb
my list = [5, 2, 1, True, “abecdfg”, 3, False, 4]

pdb.set trace()
.| my list[3]

my list[4]
my list[6]

,
()

{_‘

{_‘

()

3

00 ~JooUn s WK

]

\
()

{_‘

> buggy another.py (7)<module> ()

-> del my list[6]

(Pdb) my list

[5, 2, 1, 'abcdfg', False, 4]

(Pdb) c # continue

Traceback (most recent call last):

IndexError: list assignment index out of range

Serdar ARITAN

PYTHON IJSﬁfHQ]PCHD
PROGRAMMING

1 # using pdb
2
3 my list = [5, 2, 1, True, “abecdfg”, 3, False, 4]
4
mm)5 import pdb; pdb.set_trace() # This is the only time you can use ;
6

7 del my list[3]
8 del my list[4]
9 del my list[6]

Make debugging options in one line command

Serdar ARITAN

PYTHON Using pdb
PROGRAMMING

Starting in Python 3.7, there's another way to enter the debugger.
PEP 553 describes the built-in function breakpoint (), which

makes entering the debugger easy and consistent:

breakpoint ()

By default, breakpoint() will import pdb and call
pdb.set trace(), as shown above. However, using
breakpoint () is more flexible and allows you to control debugging
behavior via its APl and use of the environment variable
PYTHONBREAKPOINT.

For example, setting PYTHONBREAKPOINT=0 in your environment
will completely disable breakpoint (), thus disabling debugging.

Serdar ARITAN

PYTHON
PROGRAMMING

my list = [5, 2, 1, True, “abedfg”, 3, False, 4]
breakpoint ()

del my list[3]

del my list[4]

del my list[6]

Using pdb

-> del my list[3]
(Pdb) p my list
[5, 2, 1, True, 'abcdfg', 3, False, 4]

(Pdb) n

-> del my list[4]

(Pdb) 1
1 my list = [5, 2, 1, True, "abcdfg", 3, False, 4]
2 breakpoint ()
3 del my list[3]
4 ->del my list[4]
5 del my list[6]

Serdar ARITAN

PYTHON Using pdb

PROGRAMMING

Command Description

p Print the value of an expression.

pp Pretty-print the value of an expression.

n Continue execution until the next line in the current function is reached or it returns.

S Execute the current line and stop at the first possible occasion (either in a function that is
called or in the current function).

C Continue execution and only stop when a breakpoint is encountered.

unt Continue execution until the line with a number greater than the current one is reached.

With a line number argument, continue execution until a line with a number greater or
equal to that is reached.

I List source code for the current file. Without arguments, list 11 lines around the current
line or continue the previous listing.

I List the whole source code for the current function or frame.

b With no arguments, list all breaks. With a line number argument, set a breakpoint at this
line in the current file.
W Print a stack trace, with the most recent frame at the bottom. An arrow indicates the

current frame, which determines the context of most commands.

Serdar ARITAN

PYTHON
PROGRAMMING

796
759

699

46.546.0

293

240
21.5

79

Serdar ARITAN

Using Profiler

Normalized
energy consumption
per programming
language

45
41 38 32 31 31 28 25 24 23 22 21 20 17 13 103 10

PYTHON Using profile
PROGRAMMING

profile
re

profile.run('re.compile ("foo|bar") ")

221 function calls (214 primitive calls) in 0.016 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno (function)
48 0.000 0.000 0.000 0.000 :0(append)

1 0.000 0.000 0.000 0.000 :0(compile)
1 0.000 0.000 0.000 0.000 :0(exec)
5 0.000 0.000 0.000 0.000 :0(find)
29 0.000 0.000 0.000 0.000 :0(isinstance)
1 0.000 0.000 0.000 0.000 :0(items)
30/27 0.000 0.000 0.000 0.000 :0(len)

The first line indicates that 221 calls were monitored. Of those calls,
214 were primitive, meaning that the call was not induced via
recursion.

Serdar ARITAN

PYTHON Using profile
PROGRAMMING

ncalls : for the number of calls.

Tottime : for the total time spent in the given function (and excluding time made in
calls to sub-functions)

Percall : isthe quotient of tottime divided by ncalls

cumtime : is the cumulative time spent in this and all subfunctions (from invocation
till exit). this figure is accurate even for recursive functions.

Percall : is the quotient of cumtime divided by primitive calls

filename: lineno (function) provides the respective data of each function

When there are two numbers in the first column (for example 3/1), it means that the
function recursed. The second value is the number of primitive calls and the
former is the total number of calls. Note that when the function does not recurse, these
two values are the same, and only the single figure is printed.

Serdar ARITAN

PYTHON Using profile
PROGRAMMING

profile

fib(n):
n n < 2 fib(n - 2) + fib(n - 1)

print (£fib (35))
profile.run('£fib(35) ', sort='tottime')

29860707 function calls (5 primitive calls) in 44.094 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno (function)
29860703/1 44.094 0.000 44.094 44.094 profileCode 2.py:5(fib)
0 0.000 0.000 profile: 0 (profiler)
1 0.000 0.000 44.094 44.094 profile:0(fib(35))
1 0.000 0.000 44.094 44.094 :0 (exec)
1 0.000 0.000 44 .094 44.094 <string>:1 (<module>)
1 0.000 0.000 0.000 0.000 :0(setprofile)

Serdar ARITAN

PYTHON Using profile
PROGRAMMING

profile

fib(n):
n n < 2 fib(n - 2) + fib(n - 1)

profile.run('£fib(35)")

9227465
29860707 function calls (5 primitive calls) in 42.734 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno (function)

1 0.000 0.000 42.719 42.719 :0 (exec)

1 0.016 0.016 0.016 0.016 :0(setprofile)

1 0.000 0.000 42.719 42.719 <string>:1 (<module>)

1 0.000 0.000 42.734 42 .734 profile:0(£fib(35))

0 0.000 0.000 profile: 0 (profiler)
29860703/1 42.719 0.000 42.719 42.719 profileCode 2.py:3(fib)

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

A file is a stream of text or bytes that a program can read and/or

write; a filesystem is a hierarchical repository of files on a computer
system.

Files and streams come in many flavors. Their contents can be
arbitrary bytes, or text. They may be suitable for reading, writing, or
both, and they may be buffered, so that data is temporarily held in
memory on the way to or from the file.

Files may also allow random access, moving forward and back within
the file, or jumping to read or write at a particular location in the file.

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

To create a Python file object, call open with the following syntax:

open (file,mode="'r"',buffering=-1,encoding= , errors='strict',
newline= , Closefd= , opener=0s.open)

file can be a string or an instance of pathlib.

Opening a File Pythonically

open IS a context manager: use open(...) f:,
notf = open(...),

to ensure the file £ gets closed as soon as the with statement’s body
IS done.

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

mode IS an optional string indicating how the file is to be opened (or

Created)_ 'a' The file is opened in write-only mode. The file is kept intact if it already exists, and the data you write
is appended to the existing contents. The file is created if it does not exist. Calling . seek on the file
changes the result of the method f. tel1, but does not change the write position in the file opened
in this mode: that write position always remains at the end of the file.

"a+" The file is opened for both reading and writing, so all methods of f can be called. The file is kept intact
if it already exists, and the data you write is appended to the existing contents. The file is created if it
does not exist. Calling f. seek on the file, depending on the underlying operating system, may have
no effect when the next I/0 operation on f writes data, but does work normally when the next I/0
operation on f reads data.

"r' The file must already exist, and it is opened in read-only mode (this is the default).

"r+" The file must exist and is opened for both reading and writing, so all methods of £ can be called.

'w' The file is opened in write-only mode. The file is truncated to zero length and overwritten if it already
exists, or created if it does not exist.

'w+" The file is opened for both reading and writing, so all methods of £ can be called. The file is truncated
to zero length and overwritten if it already exists, or created if it does not exist.

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

The mode string may include any of the values in the previous slide,
followed by a b or ¢t.

b indicates that the file should be opened (or created) in binary
mode, while t indicates text mode.

When neither b nor t is included, the default is text (i.e., 'r” is like

'rt', 'w+' IS like 'w+t', and so on), but per The Zen of Python,
“‘explicit is better than implicit.”

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

buffering IS an integer value that denotes the buffering policy
you're requesting for the file. When buffering is 0, the file (which
must be binary mode) is unbuffered; the effect is as if the file’s buffer
IS flushed every time you write anything to the file.

When bufferingis 1, the file (which must be open in text mode) is
line buffered, which means the file's buffer is flushed every time you
write \n to the file. When buffering is greater than 1, the file uses a
buffer of about buffering bytes, often rounded up to some value
convenient for the driver software. When bufferingis <0, a default
IS used, depending on the type of file stream. Normally, this default is
line buffering for files that correspond to interactive streams, and a
buffer of i0.DEFAULT BUFFER_SIZE bytes for other files.

Serdar ARITAN

PYTHON File and Text Operations
PROGRAMMING

Iteration on File Objects

A file object £, open for reading, is also an iterator whose items are

the file’s lines.
Thus, the loop:

line f:

iterates on each line of the file.

Due to buffering issues, interrupting such a loop prematurely (e.g.,
with break), or calling next (£f) instead of f.readline(), leaves the

file's position set to an arbitrary value.

Serdar ARITAN

PYTHON
PROGRAMMING

Serdar ARITAN

Regular Expressions
HOW TO REGEX

STEP 1: OPEN YOUR FAVORITE EDITOR

ﬂm

r STEP 2: LET YOUR CAT PLAY ON YOUR KEYBOARD

/"([A Z0~9_

H

PYTHON Regular Expressions
PROGRAMMING

In computing, a regular expression, also referred to as "regex" or
"regexp", provides a concise and flexible means for matching strings
of text, such as particular characters, words, or patterns of characters.
A regular expression is written in a formal language that can be
iInterpreted by a regular expression processor.

» Very powerful and quite cryptic

» Fun once you understand!! them

» Regular expressions are a language unto themselves

« Alanguage of "marker characters" - programming with characters
« [tis kind of an "old school" language - compact

Serdar ARITAN

PYTHON
PROGRAMMING

Regular Expressions

NET : The System.Text.RegularExpressions package provides
various search-and replace functions.

Java : The java.util.regex package has built-in search-and-
replace functions.

Perl : Perl has built-in support for regular expression substitution via
the s/regex/ replace/ operator.

Python : Python's re module provides a sub function to search and
replace.

Ruby : Ruby's regular expression support is part of the Ruby language
itself, including the search-and-replace function.

Serdar ARITAN

PYTHON Regular Expressions
PROGRAMMING

RegexBuddy is the most full-featured tool available for creating,
testing, and implementing regular expressions.

& Reptace 22 okt [Copy > [paste~ 1®-o~ i NeT [=] ¢ Dot matches newlne [Case msenskive) ~$ match at Ine breaks Eree-spacing
Nb[a-ze-9. %+ ST\ MEA-2]{Z6 + | @ristory @8
+X/006/03
Emad address
Emad address (no conseautive dots)
|Emad address: RFC 2822
B Create |8 trary |l GREP [8 Forum Q rest E78| sfoebu 2878
@ xoiain Token [Jnsert Token~ | 5, Bxport~ & (WU~ @ -0 @ | svebug - |[ghignes) ©. 2 [
Assert postion at a word boundary Z O Lst Al- | Lne by ine] 28
Match a sngle character present in the st below vu Fyr e — - ;:
[Between one and unimited times, as many times as possble, giving back as 2 30
A character in the range between "A” and "Z") = L
A character in the range between "0” and "9” =
4 One of the characters ™. _%" 5
{4 The character *+" ST 2
{8 The character - 32
Match the character @" Reraly “ike\ 0'Dell"gireland.con 33
Match the regubr expression below 1Pguy@[1.2.3.4] 33 1
Between one and unimited times, as many times as possble, giving back as 1| The email address president@whitehouse.gov is valid. 33 2
8] Match a sngle character present in the kst below 33 3
Between one and unimited times, as many times as possble, gving back Iﬂvniﬂ ldﬂr‘esses' 33 4
A character in the range between "A” and "Z" 3 s
A character n the range between "0” and 9" 1"‘*7“9“" 36
B The character ™ .a.valid.email 33 7
Match the Character ".” iteraly 338,
N john@aol. 33 9
. m Match a sngle character in the range between "A” and 2" Hike\ o' odlg i 5
33
34
34
34
35
35
36
36
37
37
— 37
Matcher object T - 38
String ResultString = null; <t S i:
try {
Pattern regex = Pattern.compile("\\b[A-20-9. %+-1+8(2:[A-20-9- =\l 3
Matcher - e tcher(subj 8); Match 1 esic itehouse. 39
if (regextatcher.find()) { Match 2: 76 23 e
ResultString = regexMatcher.group(); Match 3: john.doe+regexbuddy@igmail.com 101 29 40
2 Match 4: 139 16 %
} catch (PatternSyntaxException ex) { Match 5 itehouse.gov 220 24 &
// Syntax error in the regular expression Match 6: 332 15 ‘: tch attempt failed aft
) Match 7: Dell@ireland.com 373 16 i ;’ EAAEY fM:: b .
v - ~ || 42 @8eginning match attempt at :harncter 70 *
L T—) K T} ' IO Kl v
[The subject string to test the regular expression on

Serdar ARITAN

PYTHON Regular Expressions
PROGRAMMING https://regexr.com

&« (@] ht regexr.com

) Getting Started

ﬂ Untitled

Menu Expression

<> JavaScript ™ Flags v

Pattern Settings
([A-21)\w+

My Patterns

Cheatsheet Text Tests 29 matches (1.0ms)

RegEx Reference RegExr was created by gskinner.com, and is proudly hosted by Media Temple.
Community Patterns Edit the Expression & Text to see matches. Roll over matches or the expression for details. PCRE &
Help JavaScript flavors of RegEx are supported. Validate your expression -with Tests mode.

The side bar includes a Cheatsheet, full Reference, and Help. You can also Save & Share with the
;) . Community, and view patterns you-create or favorite in My Patterns.

RegExr is an online tool to learn, build, & test
Regular Expressions (RegEx / RegExp). Explore results with the Tools below. Replace & List output custom results. Details lists capture groups.
Explain describes your-expression-in-plain- English.

« Supports JavaSeript & PHP/PCRE RegEx.

» Resulis update in real-time as you type.

« Roll over a match or expression for details.
« Validate patterns with suites of Tests. Roll-over elements below to highlight in the Ex

Tools Replace | List = Details | Bxplain x

on above. Click to open in Reference.

« Save & share expressions with others.
« Use Tools to explore your results. (Capturing group #1. Groups multiple tokens together and creates a capture group for extracting a substring or using a backreference.

« Full RegEx Reference with help & examples.
« lindn & Radn with rirl-7 / V in aditnre [Character set. Maich any character in the set.

A-Z Range. Matches a character in the range "A" to "Z" (char code 65 to 90). Case sensitive.

Serdar ARITAN

PYTHON Regular Expressions
PROGRAMMING http://www.pyrec

< (&) [F;'J A Not secure WWW.pyregex.com
PyRegex Home Changelog Help = Contribute ~

Your Python Regular Expression's Best Buddy

>>> regex = r”
B Your results will appear here.

Ptype[lhere$

>>»> test_string = """

s> flags = @ |Jre.I |Dre.L |Ore.M [(Ore.5 |Jre.U |[Jre.X

>»> re.compile(regex, flags). | match (test_string)

Python Regular Expression's Cheat Sheet (bor

Special Characters Quantifiers
« \ escape special characters « = 0ormore (append ? for non-greedy)
« . matchesany character « + 1ormore (append ? for non-greedy)
« ~ matches beginning of string « 3 Dor1(append?for non-greedy)
« 3 matches end of string s m} exactly mm occurrences
s [sb-d] matchesany chars's,'b', 'c or'd" s {m, n} from m to n. m defaults to 0, n to infinity
s [~a-cs] matches any char except 'a','b', 'c' or 's’ s m, n}? fromm ton, as few as possible

« Rr|s matches either regex R or regex S
* () creates a capture group and indicates precedence

Serdar ARITAN . -

$
\s
\s
*
*2

+
+?

PYTHON
PROGRAMMING

Matches
Matches
Matches
Matches
Matches
Repeats
Repeats
Repeats
Repeats

[aeiou] Matches

[AXYZ]

[2a-2z0-9]
Indicates where string extraction is to start
Indicates where string extraction is to end

(
)

Serdar ARITAN

Regular Expressions

the beginning of a line

the end of the line

any character

whitespace

any non-whitespace character

a character zero or more times

a character zero or more times (non-greedy)
a character one or more times

a character one or more times (non-greedy)

a single character in the listed set
Matches a single character not in the listed set
The set of characters can include a range

PYTHON Regular Expressions
PROGRAMMING

Before you can use regular expressions in your program, you must
import the library using " re"

You can use re.search() to see if a string matches a regular
expression similar to using the £ind () method for strings

You can use re.findall () extract portions of a string that match

your regular expression similar to a combination of £ind() and
slicing: var[5:10]

Serdar ARITAN

PYTHON Regular Expressions
PROGRAMM'NG re.search()

For quick one-off tests, you can use the global function

1f re.search("regex pattern", subject):
Successful match

Match attempt failed

To use the same regex repeatedly, use a compiled object

reobj = re.compile("regex pattern")
1f reobj.search (subject):
Successful match

Match attempt failed

Serdar ARITAN

PYTHON Using re.search() like £ind ()
PROGRAMMING

filename = 'alice. txt'
CXVY .
with open(filename, encoding='utf-8') as f:
contents = f.readlines()
ccept FileNotFoundError:
print (f'Sorry, the file {filename} does not exist.')

for line n contents:
line = line.rstrip()
1% line.find('“poison,”') >= 0:
print(line)

Serdar ARITAN

PYTHON Using re.search() like £ind ()
PROGRAMMING

filename = 'alice.txt'

= ' P ©
- ,// .

with open(filename, encoding='utf-8') as f:
contents = f.readlines()

ccept FileNotFoundError:

Serdar ARITAN

print (f'Sorry, the file {filename} does not exist.')

for line . n contents:

line = line.rstrip()
1L re.search('“poison,”', line):

print(line)

PYTHON Wild-Card Characters
PROGRAMMING

« The dot character matches any character

« If you add the asterisk character, the character is “any number

['{ =1

AR k-

Serdar ARITAN

PYTHON

Wild-Card Characters

Serdar ARITAN

[AK.*i/g

X-Sieve: CMU Sieve 2.3

[e

X-DSPAM-Result: InnocentX-DSPAM-Confidence: 0.8475X-Content-Type-Message-Body: text/pla'in|

Replace

List

Details

Explain

X Character. Matches a "X" character (char code 88). Case sensitive.

. Dot. Matches any character except line breaks.

* Quantifier. Match 0 or more of the preceding token.

¢ Character. Matches a ":" character (char code 58).

A Beginning. Matches the beginning of the string, or the beginning of a line if the multiline flag (m) is enabled.

|

PYTHON Wild-Card Characters
PROGRAMMING

Match the start of the line Many times

|
A o
L)

Match any character

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: InnocentX-DSPAM-Confidence: 0.8475X-
Content-Type-Message-Body: text/plain

Serdar ARITAN

PYTHON Wild-Card Characters
PROGRAMMING

The re.search () returns a True/False depending on whether the
string matches the regular expression

If we actually want the matching strings to be extracted, we use

re.findall ()

>>> Lmport re

>>> x = 'My 2 favorite numbers are 19 and 42"
[0-9]-[- >>> y = re.findall (' [0-9]+"' x)

>>> print(y)
\ >>> ['2', '19", r42']

One or more digits

Serdar ARITAN

PYTHON Wild-Card Characters
PROGRAMMING

When we use re.findall () it returns a list of zero or more sub-
strings that match the regular expression

>>> Lmport re

>>> x = 'My 2 favorite numbers are 19 and 42"
>>> y = re.findall ('[0-9]+', x)

>>> print(y)

['2', '19', '42']

>>> y = re.findall (' [AEIOU]+', x)

>>> print(y)

>>> []

Serdar ARITAN

PYTHON Warning: Greedy Matching
PROGRAMMING

The repeat characters (* and +) push outward in both directions
(greedy) to match the largest possible string

>>> lmport re

>>> x = 'From: Using the : character'

>>> y = re.findall ('“F.+:', x)
>>> print(y) One or more characters

>>> ['From: Using the :'] !

Expecting ‘From:’ ? AR 4

L .

First character in the match Is an F

Last character in the match is a :

Serdar ARITAN

PYTHON Warning: Greedy Matching
PROGRAMMING

Not all regular expression repeat codes are greedy! If you add a ?
character - the + and *

>>> lmport re

>>> x = 'From: Using the : character'
>>> y = re.findall ('“F.+?2:', x)
>>> print(y) One or more characters

>>> ['From: '] !
/,'I_J e
/ _r,J .+? 'S
First character in the match Is an F

Last character in the match is a :

Serdar ARITAN

PYTHON Fine Tuning String Extraction
PROGRAMMING

You can refine the match for re.findall () and separately

determine which portion of the match that is to be extracted using
parenthesis

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

>>> y = re.findall ('\S+@\S+',x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

>>> y = re.findall ('“From: .*? (\S+@\S+)', =x)

>>> print(y)

['stephen.marquard@uct.ac.uk'] ‘ 3 _jl_' @ J 3 —}~

- " T PR Py
At least one non-whitespace character
Serdar ARITAN

PYTHON Fine Tuning String Extraction
PROGRAMMING

Parenthesis are not part of the match - but they tell where to start and
stop what string to extract

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

>>> y = re.findall ('\S+@\S+',x)

>>> print(y)

['stephen.marquard@uct.ac.uk']

>>> y = re.findall ('“From: .*? (\S+@\S+)', =x)
>>> print(y)

['stephen.marquard@uct.ac.uk']

AFrom(\S+@\S+)

Serdar ARITAN

PYTHON Fine Tuning String Extraction

Y PROGRAMMING

Serdar ARITAN

import re

txt = """

xenarthral xerically xenomorphically xebec xenomania
xenogenic xenogeny xenophobically xenon xenomenia
xylotomy xenogenies xenografts xeroxing xenons xanthous
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically
xeroxes xanthopterin xebecs xenodochiums xenodochium
xylopyrography xanthopterines xerochasy xenium xenic

mmw

patl = re.compile(r'x.*y"') # greedy quantifier

for i, match in enumerate (re.findall (patl, txt), 1):
print(str(i) + '.' + match)

PYTHON Fine Tuning String Extraction
" PROGRAMMING

xenarthral xerically xenomorphically xebec xenomania
xenogenic xenogeny xenophobically xenon xenomenia

xylotomy xenogenies xenografts xeroxing xenons xanthous
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically

xeroxes xanthopterin xebecs xenodochiums xenodochium
xylopyrography xanthopterines xerochasy xenium xenic

patl = re.compile(r'x.*y"') # greedy quantifier

.xenarthral xerically xenomorphically

.Xenogenic xenogeny xenophobically

.xXylotomy

.Xenoglossy xanthopterins xenoglossy xeroxed xenophoby
.Xenoglossies xanthoxyls xenoglossias xenomorphically
.xXylopyrography xanthopterines xerochasy

oL WNK

Serdar ARITAN

PYTHON Fine Tuning String Extraction
" PROGRAMMING

xenarthral xerically xenomorphically xebec xenomania
xenogenic xenogeny xenophobically xenon xenomenia
xylotomy xenogenies xenografts xeroxing xenons xanthous
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically
xeroxes xanthopterin xebecs xenodochiums xenodochium

xylopyrography xanthopterines xerochasy xenium xenic

pat2 = re.compile(r'x.*?y"'") # non-greedy quantifier

.xenarthral xerically
.xenomorphically
.Xenogenic xenogeny
.xenophobically

. Xy

.Xenoglossy

.xanthopterins xenoglossy
.xeroxed xenophoby
.Xenoglossies xanthoxy
10.xenoglossias xenomorphically
11.xy

12 . xanthopterines xerochasy

Serdar ARITAN

WCoOoO~JooUud WNPE

PYTHON Fine Tuning String Extraction
Y PROGRAMMING

xenarthral xerically xenomorphically xebec xenomania
xenogenic xenogeny xenophobically xenon xenomenia
xylotomy xenogenies xenografts xeroxing xenons xanthous
xenoglossy xanthopterins xenoglossy xeroxed xenophoby
xenoglossies xanthoxyls xenoglossias xenomorphically
xeroxes xanthopterin xebecs xenodochiums xenodochium
xylopyrography xanthopterines xerochasy xenium xenic

pat3 = re.compile(r'x[a-z]*y'")

.Xerically
.xenomorphically
.Xenogeny
.xenophobically
.xylotomy
.Xenoglossy
.Xenoglossy
.Xxenophoby
.xanthoxy

10.xenomorphically

11 .xylopyrography

12 . xerochasy
Serdar ARITAN

WCoOoO~JooUud WNR

PYTHON Fine Tuning String Extraction
PROGRAMMING

txt_short = "breathiness xenogeny randed xyxyblah xylotomy"
for i, match in enumerate(re.findall(pat3, txt_short), 1):
print(str(i) + "." + match)
1.xenogeny
2.xyxy The prefix xyxy is not a full word The easiest is to use the explicit “word
3.xylotomy boundary” special zero-width match

pattern, spelled as \b in Python and
many other regular expression engines:

patd4 = re.compile(r"\b[x] [a-z]*[y]\b")
for i, match in enumerate(re.findall (pat4, txt_short), 1):
print(str(i) + "." + match)

1.xenogeny
2.xylotomy

Serdar ARITAN

>>>

PYTHON Fine Tuning String Extraction
Y PROGRAMMING

21 31
}

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

data = 'From stephen.marquard@uct.ac.uk Sat Jan 5

09:14:16 2008’

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Serdar ARITAN

atpos = data.find('@")

giint (atpos) Extracting a host name -
sppos = data.find(' ',atpos) “SINJ find and string slicing.
print (sppos)

31

host = data[atpos+l : sppos]

print (host)

uct.ac.uk

PYTHON The Double Split Version
PROGRAMMING

Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.uk Sat Jan 5 09:14:16 2008

>>> line = ‘From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008’

>>> words = line.split()

>>> print (words)

['From', 'stephen.marquard@uct.ac.uk', 'Sat', 'Jan', '5S',
'09:14:16', '2008']

>>> email = words|[1]

>>> pieces = email.split('@")

>>> print (pieces[1l])

Serdar ARITAN

PYTHON Regex Version
PROGRAMMING

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall ('@([* 1*)', lin)

>>> print(y)

['uct.ac.uk']

e(r” 1*)!

Look through the string until you find an at-sign

Serdar ARITAN

PYTHON Regex Version
¥ PROGRAMMING

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall ('@ ([~]1*)', 1lin)

>>> print(y)

['uct.ac.uk']

et 1%

Match non-blank character Match many of them

Serdar ARITAN

PYTHON Regex Version
PROGRAMMING

>>> Lmport re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall ('@ ([~]1*)', 1lin)

>>> print(y)

['uct.ac.uk']

e(r” 1*)°

\/

Extract the non-blank characters

Serdar ARITAN

PYTHON Regex Version
* PROGRAMMING

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall('“From.*@ ([~]1*)', lin)

>>> print(y)

['uct.ac.uk']

‘fFrom . *Q ([]1*)!

Starting at the beginning of the line, look for the string ‘From '

Serdar ARITAN

PYTHON Regex Version
¥ PROGRAMMING

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall('“From.*@ ([~]1*)', lin)

>>> print(y)

['uct.ac.uk']

‘“From. *@ ([~]1*)'

Skip a bunch of characters, looking for an at-sign

Serdar ARITAN

PYTHON Regex Version
PROGRAMMING

>>> Lmport re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall('“From.*@ ([~]1*)', 1lin)

>>> print(y)

['uct.ac.uk']

‘AFrom.*Q ([~]*)'

Start "extracting’ Stop ‘extracting'

Serdar ARITAN

PYTHON Regex Version
Y PROGRAMMING

>>> import re

>>> lin = 'From stephen.marquard@uct.ac.uk Sat Jan 5
09:14:16 2008"

>>> y = re.findall('“From.*@ ([~]1*)', lin)

>>> print(y)

['uct.ac.uk']

‘AFrom.*@ ([~]*)"

Match non-blank character Match many of them

Serdar ARITAN

PYTHON Regex Metacharacters
PROGRAMMING

Character Description Example
[] A set of characters "[a-m]"
\ Signals a special sequence (can also be used to escape “\d"

special characters)

Any character (except newline character) "he..0"
~ Starts with "~hello”
$ Ends with "world$"
* Zero or more oCcurrences "aix*"
+ One or more occurrences "aix+"
{} Exactly the specified number of occurrences "al{2}"
| Either or “falls|stays"
() Capture and group

Serdar ARITAN

PYTHON Regex Special Sequences
PROGRAMMING

Character Description Example

\A Returns a match if the specified characters are at the beginning of the string "\AThe"

\b Returns a match where the specified characters are at the beginning or at the end of a word r"\bain"
(the "r" in the beginning is making sure that the string is being treated as a "raw string™) r*ain\b"

\B Returns a match where the specified characters are present, but NOT at the beginning (or at the end) of a word r"\Bain"
(the "r" in the beginning is making sure that the string is being treated as a "raw string™) r*ain\B"

\d Returns a match where the string contains digits (numbers from 0-9) “\d"

\D Returns a match where the string DOES NOT contain digits "“\D"

\s Returns a match where the string contains a white space character s

\S Returns a match where the string DOES NOT contain a white space character "\s"

\w Returns a match where the string contains any word characters (characters from a to Z, digits from 0-9, and the w

underscore _ character)
\W Returns a match where the string DOES NOT contain any word characters "\w"

\Z Returns a match if the specified characters are at the end of the string "Spain\zZ"

Serdar ARITAN m

Set
[am]

[a-n]
[~am]
[0123]
[0-9]
[0-5][0-9]
[a-zA-Z]

[+]

Serdar ARITAN

PYTHON Regex Sets
PROGRAMMING A setis a set of characters inside a pair of square brackets []

with a special meaning

Description

Retumns a match where one of the specified characters (a, r, or n) are present

Retumns a match for any lower case character, alphabetically between a and n

Retumns a match for any character EXCEPT a, r, and n

Retumns a match where any of the specified digits (@, 1, 2, or 3) are present

Retumns a match for any digit between @ and 9

Retumns a match for any two-digit numbers from @ and 59

Retumns a match for any character alphabetically between a and z, lower case OR upper case

Insets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match for any + character in the string

PYTHON Regex Version
PROGRAMMING

npo re

firstS5letters = input('enter only letters a to e ')
if not re.match('“[abcde]*$', firstSletters):
print ("Error! Only letters (a , b, ¢, d, e) are allowed!")

— L 4~) — 3\

print (f'You entered : {firstS5letters}')

enter only letters a to e merhaba
Error! Only letters (a , b, ¢, d, e) are allowed!

enter only letters a to e baba
You entered : baba

enter only letters a to e BABA
Error! Only letters (a , b, ¢, d, e) are allowed!

Serdar ARITAN

PYTHON Regex Examples
PROGRAMMING sub () function

import re

txt = "The rain in Ankara“
The sub() function replaces the matches with the text

x = re.sub("\s", “.", txt)
print (x)

The.rain.in.Ankara

Replace the first 2 occurrences
X = re.sub("\s", “.", txt, 2)
print (x)

The.rain.in Ankara

Serdar ARITAN

PYTHON Regex Examples

PROGRAMMING search() function
import re
txt = "The rain in Turkey"

Do a search
X = re.search("ai", txt)
print (x)

<re.Match object; span=(5, 7), match='ai'>

.span() returns a tuple containing the start-, and end
X = re.search("ai", txt)
print(x.span())

(5, 7)

Serdar ARITAN

PYTHON Regex Examples

3 y PROGRAMMING search () function

import re
subject = "Please visit http://www.regexcookbook.com for more
information. The part of the gegex inside the first capturing
group matches www.regexcookbopk.com, and you want to retrieve
the domain name captured by e first capturing group into a

string variable.”

matchobj = re.search("http://([a-2z0-9.-]+)", subject)

1f matchobj:
result = matchobj.group(1l)
else:
result = ""

print (result)

Serdar ARITAN

PYTHON Regex Examples

PROGRAM M | NG search () function
1mporct re
text = 'The vote was 65 in favour, 43 against and 21
abstentions'

match = re.search(r' (\d+) .*(\d+).*(\d+)', text)
print (match.group(l), match.group(2), match.group(3))

This code will print: 65 2 1

You might have expected to see 65 43 21. The reason for this
output is that the

.* regular expression is greedy, which means it will match as much as it
can.

Here'’s what happened:

e The first .*(\d+) will match 65.

The .* after it will match in fawvour, 43 against and.

The next .*(\d+) will match 2.

The .* after it will match the empty string since * means zero or more.
The final .*(\d+) will match 1.

Serdar ARITAN

