PYTHON
PROGRAMMING

Object Oriented Programming
#10

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Simple programming tasks are easily implemented as simple
functions, but as the magnitude and complexity of your tasks
iIncrease, functions become more complex and difficult to manage. As
functions become too large, you might break them into smaller
functions and pass data from one to the other.

However, as the number of functions becomes large, designing and
managing the data passed to functions becomes difficult and error

prone.

At this point, you should consider moving your programming tasks to
object-oriented designs.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Object-oriented programming (OOP) is a style of programming that
focuses on an application’s data and the methods you need to
manipulate that data.

Object-oriented programming uses all of the concepts you are
familiar with from modular procedural programming, such as
variables, modules, and passing values to modules. Modules in
object-oriented programs continue to use sequence, selection, and
looping structures and make use of arrays.

However, object-oriented programming adds several new concepts to
programming and involves a different way of thinking.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

In object-oriented terminology, an object is one concrete example of a
class, and a class is a term that describes a group of objects with
common properties. A class definition describes what attributes its
objects will have and what those objects will be able to do. In other
words, a class definition describes data and methods.

For example, Automobile is a class of objects. Automobile objects
contain data or attributes such as a make, model, year, and color.
Automobile objects also have access to methods such as going
forward, going in reverse, and being filled with gasoline. An instance
of a class is an existing object of a class. For example, my car is one
Instance of the Automobile class and my neighbor’s car is another.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING F’FQ()(SFQI\AABAIPJ(B
Procedural light switch
def turnOn():
globs swilchIsOn # Test code
turn the light on irlzgéjyltchIsOn)
. ur
switchIsOn = True
print (switchIsOn)
turnOff () : turnO£f ()
global switchIsOn ii;ﬁgéjyltChIson)
turn the light off rint (switchIson)
switchIsOn = False P
Main code
switchIsOn = False # a global Boolean variable

Serdar ARITAN

PYTHON
PROGRAMMING

00 light switch

Serdar ARITAN

LightSwitch() :
__init_ (self):
self.switchlIsOn =

turnOn (self) :
turn the switch on
self.switchlIsOn =

turnOff (self) :
turn the switch off
self.switchlIsOn =

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Test code

create a LightSwitch object
oLightSwitch = LightSwitch/()
Calls to methods

oLightSwitch.
oLightSwitch.
oLightSwitch.
oLightSwitch.
oLightSwitch.
oLightSwitch.
oLightSwitch.

show (self): # added for testing

print (self.switchIsOn)

show ()
turnoOn ()
show ()
turnOff ()
show ()
turnoOn ()
show ()

PYTHON

CLASSES AND OBJECT-ORIENTED

Instantiation code Python LightSwitch class
= LightSwitch()

\ Allocates space for a

LightSwitch object

Calls _init () method
of the LightSwitch class,

passing in the new ob,r'ecf\

__init () method
runs, sets value of
“self” to the new
object

/ Returns the new object ——— Initializes any

instance variables

oLightSwitch =

Assigns the new object
to oLightSwitch

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

00 light switch
Main code

oLightSwitchl
oLightSwitch2

LightSwitch() # create a LightSwitch object
LightSwitch() # create another LightSwitch object

Test code

oLightSwitchl.show()

oLightSwitch2.show()

oLightSwitchl.turnOn() # Turn switch 1 on

Switch 2 should be off at start, but this makes it clearer
oLightSwitch2. turnOff ()

oLightSwitchl.show()

oLightSwitch2.show()

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

objbrowser 1.3.1

pip install objbrowser @®

GUI for Python object introspection.

Navigation
= Project description
“D Release history

& Download files

Project links

A Homepage

Statistics

GitHub statistics:
& Stars: 117

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

‘ ~ Latest version

Released: Dec 18, 2022

Project description

Extensible Python object inspection tool implemented in Qt.

Displays objects as trees and allows you to inspect their attributes recursively (e.g. browse through a list of
dictionaries). You can add your own inspection methods as new columns to the tree view, or as radio buttons ta the
details pane. Altering existing inspection methods is possible as well.

Requires: PySide or PyQt5
Installation: pip install objbrowser

Example use:

from objbrowser import browse
a=16; b = 'hello'
browse (locals())

For more examples see: https://github.com/titusjan/objbrowser

PYTHON
PROGRAMMING

from objbrowser i

16
'hello'
browse (locals())

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

mport browse

L

PyQt5 5.15.11

pip install PyQt5s @

Serdar ARITAN

i objbrowser - — O »
File View Help

name path summary unicode repr type name

> _builtins__ _ builtins_ dict of 165 items {_name_": 'builtins','_doc_" "... {_name_" 'builtins', '_doc_""... dict

> _doc_ _doc_ HCreated on Sat Apr 29 08:58:1... </Created on Sat Apr 29 02:58:1... "\nCreated on Sat Apr 29 08:58:.. str

> _file_ _file_ chlectures\bco 801 python pro.. cilectures\bco 601 python pro.. 'ch\lecturesi\\bco 601 python p.. str

> _loader_ _loader__ Mone Mone Mone MNoneType

? _name__ _name__ _main__ __main__ '_main_" str

¥ _nonzero_ __nonzera__ <function new_main_mod.<loca... =function new_main_maod.<loca... function

> _package _package__ MNone MNone MNaone MNoneType

b4 spec spec N% Ngne Ngne NoneTer

> a a 16 16 16 int

> b b hello hello ‘hello* str

> browse browse <function browse at 0x0000014... <function browse at 0x000001A... function

> _class_ _class__ <class ‘dict'> <class 'dict'> type

> _ class getitem__ closs getitem <built-in method _ class getitem... <built-in method _ class getitem... builtin functior
> _ contains_ _ contains_ <built-in methed __contains_ of ... <built-in method _ contains__ of ... builtin functior
> _ delattr_ _ delattr <method-wrapper '_delattr_ ' of... <method-wrapper '_delattr_' of... method-wrapp
> _ delitem _ deliter <method-wrapper '_delitem ' 0... <method-wrapper *_delitem_' 0... method-wrapp
» _dir_ _dir_ <built-in method __dir_ of dict ... <built-in method _dir_ of dict ... builtin_functior
> _doc_ _doc__ dict(}) -> new empty dictionary«i.. dict() -> new empty dictionary«.. “dict{) -> new empty dictionary\... sir

v _eq _eq <method-wrapper '_eq ' of dic.. <method-wrapper ' _eq ' of dic.. method-wrapp
> _ format_ _ format_ <built-in methed _format_ of d.. <built-in method _format_ of d... builtin functior
Details

O path _ file

() unicode

O repr

O pretty print

() inspect.getdoc
O inspect.getcomments
() inspect.getfile

O inspect.getsource

PYTHON
PROGRAMMING

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

name path summary unicode repr type name
_Spec__ _Spec_ Mone Mone Mane MoneType

¥ a a 16 16 16 int
» _abs_ a.__abs_ <method-wrapper '_abs_ " of in... <method-wrapper '_abs_ ' of in... method-wrapp
> _agdd a.__add _ <method-wrapper '_add ' of in... <method-wrapper '_add_' of in... method-wrapp
> _and_ a.__and_ <method-wrapper '_and__' of in.. <method-wrapper '_and_" of in... method-wrapp
> bool a._bool <method-wrapper ' _bool " of ... <method-wrapper '_bool 'of L.. method-wrapp
> _ceil a.__ceil < built-in method _ceil__ of int 0... <built-in method _ceil_ of int o... builtin_functior
» _class_ a.__class_ =class 'int'> <class 'int'> type
> delattr a.__delattr <method-wrapper '_delattr_' of... <method-wrapper '_delatir_' of... method-wrapp
o dir_ a.__dir_ <built-in method _dir_ of int 0... <built-in method _dir__ of int 0... builtin_functior
> divmod g. __divimod <method-wrapper ' _divrmod <method-wrapper ' _divmod * method-wrapp
» _doc_ a.__doc__ int({x]) -= integer«intix, base=1.. nt{x]) -> integer«int(x, base=1... “int({x]} -= integer\nint(x, base=... str
5 _eq 4. eq_ ZIetnod-Wigpper _eq_ O it .. <Memoa-wrapper —eq . 0j Uit ... Memod-wrapp
» _float_ a.__float_ <method-wrapper '_float ' of i.. <method-wrapper '_float ' of i.. method-wrapp
» _floor_ d.__floor__ < built-in method _floor_ of int ... <built-in method _floor_ of int ... builtin_functior
» _floordiv_ a_ floordiv_ <method-wrapper '_floordiv_"... <method-wrapper '_floordiv_"... method-wrapp
> _format a_ format < built-in method _format _ of ... <built-in method _format _ of L.. builtin functior
»o_ge_ a._ge_ <method-wrapper '_ge_ ' of int.. <method-wrapper '_ge 'of int.. method-wrapp
» _ getattrib... a_ getatiribute <method-wrapper '_getatiribute... <method-wrapper '_getattribute... method-wrapp
» _ getnewar.. 4.__getnewargs_ <built-in method __getnewargs_... <built-in method __getnewargs_... builtin functior

Details
O path _ file
Serdar ARITAN

PROGRAMMING

Dog class definition

|

Every Dog that is created
will have a:

name

age

breed

shot status
runningMethod()
eatingMethod()

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING

When you program in object-oriented languages, you frequently
create classes from which objects will be instantiated. Creating an
object is called instantiating it.

‘ Dog class instances (objects) |

Ginger
6

Boxer
Up to date

Bowser

2

Labrador Retriever
Up to date

1
Dalmatian

Spot
Up to date

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

A class in Python is effectively a data type. All the data types built into
Python are classes, and Python gives you powerful tools to
manipulate every aspect of a class’s behavior. You define a class with
the class statement:

A 4
MyClass:
body

body is a list of Python statements, typically variable assignments
and function definitions. No assignments or function definitions are
required. The body can be just a single statement.

By convention, identifiers are in CapCase — that is, the first
letter of each component word is capitalized, to make them stand out.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Class instances can be used as structures or records. Unlike C
structures, the fields of an instance don’'t need to be declared ahead
of time but can be created on the fly. The following short example
defines a class called Circle, creates a Circle instance, assigns to the
radius field of the circle, and then uses that field to calculate the
circumference of the circle:

>>> Circle:

>>> my circle = Circle()

>>> my circle.radius = 5

>>> print(3.14*my class.radius**2))
78.5

Serdar ARITAN

File Wiew Help

PYTHON
PROGRAMMING

PROGRAMMING

CLASSES AND OBJECT-ORIENTED

narme path summary unicode repr type name is callable
> _class _ class_ <class '_main_.Circle'> <class '_main_.Circle'> type True
> delattr delattr <method-wrapper ' delattr ' of... <method-wrapper ' delattr ' of... method-wrapper Trug
l > _dict _dict empty dict £ £ dict False l
> o_dir _dir_ < built-in method _ dir_ of Circle... <built-in method __ dir_ of Circle... builtin_function_or_method True
[> _doc_ _doc_ Naone Nane Nane NoneType False l
> o_eq _eq <method-wrapper ' _eq " of Cir.. <method-wrapper '_eq_ ' of Cir.. method-wrapper True
> _format_ _ format_ < built-in method _format_ of C... <built-in methed __format_ of C... builtin_function_or_method True
> o_ge _ge_ <method-wrapper '_ge ' of Cir... <method-wrapper '_ge_ ' of Cir... method-wrapper True
> _ getattribute __ getatiribute <method-wrapper '_getatiribute... <method-wrapper '_getattribute... method-wrapper True
> _ getstate _ getstate <built-in method _ getstate _ of ... <built-in method _ getstate_ of ... builtin function or_method True
> o_gt _gt_ <method-wrapper '_gt_' of Cir... <method-wrapper '_gt ' of Cir.. method-wrapper True
> __hash_ _hash_ <method-wrapper ' _hash_' of ... <method-wrapper '_hash_'of .. method-wrapper True
»o_init_ _init_ <method-wrapper '_init ' of CL.. <method-wrapper '_init ' of Ci.. method-wrapper True
> _init subclass_ _init subclass_ < built-in method _init_subclass_... <built-in method _init_subclass_... builtin_function_or_method True
> _le _le <method-wrapper '_le ' of Circ... <method-wrapper '_le_ ' of Circ... method-wrapper True
>t _it <method-wrapper '_{t ' of Circl.. <method-wrapper '_It ' of Circl.. method-wrapper True
» __module _ module__ __main_ __main_ " main_ " str False
> o_ne_ _ne_ <method-wrapper '_ne_ ' of Cir... <method-wrapper '_ne_ ' of Cir... method-wrapper True
> new_ _nmew_ <built-in method __new__ of type... <built-in method __new_ of type... builtin_function_or_method True
> _ reduce _ reduce < built-in method __reduce of C... <built-in method __reduce of C... builtin function or_method True
» _reduce ex_ _ reduce ex__ < built-in method __reduce ex_ o... <built-in method __reduce ex_ o... builtin_function_or_method True
> _repr_ _repr_ <method-wrapper '_repr_' of C... <methed-wrapper '_repr_' of C... method-wrapper True
> _ setattr_ _ setattr_ <method-wrapper '_setattr_' of... <method-wrapper '_setattr__' of... method-wrapper True
> _ sizeof _ sizeof < built-in method _sizeaf of Ci.. <built-in method _sizeof of Ci.. builtin function or_method True
» _sir _sitr_ <method-wrapper '_str__' of Cir... <method-wrapper '_str_ " of Cir... method-wrapper True
> _ subclasshook__ _ subclasshook_ < built-in method _subclasshook... <built-in method __subclasshook... builtin_function_or_method True
> weakref _ weakref None None None MNoneType False

Serdar ARITAN

PYTHON

PROGRAMMING

PROGRAMMING

CLASSES AND OBJECT-ORIENTED

name path summary unicode repr type name is callable
> _class _ class_ <class *_main_.Circle'> <class '_main_.Circle'> type True
> _ delattr_ _ delattr_ <method-wrapper '_delattr ' of... <method-wrapper ' delattr ' of... method-wrapper True
l > _dict _ dict dict of 1 item {radius: 5} {radius: 5} dict False I
> dir_ _dir_ < built-in method _dir__ of Circle... <buift-in method _dir__ of Circle... builtin function or_method True
» _doc_ _doc_ Nane Nane Nane NoneType False
> _eq_ _eq <method-wrapper '_eq_ " of Cir... <method-wrdpper '_eq_ ' of Cir... method-wrapper True
> _format_ _ format_ < built-in method __format_ of C... <built-in method _format_ of C... builtin_ function_or_method True
> o_ge_ _ge <method-wrapper '_ge_ ' of Cir... <method-wrapper '_ge_ ' of Cir.. method-wrapper True
» _getattribute_ __getattribute <method-wrapper '_getattribute.., <method-wrapper '_getattribute... method-wrapper True
> _ getstate_ __getstate < built-in method __getstate_ of ... <built-in method __ getstate of ... builtin_function_or_method True
> _gt_ _gt_ <method-wrapper '_gt ' of Cir... <method-wrapper '_gt ' of Cir.. method-wrapper True
» __hash_ _hash_ <method-wrapper '_hash_'of .. <method-wrapper '_hash_'of .. method-wrapper True
> imit _init <method-wrapper '_init_" of Ci.. <method-wrapper _init_" of Ci.. method-wrapper True
> _init subclass_ _ init subclass < built-in method __init subclass ... <built-in method __init subclass ... builtin function or_method True
> _le e <method-wrapper ' _le_ ' of Circ... <method-wrapper '_le_ ' of Circ... method-wrapper True
>t _it <method-wrapper '_It " of Circl.. <method-wrapper It ' of Circl.. method-wrapper True
> __module _ module __main__ __main_ " main_" str False
> _ne_ _he_ <method-wrapper '_ne_' of Cir... <method-wrapper '_ne_ ' of Cir.. method-wrapper True
P mew_ _new_ <built-in method _new _ of type... <built-in method _new _ of type... builtin_function_or_method True
> _ reduce _reduce < built-in method __reduce_ of C... <built-in method _reduce of C... builtin_function_or_method True
> _ reduce ex__ _ reduce ex__ < built-in method __reduce ex_ o... <built-in method _reduce ex_ o... builtin function or_method True
> _repr_ _repr_ <method-wrapper '_repr__' of C... <method-wrapper '_repr_' of C... method-wrapper True
> _ setattr_ _ setatir_ <method-wrapper '_setattr__" of... <method-wrapper '_setattr__" of... method-wrapper True
> _ sizeof _ sizeof < built-in method _sizeof of Ci.. <built-in method _sizeof of Ci.. builtin function or_method True
> _str _shr <method-wrapper '_str_' of Cir.. <method-wrapper '_str_" of Cir... method-wrapper True
» _ subclasshook_ _ subclasshook_ < built-in method __subclasshook... <built-in method __subclasshock... builtin_ function_ or_method True
> _weakref wegkref None None None NoneType False
I > radius radius 5 5 5 int False l
Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Like many other languages, the fields of an instance / structure are
accessed and assigned to by using dot notation. You can initialize
fields of an instance automatically by including an init
initialization method in the class body. This function is run every time
an instance of the class is created, with that new instance as its first
argument. The init method Is similar to a constructor, but it

doesn’t really construct anything— it initializes fields of the class.
Circle:
__init (self):
self.radius =1

my circle = Circle()
print(2 * 3.14 * my circle.radius)
my circle.radius = 5
print(2 * 3.14 * my circle.radius)

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Instance variables are the most basic feature of OOP. Take a look at
the Circle class again:

Circle:
__init (self):
self.radius =1

radius is an instance variable of Circle instances. That is, each
iInstance of the Circle class has its own copy of radius, and the value
stored in that copy may be different from the values stored in the
radius variable in other instances. In Python, you can create instance
variables as necessary by assigning to a field of a class instance:

instance.variable = wvalue

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

A METHOD is a function associated with a particular class. You've
already seen the special init method, which is called on a new
Instance when that instance is first created. In the following example,
we define another method, area, for the Circle class, which can be
used to calculate and return the area for any Circle instance. Like
most user-defined methods, area is called with a method invocation
syntax that resembles instance variable access:

Circle:
__init (self):
self.radius =1
area (self):
return self.radius **2 * 3 14159

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

Circle:
__init (self):
self.radius =1
area (self):
self.radius **2 * 3 ,14159

Method invocation syntax consists of an instance, followed by a
period, followed by the method to be invoked on the instance.

>>> my circle = Circle()

>>> print(2 * 3.14 * my circle.radius)
>>> my circle.radius = 5

>>> print(2 * 3.14 * my circle.radius)
>>> print (my circle.area())

Write a Method that calculates the circumference of the circle

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

Methods can be invoked with arguments, if the method definitions

accept those arguments. This version of Circle adds an argument to
the init method, so that we can create circles of a given radius
without needing to set the radius after a circle is created.:

Circle: | | f ti iabl
__init (self, radiusf%’ OCal TUNCEION Varidbie
self.radius = radius

area (self):
self.radius ** 2 * 3 14159

Note the two uses of radius here. self.radius is the instance variable
called radius. radius by itself is the local function variable called
radius. The two aren't the same! In practice, we'd probably call the
local function variable something like r or rad, to avoid any possibility
of confusion.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

All the standard Python function features—default argument values,

extra arguments, keyword arguments, and so forth—can be used

with methods. For example, we could have defined the first line of
init tobe

__init (self, radius=l):
Then, calls to circle would work with or without an extra argument;

circle() would return a circle of radius 1, and circle(3) would
return a circle of radius 3.

Serdar ARITAN

PYTHON
PROGRAMMING

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A class variable is a variable associated with a class, not an
Instance of a class, and is accessed by all instances of the class, in
order to keep track of some class-level information, such as how
many instances of the class have been created at any point in time. A
class variable is created by an assignment in the class body, not in

the init function; after it has been created, it can be seen by all
iInstances of the class.

Circle:
pi = 3.14159
init (self, radius):
self.radius = radius
area (self):

self.radius **2 * Circle.pi

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

class Circle:
pi = 3.14159
def init (self, radius):
self.radius = radius
Jef area(self):

return self.radius **2 * Circle.pi

>>> Circle.pi

3.14159

>>> Circle.pi = 4

>>> Circle.pi

4

>>> Circle.area()

Circle.area()

TypeError: area() missing 1 required positional argument: 'self'

Serdar ARITAN

PYTHON
PROGRAMMING

ss Circle:

pi = 3.14159

C init (self, radius):

self.radius = radius
Jef area(self):
return self.radius **2 * Circle.pi

<< Run Module F5 >>
>>> Circle
<class ' main_ .Circle'>
>>> ¢ = Circle(3)
>>> c.__class___
<class ' main_ .Circle'>

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

>>> from circle mport *
>>> Circle
<class 'circle.Circle'>

Serdar ARITAN

PYTHON
PROGRAMMING

>>> Circle.pi
3.14159°

>>> ¢l = Circle(l)
>>> c2 = Circle(2)
>>> cl.pi

3.14159°

>>> ¢2.pi

3.14159°

>>> Circle.pi = 6.28
>>> Circle.pi
6.28

>>> cl.pi

6.28

>>> c2.pi

6.28

Serdar ARITAN

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

RESTART
>>> ¢l = Circle(l)

>>> c2 = Circle(2)

>>> cl.pi = 6.28

>>> c2.pi

3.14159

>>> Circle.pi

3.14159

>>> cl.pi

6.28

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

You may object to hardcoding the name of a class inside that class’s
methods. You can avoid doing so through use of the special
__class__ attribute, available to all Python class instances.

Circle:
pi = 3.14159
__init (self, radius):
self.radius = radius
area (self):
self.radius **2 * self. class .pi

Python 3.9.:4 (tags/v3.9.4:1f2e308, Apr 4 2021, 13:27:16) [MSC v.1928 64 bit (AM
D64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>

========= RESTART: C:\Lectures\BCO 601 Python Programming\COP\circle.py ========
>>> Circle.

pi

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

Leading Underscore before variable/function/method name indicates
to programmer that It is for internal use only, that can be modified
whenever class want.

Circle:
_pi = 3.14159
__init (self, radius):
self.radius = radius
area (self):
self.radius **2 * self. class_ . pi

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

P PROGRAMMING

Python does not specify truly private so this ones can be call directly
from other modules if it is specified in __all _, We also call it weak
Private.

>>> dir(Circle)

[' class ', ' delattr ', ' dict ', ' dir ', ' doc ',
' eq ', ' format ', ' ge ', ' getattribute ', ' gt ‘',
' hash ', ' _init ', ' init subclass ', ' le ',
'l Y, ' module ', ' ne ', ' new ', ' reduce ',
' reduce ex ‘', ' repr ', ' _setattr_ ', ' sizeof ‘',
' str ', ' subclasshook ', ' weakref ', ' pi', 'area']

>>>

Serdar ARITAN

PYTHON Underscore () in Python
PROGRAMMING

In Interpreter:
returns the value of last executed expression value in Python

I_Dromptllnterpreter

>>> a = 10
>>> b =10
>>>

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name ' ' is not defined

>>> a+b

20

>>>

20

>>> * 2

40

>>>

40

Serdar ARITAN

PYTHON Underscore () in Python
PROGRAMMING

For ignoring values:
Multiple time we do not want return values at that time assign those
values to Underscore. It used as throwaway variable.

Ignore a value of specific location/index
for _ in range(10)
print ("Test")

Ignore a value when unpacking
a,b, , = my method(varl)

Serdar ARITAN

PYTHON Underscore () in Python
PROGRAMMING

~lass MyPrivateClass():

def init (self):
self.public = 10
self. private = 12

def public method(self):
print ("public method")

def private method(self):
print ("private method")

>>> from myPrivateClass import *
>>> test = MyPrivateClass ()
>>> test.publid

public_method

Serdar ARITAN

PYTHON
PROGRAMMING

>>> from myPrivateClass [
>>> test = MyPrivateClass()
>>> test.public

10

>>> test. private

12

>>> test.public method()
public method

>>> test. private method()
private method

Serdar ARITAN

Underscore () in Python

PYTHON
PROGRAMMING

ss Circle:
_pi = 3.14159
init (self, radius):
self.radius = radius
area (self):

self.radius **2 * self. class . pi

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

<< Run Module F5 >>
>>> Circle

<class ' main_ .Circle'>
>>> ¢ = Circle(3)

>>> c.__class___

<class ' main_ .Circle'>

>>> from circle mport *
>>> Circle
<class 'circle.Circle'>

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING FDFQC)(BFQI\“ARAIPJCB

¢ = Circle()

TypeError: init () missing 1 required positional argument: 'radius'
class Circle:

_pi = 3.14159
def init (self, radius = 1):
self.radius = radius
def area(self):
return self.radius **2 * self. class . pi

>>> ¢ = Circle()
>>> c.radius
1

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

"""eircle module: contains the Circle class."""
class Circle:

"W "Circle class" "W

_pi = 3.14159

def init (self, radius = 1):
"""Create a Circle with the given radius"""
self.radius = radius

def area (self):
"""determine the area of the Circle"""
ceturn self.radius **2 * self. class_ . pi

>>> import circle

>>> circle.Circle. doc
'Circle class'

>>> ¢ = circle.Circle()
>>> c.__doc__

'Circle class'

>>> c.area. doc

'determine the area of the Circle'
Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

>>> import os

>>> os.getcwd()

'C:\\Program Files\\Python39'

>>> os.chdir('C:\Lectures\BCO 601 Python Programming\QOP')
>>> os.getcwd()

'C:\\Lectures\\BCO 601 Python Programming\\OQOP'

>>> import circle
>>> dir(circle)
['Circle', '__builtins_', ' cached ', ' _doc__ ', '_file ', '_loader_ ', '_ name_ ',

' _package ', ' _spec_ '] . T o
>>> circle.Circle.area() mmmm Call but no instance yet!!!
TypeError: area() missing 1 required positional argument: 'self'
>>> ¢l = circle.Circle(1l)

A aaseeireal) 4=mm c1 and c2 are new instances
>>> c2 = circle.Circle(2)

>>> c2.area()

12.56636

>>> areaSum = cl.area() + c2.area()

>>> print (areaSum)

15.70795

Serdar ARITAN

3

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Static methods even though no instance of that class has been
created, although you can call them using a class instance. To create
a static method, use the @staticmethod decorator.

Circle:

A

_all circles = []
_pi = 3.14159

__init_ (self, r=1):

self.radius = r
self. class__.all circles.append(self)

area (self):

self. class . pi * self.radius ** 2

-

@staticmethod

total_area():

t+ota =0
,_all_circles:
total = total + c.area()

total

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

>>> import circle
circle.Circle.area()
TypeError: area() missing 1 required positional argument: 'self'
>>> circle.Circle. l ar
= o> circle.Cixcle.total areall 4mmm (3 but no instance yet!!!
>>> ¢l = circle.Circle(1l)
>>> ¢c2 = circle.Circle(2)
>>> cl.area()

3.14159

>>> c2.area() .

12 56636 cl and c2 are new instances
>>> cl.area() + c2.area()

15.70795

>>> circle.Circle.total_area()

15.70795 ======= RESTART: C:\Lectures\BCO 601 Python Programming\OOP\test pair.py =======
>>> cl.total _area() . i'l;:;i;.gizi.total_area()

15.70795 g>> circle.Circle.|

>>> c2.total_area()

15.70795 '

Serdar ARITA>N>>

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Class methods are similar to static methods in that they can be
iInvoked before an object of the class has been instantiated or by
using an instance of the class. But class methods are implicitly
passed the class they belong to as their first parameter, so you can
code them more simply.

Circle:

_all circles = []
_pi = 3.14159

@classmethod

total_area(cls): The CIaSS parameter

total = 0 . -
¢ in els._all_cireles: IS traditionally c1s
total = total + c.area()
total

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

>>> circle

>>> circle.Circle.total area()
0

>>> ¢l = circle.Circle(1)

>>> c2 = circle.Circle(2)

>>> circle.Circle.total area()
15.70795

>>> c2.radius = 3

>>> circle_cm.Circle.total_area()
31.4159

>>> cl.total_area()

31.4159

>>> c2.total_area()

31.4159

By using a class method instead of a static method, we don’t have to
hardcode the class name into total area. That means any subclasses
of Circle can still call total area and refer to their own members, not
those in circle.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

@staticmethod
def total area():
tota 0

for ¢ in Circledall circles:

total = total + c.area()

n total
@classmethod
def total area(cls):
total =
for ¢ in all circles:
total = total + c.area()
n total

By using a class method instead of a static method, we don't have to
hardcode the class name Into total_ area.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING
@Qclassmethod and @staticmethod

“rom datetime import date

class Person:
def init (self, name, age):
self.name = name
self.age = age

a class method to create a Person object by birth year.

@classmethod
def fromBirthYear(cls, name, year):
return cls(name, date.today() .year - year)

a static method to check if a Person is adult or not.
@staticmethod
def isAdult (age):

return age > 18

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING
@Qclassmethod and @staticmethod

personl = Person(‘Serdar', 58)
person2 = Person.fromBirthYear (‘'Serdar', 1966)

print (personl. age)
print (person2.age)

print the result
print (Person.isAdult (58))

58
58

+ Aclass method takes cls as first parameter while a static method needs no specific parameters.

» Aclass method can access or modify class state while a static method can’t access or modify it.

* In general, static methods know nothing about class state.

* They are utility type methods that take some parameters and work upon those parameters. On the other hand
class methods must have class as parameter.

Serdar ARITAN

PROGRAMMING PROGRAMMING

A class method can access or modify class state
while a static method can’t access or modify it.

@staticmethod
def fromBirthYear(cls, name, year):
return cls(name, date.today() .year - year)

Traceback (most recent call last):
person2 = Person.fromBirthYear('Serdar', 1966)

TypeError: fromBirthYear () missing 1 required positional argument:

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

'year'

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING

PROGRAMMING

Changing the String Representation of Instances
__str__ ()

This method returns the string representation of the object. This
method is called when print() Or str() function is invoked on an
object. This method must return the String object.

__repr__()

This method returns the object representation in string format. This
method is called when rzepx () function is invoked on the object.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING
Changing the String Representation of Instances

>>> import datetime

>>> now = datetime.datetime.now()
>>> now._ str_ ()

'2021-04-25 20:49:06.398678"

>>> now. repr ()
'datetime.datetime (2021, 4, 25, 20, 49, 6, 398678) ‘' €
>>> print (now)

2021-04-25 20:49:06.398678

>>> now

datetime.datetime (2021, 4, 25, 20, 49, 6, 398678) <<

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

FROGRANMING PROGRAMMING
Changing the String Representation of Instances

To change the string representation of an instance, define the
stz () and repr () mMethods. For example:

Pair:

__init (self, x, y):

self . x = x

self.y =y
__repr (self):

return 'Pair({0.x'r}, {0O.y!'r})'.format (self)
__str (self):

'({0.x's}, {0.y!'s})'.format (self)

The repr () method returns the code representation of an
Instance, and is usually the text you would type to re-create the

Instance. The st () method converts the instance to a string, and
IS the output produced by the stx() and print() functions.

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING
>>> p = Pair (3, 4)

>>> p

Pair (3, 4) # repr () output

>>> print(p)

(3, 4) # str () output

>>>

e calls repr() (Which calls repr iInternally) on the object to get a
string. Specifically, the special 'x formatting code indicates that the
output of repr () Should be used instead of st= (), the default.
You can try this experiment with the preceding class to see this:

>>> p = Pair (3, 4)

>>> print('p is {0'r}'.format (p))
p is Pair (3, 4)

>>> print('p is {0} '.format(p))
p is (3, 4)

>>>

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

The explicit conversion flag is used to transform the format field value
before it is formatted. This can be used to override the type-specific
formatting behavior, and format the value as if it were a more generic
type.

Currently, two explicit conversion flags are recognized.

'r - convert the value to a string using repr().
!s - convert the value to a string using str().

>>> "{0!'r:20}".format ("Hello")
"'Hello' "

Serdar ARITAN

PYTHON
PROGRAMMING

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

Python’s built-in format (value, spec) function transforms input of one format into output of another format
defined by you..

_formats = {

Serdar ARITAN

= Pair:

'row' : '{d.x}-{d.y}"',
'col' : '\n{d.x}\n{d.y}'
}

__init_(self, x, y):

self.x = x

self.y =y

__repr__ (self):

#ireturn 'Pair({0.x'r}, {0.y'r})'.format (self)
fireturn 'Pair (%r, %r)' % (self.x, self.y)

' f'Pair({self.x}, {self.y})'

__str__ (self):

fireturn ' ({0.x's}, {0.y!s})'.format (self)

fireturn '(%s, %s)' % (self.x, self.y)
£f'({self.x}, {self.y})'

__format__ (self, code):
if code == '':
code = 'row'
fmt = formats[code]
fmt. format (d=self)

>>> print(p)
(3, 4)

>>> print (format (p))
3-4

>>> print(format(p, 'col'))

3
4

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

"""ecircle module: contains the Circle class."""
:lass Circle:
"""Circle class"""
_all circles = []
from math import pi
def init (self, r=1):
"""Create a Circle with the given radius"""
self.radius = r

self. class__._all circles.append(self)
lef str (self):
return ' r: ' + str(self.radius)
def repr (self):
return 'Circle(r = {0.radius'r})'.format (self)

def area(self):
"""determine the area of the Circle"""

return self. class__.pi * self.radius **2
Qclassmethod
def total area(cls):
total = 0
for ¢ in cls._all circles:
total = total + c.area()
n total

Serdar ARITAN

PYTHON
PROGRAMMING

>>> ¢l = Circle()
>>> c2 = Circle(2)
>>> cl

Circle(r = 1)

>>> ¢2

Circle(r = 2)

>>> print(c2)

r: 2

Serdar ARITAN

CLASSES AND OBJECT-ORIENTED
PROGRAMMING

PYTHON CLASSES AND OBJECT-ORIENTED

PROGRAMMING PROGRAMMING

Operator overloading means that the operation performed by the
operator depends on the type of operands provided to the operator.

Binary Operators

Operator Method

+ object. add_(self, other)
object._ sub__ (self, other)

* object._ mul__ (self, other)
I/ object._ floordiv__ (self, other)
/ object._ div__ (self, other)
% object._ _mod__ (self, other)
Sk object. pow__(self, other[, modulo])
<< object._ Ishift__ (self, other)
> object._ rshift__ (self, other)
& object._ and__ (self, other)
2 object._ xor__ (self, other)

| object._ or__(self, other)

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING
Whenever the meaning of an operator is not obviously clear and

undisputed, it should not be overloaded. Instead, provide a function
with a well-chosen name.

Extended Assignments

Operator Method

+= object._ iadd__(self, other)
== object._ isub__(self, other)
M= object._ imul__ (self, other)
= object.__idiv__ (self, other)
/= object.__ifloordiv__ (self, other)
%= object._ _imod__ (self, other)
A= object. ipow_ (self, other[, modulo])
<<= object. ilshift _ (self, other)
>>= object.__irshift__(self, other)

= object._ iand__ (self, other)
= object._ ixor__ (self, other)

= object. ior_ (self, other)
Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
"~ PROGRAMMING PROGRAMMING

Always stick to the operator’s well-known semantics.

Unary Operators

Operator Method
- object._ neg_ (self)

+ object._ pos__ (self)
abs() object._ _abs_ (self)

~ object._ invert_ (self)
complex() object._ complex__ (self)
int() object.__int_ (self)
long() object._ long__ (self)
float() object. float (self)
oct() object._ oct (self)
hex() object._ hex_ (self

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED

~ PROGRAMMING PROGRAMMING

Serdar ARITAN

Comparison Operators

Operator Method
object._ It (self, other)
object._ le_ (self, other)
object. eq (self, other)

= object._ ne__(self, other)

object. ge (self, other)

> object._ gt (self, other)

If we want to add two circle objects!

+ @

object. add_(self, other)

oA A
o

W
i

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

"""aircle module: contains the Circle class.”"""

class Circle:
m"wn I|circle class" mn
all circles = []

from math import pi

def init_ (self, r=1):
“""Create a Circle with the given radius"""
self.radius = r
self. class__.all circles.append(self)

def __add__(self, other):
if type(other) is Circle:
return Circle(self.radius + other.radius)

print ('Unsupported object for adding: Both object must be Circle')

>>> ¢l = Circle(5)

>>> c2 = Circle(8)

>>> c3 = cl_+ c2__

>>> c3 + 5

>>> 5 + c3 __add__ (Self, o%ﬁer):
Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

>>> 5 + ¢3

def _radd_ (self, other):
if type(other) is Circle:
return Circle(self.radius + other.radius)
al ca -

— 3 M~ 4 —

print ('Unsupported object for adding: Both object must be Circle')
If we want to subtract two circle objects!

object. sub (self, other)

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
“ PROGRAMMING PROGRAMMING

If we want to compare two circle objects!

‘ > ‘ = True / False

Comparison Operators

Operator Method
< object._ It (self, other)
<= object._ le_ (self, other)
= object._ _eq (self, other)
— object._ ne_ (self, other)
>= object. ge (self, other)
> object._ gt (self, other)

Serdar ARITAN

PYTHON CLASSES AND OBJECT-ORIENTED
PROGRAMMING PROGRAMMING

* Think before you program!

« Aprogram is a human-readable essay on problem solving that also
happens to execute on a computer.

» The best way to improve your programming and problem skills is to
practice!

» Test your code, often and thoroughly!
 If it was hard to write, it is probably hard to read. Add a comment.
« All input is evil, until proven otherwise.

« A function should do one thing.

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

Write a simple interactive calculator that takes commands from the user. The
calculator maintains and displays an Accumulator, which is the current stored
value. Commands can be any of the following:

clear zero the accumulator

show display the accumulator value
add k add k to the accumulator

sub k subtract k from the accumulator
mult k multiply accumulator by k

div k divide accumulator by k

help show commands

exit terminate the computation

This version need only accept non-negative integer arguments, though it can
yield negative and float results.

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

class Calec:

Serdar ARITAN

"""This is a simple calculator class. It stores and displays
a single number in the accumulator. To that number, you can
add, subtract, multiply or divide.
def _ init (self):
"Constructor for new Calc objects, with display 0."
self. accumulator = 0

def getAccumulator (self):
"""Accessor for the accumulator."""
return self._ accumulator

def _ str_ (self):

"""Printing displays the accumulator wvalue.””"
return "Value is: " + str(self._accumulator)

def clear (self):
"nnZero the accumulator."""
self. accumulator = 0
print (self)

kW
[\
H

add (self, num):

"""Add num to accumuator."""
self. accumulator += num
print (self)

PYTHON
PROGRAMMING

def sub(self, num):

4O LLaAaGL IIUl LI aCGGuliliva LOL

def mult(self, num):
"""Multiply accumuator by num

def div(self, num):

CLASSWORK

""'"Divide accumuator by num (unless num is 0).
c = Calc() # create a new calculator object
c.add(5) # add 5 to the accumulator
c.add(3) # add 3 to the accumulator
print(c) # print the result
Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

e ~N Let's consider a more complicated physical object: a
o television. With this more complicated example, we’'ll
@ oo take a closer look at how arguments work in classes.
® Ed L&

o H A simplified TV remote
Power state (on or off)
o 9 e Mute state (is it muted?)
List of channels available
e 9 6 Current channel setting
ﬂ @ @ Current volume setting
0K | Range of volume levels available
And the actions that the TV must provide include:
® ® Turn the power on and off
Raise and lower the volume
Change the channel up and down
Mute and unmute the sound

L J Get information about the current settings
Go to a specified channel

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

™V () :
__init_ (self):
self.isOn =
self.isMuted =
Some default list of channels
self.channellist = [2, 4, 5, 7, 9, 11, 20, 36, 44, 54, 65]
self.nChannels = len(self.channellist)
self.channelIndex = 0
self .VOLUME MINIMUM = 0 # constant
self .VOLUME MAXIMUM = 10 # constant
self.volume = self.VOLUME MAXIMUM

power (self) : 2
self.isOn = self.isOn # toggle

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

def wvolumeUp (self):
£ not self.isOn:
1L self.isMuted:
self.isMuted = False # changing the volume while muted unmutes

£ self.volume < self.VOLUME_MAXIMUM:
self.volume = self.volume + 1

£ volumeDown (self) :

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

channelUp (self) :
self.isOn:

self.channellIndex = self.channellIndex + 1
self.channelIndex > self.nChannels:
self.channellIndex 0 # wrap around to the first channel

channelDown (self) :

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

Jef setChannel (self, newChannel):
1f newChannel :n self.channellist:
self.channellIndex = self.channellist.index (newChannel)
if the newChannel is not in our list of channels, don't do anything

£ mute(self):

def showInfo (self):

Serdar ARITAN

Serdar ARITAN

PYTHON CLASSWORK
PROGRAMMING

Main code

OoTV = TV() # create the TV object

Turn the TV on and show the status

oTV.power ()

oTV.showInfo ()

Change the channel up twice, raise the volume twice, show status
oTV.channelUp ()

oTV.channelUp ()

oTV.volumeUp ()

oTV.volumeUp ()

oTV.showInfo ()

Turn the TV off, show status, turn the TV on, show status
oTV.power ()

oTV.showInfo ()

oTV.power ()

oTV.showInfo ()

Lower the volume, mute the sound, show status
oTV.volumeDown ()

oTV.mute ()

oTV.showInfo ()

Change the channel to 11, mute the sound, show status
oTV.setChannel (11)

oTV.mute ()

oTV.showInfo ()

PYTHON CLASSWORK
PROGRAMMING

TV Status:

TV is: On
Channel is: 2
Volume is: 5
TV Status:

TV is: On
Channel is: 5
Volume is: 7
TV Status:

TV is: Off
TV Status:

TV is: On
Channel is: 5
Volume is: 7
TV Status:

TV is: On
Channel is: 5
Volume is: 6 (sound is muted)
TV Status:

TV is: On
Channel is: 11
Volume is: 6

Serdar ARITAN

