
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Object Oriented Programming

#10

2

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Simple programming tasks are easily implemented as simple

functions, but as the magnitude and complexity of your tasks

increase, functions become more complex and difficult to manage. As

functions become too large, you might break them into smaller

functions and pass data from one to the other.

However, as the number of functions becomes large, designing and

managing the data passed to functions becomes difficult and error

prone.

At this point, you should consider moving your programming tasks to

object-oriented designs.

3

Object-oriented programming (OOP) is a style of programming that

focuses on an application’s data and the methods you need to

manipulate that data.

Object-oriented programming uses all of the concepts you are

familiar with from modular procedural programming, such as

variables, modules, and passing values to modules. Modules in

object-oriented programs continue to use sequence, selection, and

looping structures and make use of arrays.

However, object-oriented programming adds several new concepts to

programming and involves a different way of thinking.

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

4

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

In object-oriented terminology, an object is one concrete example of a

class, and a class is a term that describes a group of objects with

common properties. A class definition describes what attributes its

objects will have and what those objects will be able to do. In other

words, a class definition describes data and methods.

For example, Automobile is a class of objects. Automobile objects

contain data or attributes such as a make, model, year, and color.

Automobile objects also have access to methods such as going

forward, going in reverse, and being filled with gasoline. An instance

of a class is an existing object of a class. For example, my car is one

instance of the Automobile class and my neighbor’s car is another.

5

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Procedural light switch

def turnOn():

 global switchIsOn

 # turn the light on

 switchIsOn = True

def turnOff():

 global switchIsOn

 # turn the light off

 switchIsOn = False

Main code

switchIsOn = False # a global Boolean variable

Test code

print(switchIsOn)

turnOn()

print(switchIsOn)

turnOff()

print(switchIsOn)

turnOn()

print(switchIsOn)

6

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

OO light switch

class LightSwitch():

 def __init__(self):

 self.switchIsOn = False

 def turnOn(self):

 # turn the switch on

 self.switchIsOn = True

 def turnOff(self):

 # turn the switch off

 self.switchIsOn = False

 def show(self): # added for testing

 print(self.switchIsOn)

Test code

create a LightSwitch object

oLightSwitch = LightSwitch()

Calls to methods

oLightSwitch.show()

oLightSwitch.turnOn()

oLightSwitch.show()

oLightSwitch.turnOff()

oLightSwitch.show()

oLightSwitch.turnOn()

oLightSwitch.show()

7

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

8

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

OO light switch

Main code

oLightSwitch1 = LightSwitch() # create a LightSwitch object

oLightSwitch2 = LightSwitch() # create another LightSwitch object

Test code

oLightSwitch1.show()

oLightSwitch2.show()

oLightSwitch1.turnOn() # Turn switch 1 on

Switch 2 should be off at start, but this makes it clearer

oLightSwitch2.turnOff()

oLightSwitch1.show()

oLightSwitch2.show()

9

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

10

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

from objbrowser import browse

a = 16

b = 'hello'

browse(locals())

11

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

12

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

When you program in object-oriented languages, you frequently

create classes from which objects will be instantiated. Creating an

object is called instantiating it.

13

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A class in Python is effectively a data type. All the data types built into

Python are classes, and Python gives you powerful tools to

manipulate every aspect of a class’s behavior. You define a class with

the class statement:

class MyClass:

 body

body is a list of Python statements, typically variable assignments

and function definitions. No assignments or function definitions are

required. The body can be just a single pass statement.

By convention, class identifiers are in CapCase — that is, the first

letter of each component word is capitalized, to make them stand out.

14

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Class instances can be used as structures or records. Unlike C

structures, the fields of an instance don’t need to be declared ahead

of time but can be created on the fly. The following short example

defines a class called Circle, creates a Circle instance, assigns to the

radius field of the circle, and then uses that field to calculate the

circumference of the circle:

>>> class Circle:

... pass

...

>>> my_circle = Circle()

>>> my_circle.radius = 5

>>> print('CemberinAlanı:',3.14*my_class.radius**2))

78.5

Page 15

Page 16

15

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

16

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

17

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Like many other languages, the fields of an instance / structure are

accessed and assigned to by using dot notation. You can initialize

fields of an instance automatically by including an __init__

initialization method in the class body. This function is run every time

an instance of the class is created, with that new instance as its first

argument. The __init__ method is similar to a constructor, but it
doesn’t really construct anything— it initializes fields of the class.
class Circle:

 def __init__(self):

 self.radius = 1

my_circle = Circle()

print(2 * 3.14 * my_circle.radius)

my_circle.radius = 5

print(2 * 3.14 * my_circle.radius)

18

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Instance variables are the most basic feature of OOP. Take a look at

the Circle class again:

class Circle:

 def __init__(self):

 self.radius = 1

radius is an instance variable of Circle instances. That is, each

instance of the Circle class has its own copy of radius, and the value

stored in that copy may be different from the values stored in the

radius variable in other instances. In Python, you can create instance

variables as necessary by assigning to a field of a class instance:

instance.variable = value

19

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A METHOD is a function associated with a particular class. You’ve

already seen the special __init__ method, which is called on a new

instance when that instance is first created. In the following example,

we define another method, area, for the Circle class, which can be

used to calculate and return the area for any Circle instance. Like

most user-defined methods, area is called with a method invocation

syntax that resembles instance variable access:

class Circle:

 def __init__(self):

 self.radius = 1

 def area(self):

 return self.radius **2 * 3.14159

20

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Circle:

 def __init__(self):

 self.radius = 1

 def area(self):

 return self.radius **2 * 3.14159

Method invocation syntax consists of an instance, followed by a

period, followed by the method to be invoked on the instance.

>>> my_circle = Circle()

>>> print(2 * 3.14 * my_circle.radius)

>>> my_circle.radius = 5

>>> print(2 * 3.14 * my_circle.radius)

>>> print(my_circle.area())

Write a Method that calculates the circumference of the circle

21

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Methods can be invoked with arguments, if the method definitions

accept those arguments. This version of Circle adds an argument to

the __init__ method, so that we can create circles of a given radius

without needing to set the radius after a circle is created:
class Circle:

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius ** 2 * 3.14159

Note the two uses of radius here. self.radius is the instance variable

called radius. radius by itself is the local function variable called

radius. The two aren’t the same! In practice, we’d probably call the

local function variable something like r or rad, to avoid any possibility

of confusion.

local function variable

22

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

All the standard Python function features—default argument values,

extra arguments, keyword arguments, and so forth—can be used

with methods. For example, we could have defined the first line of

__init__ to be

def __init__(self, radius=1):

Then, calls to circle would work with or without an extra argument;

Circle() would return a circle of radius 1, and Circle(3) would

return a circle of radius 3.

23

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A class variable is a variable associated with a class, not an

instance of a class, and is accessed by all instances of the class, in

order to keep track of some class-level information, such as how

many instances of the class have been created at any point in time. A

class variable is created by an assignment in the class body, not in

the __init__ function; after it has been created, it can be seen by all

instances of the class.

class Circle:

 pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * Circle.pi

24

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Circle:

 pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * Circle.pi

>>> Circle.pi

3.14159

>>> Circle.pi = 4

>>> Circle.pi

4

>>> Circle.area()

Circle.area()

TypeError: area() missing 1 required positional argument: 'self'

25

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Circle:

 pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * Circle.pi

<< Run Module F5 >>

>>> Circle

<class '__main__.Circle'>

>>> c = Circle(3)

>>> c.__class__

<class '__main__.Circle'>

>>> from circle import *

>>> Circle

<class 'circle.Circle'>

26

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> Circle.pi

3.14159

>>> c1 = Circle(1)

>>> c2 = Circle(2)

>>> c1.pi

3.14159

>>> c2.pi

3.14159

>>> Circle.pi = 6.28

>>> Circle.pi

6.28

>>> c1.pi

6.28

>>> c2.pi

6.28

27

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

============== RESTART ==============

>>> c1 = Circle(1)

>>> c2 = Circle(2)

>>> c1.pi = 6.28

>>> c2.pi

3.14159

>>> Circle.pi

3.14159

>>> c1.pi

6.28

28

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

You may object to hardcoding the name of a class inside that class’s

methods. You can avoid doing so through use of the special

__class__ attribute, available to all Python class instances.

class Circle:

 pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * self.__class__.pi

29

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Leading Underscore before variable/function/method name indicates

to programmer that It is for internal use only, that can be modified

whenever class want.

class Circle:

 _pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * self.__class__._pi

30

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Python does not specify truly private so this ones can be call directly

from other modules if it is specified in __all__, We also call it weak

Private.

>>> dir(Circle)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',

'__hash__', '__init__', '__init_subclass__', '__le__',

'__lt__', '__module__', '__ne__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',

'__str__', '__subclasshook__', '__weakref__', '_pi', 'area']

>>>

31

Underscore (_) in Python

 In Interpreter:

_ returns the value of last executed expression value in Python

Prompt/Interpreter
>>> a = 10

>>> b = 10

>>> _

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name '_' is not defined

>>> a+b

20

>>> _

20

>>> _ * 2

40

>>> _

40

32

Underscore (_) in Python

 For ignoring values:

Multiple time we do not want return values at that time assign those

values to Underscore. It used as throwaway variable.

Ignore a value of specific location/index

for _ in range(10)

 print("Test")

Ignore a value when unpacking

a,b,_,_ = my_method(var1)

33

Underscore (_) in Python

 class MyPrivateClass():

 def __init__(self):

 self.public = 10

 self._private = 12

 def public_method(self):

 print ("public method")

 def _private_method(self):

 print ("private method")

34

Underscore (_) in Python

 >>> from myPrivateClass import *

>>> test = MyPrivateClass()

>>> test.public

10

>>> test._private

12

>>> test.public_method()

public method

>>> test._private_method()

private method

35

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Circle:

 _pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * self.__class__._pi

<< Run Module F5 >>

>>> Circle

<class '__main__.Circle'>

>>> c = Circle(3)

>>> c.__class__

<class '__main__.Circle'>

>>> from circle import *

>>> Circle

<class 'circle.Circle'>

36

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

c = Circle()

TypeError: __init__() missing 1 required positional argument: 'radius‘

class Circle:

 _pi = 3.14159

 def __init__(self, radius = 1):

 self.radius = radius

 def area(self):

 return self.radius **2 * self.__class__._pi

>>> c = Circle()

>>> c.radius

1

37

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 _pi = 3.14159

 def __init__(self, radius = 1):

 """Create a Circle with the given radius"""

 self.radius = radius

 def area(self):

 """determine the area of the Circle"""

 return self.radius **2 * self.__class__._pi

>>> import circle

>>> circle.Circle.__doc__

'Circle class'

>>> c = circle.Circle()

>>> c.__doc__

'Circle class'

>>> c.area.__doc__

'determine the area of the Circle'

38

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> import os

>>> os.getcwd()

'C:\\Program Files\\Python39'

>>> os.chdir('C:\Lectures\BCO 601 Python Programming\OOP')

>>> os.getcwd()

'C:\\Lectures\\BCO 601 Python Programming\\OOP'

>>> import circle

>>> dir(circle)
['Circle', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__',

'__package__', '__spec__']

>>> circle.Circle.area()

TypeError: area() missing 1 required positional argument: 'self'

>>> c1 = circle.Circle(1)

>>> c1.area()

3.14159

>>> c2 = circle.Circle(2)

>>> c2.area()

12.56636

>>> areaSum = c1.area() + c2.area()

>>> print(areaSum)

15.70795

Call but no instance yet!!!

c1 and c2 are new instances

39

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Static methods even though no instance of that class has been

created, although you can call them using a class instance. To create
a static method, use the @staticmethod decorator.
"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 _all_circles = []

 _pi = 3.14159

 def __init__(self, r=1):

 """Create a Circle with the given radius"""

 self.radius = r

 self.__class__.all_circles.append(self)

 def area(self):

 """determine the area of the Circle"""

 return self.__class__._pi * self.radius ** 2

 @staticmethod
 def total_area():

 total = 0

 for c in Circle._all_circles:

 total = total + c.area()

 return total

40

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> import circle

circle.Circle.area()

TypeError: area() missing 1 required positional argument: 'self'

>>> circle.Circle.total_area()

0

>>> c1 = circle.Circle(1)

>>> c2 = circle.Circle(2)

>>> c1.area()

3.14159

>>> c2.area()

12.56636

>>> c1.area() + c2.area()

15.70795

>>> circle.Circle.total_area()

15.70795

>>> c1.total_area()

15.70795

>>> c2.total_area()

15.70795

>>>

Call but no instance yet!!!

c1 and c2 are new instances

41

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Class methods are similar to static methods in that they can be

invoked before an object of the class has been instantiated or by

using an instance of the class. But class methods are implicitly

passed the class they belong to as their first parameter, so you can

code them more simply.
"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 _all_circles = []

 _pi = 3.14159

 .

 .

 @classmethod
 def total_area(cls):

 total = 0

 for c in cls._all_circles:

 total = total + c.area()

 return total

The class parameter
is traditionally cls

>>> import circle

>>> circle.Circle.total_area()

0

>>> c1 = circle.Circle(1)

>>> c2 = circle.Circle(2)

>>> circle.Circle.total_area()

15.70795

>>> c2.radius = 3

>>> circle_cm.Circle.total_area()

31.4159

>>> c1.total_area()

31.4159

>>> c2.total_area()

31.4159

By using a class method instead of a static method, we don’t have to

hardcode the class name into total_area. That means any subclasses

of Circle can still call total_area and refer to their own members, not

those in Circle.
42

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

@staticmethod

def total_area():

 total = 0

 for c in Circle.all_circles:

 total = total + c.area()

 return total

@classmethod

def total_area(cls):

 total = 0

 for c in cls.all_circles:

 total = total + c.area()

 return total

By using a class method instead of a static method, we don’t have to

hardcode the class name into total_area.

43

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

44

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

from datetime import date

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # a class method to create a Person object by birth year.

 @classmethod

 def fromBirthYear(cls, name, year):

 return cls(name, date.today().year - year)

 # a static method to check if a Person is adult or not.

 @staticmethod

 def isAdult(age):

 return age > 18

 @classmethod and @staticmethod

person1 = Person(‘Serdar', 58)

person2 = Person.fromBirthYear(‘Serdar', 1966)

print(person1.age)

print(person2.age)

print the result

print(Person.isAdult(58))

58

58

True

• A class method takes cls as first parameter while a static method needs no specific parameters.

• A class method can access or modify class state while a static method can’t access or modify it.

• In general, static methods know nothing about class state.

• They are utility type methods that take some parameters and work upon those parameters. On the other hand

class methods must have class as parameter.
45

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

 @classmethod and @staticmethod

46

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

 # A class method can access or modify class state

 # while a static method can’t access or modify it.

 @staticmethod

 def fromBirthYear(cls, name, year):

 return cls(name, date.today().year - year)

Traceback (most recent call last):

person2 = Person.fromBirthYear('Serdar', 1966)

TypeError: fromBirthYear() missing 1 required positional argument: 'year'

47

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Changing the String Representation of Instances

__str__()

This method returns the string representation of the object. This

method is called when print() or str() function is invoked on an

object. This method must return the String object.

__repr__()

 This method returns the object representation in string format. This

method is called when repr() function is invoked on the object.

48

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Changing the String Representation of Instances

>>> import datetime

>>> now = datetime.datetime.now()

>>> now.__str__()

'2021-04-25 20:49:06.398678'

>>> now.__repr__()

'datetime.datetime(2021, 4, 25, 20, 49, 6, 398678)‘

>>> print(now)

2021-04-25 20:49:06.398678

>>> now

datetime.datetime(2021, 4, 25, 20, 49, 6, 398678)

49

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Changing the String Representation of Instances

To change the string representation of an instance, define the

__str__() and __repr__() methods. For example:

class Pair:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return 'Pair({0.x!r}, {0.y!r})'.format(self)

 def __str__(self):

 return '({0.x!s}, {0.y!s})'.format(self)

The __repr__() method returns the code representation of an

instance, and is usually the text you would type to re-create the

instance. The __str__() method converts the instance to a string, and

is the output produced by the str() and print() functions.

>>> p = Pair(3, 4)

>>> p

Pair(3, 4) # __repr__() output

>>> print(p)

(3, 4) # __str__() output

>>>

!r calls repr() (which calls __repr__ internally) on the object to get a

string. Specifically, the special !r formatting code indicates that the

output of __repr__() should be used instead of __str__(), the default.

You can try this experiment with the preceding class to see this:

>>> p = Pair(3, 4)

>>> print('p is {0!r}'.format(p))

p is Pair(3, 4)

>>> print('p is {0}'.format(p))

p is (3, 4)

>>>

50

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

The explicit conversion flag is used to transform the format field value

before it is formatted. This can be used to override the type-specific

formatting behavior, and format the value as if it were a more generic

type.

Currently, two explicit conversion flags are recognized.

!r - convert the value to a string using repr().

!s - convert the value to a string using str().

>>> "{0!r:20}".format("Hello")

"'Hello' "

51

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

52

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Python’s built-in format(value, spec) function transforms input of one format into output of another format

defined by you..
_formats = {

 'row' : '{d.x}-{d.y}',

 'col' : '\n{d.x}\n{d.y}'

 }

class Pair:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 #return 'Pair({0.x!r}, {0.y!r})'.format(self)

 #return 'Pair(%r, %r)' % (self.x, self.y)

 return f'Pair({self.x}, {self.y})'

 def __str__(self):

 #return '({0.x!s}, {0.y!s})'.format(self)

 #return '(%s, %s)' % (self.x, self.y)

 return f'({self.x}, {self.y})'

 def __format__(self, code):

 if code == '':

 code = 'row'

 fmt = _formats[code]

 return fmt.format(d=self)

>>> print(p)

(3, 4)

>>> print(format(p))

3-4

>>> print(format(p, 'col'))

3

4

53

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 _all_circles = []

 from math import pi

 def __init__(self, r=1):

 """Create a Circle with the given radius"""

 self.radius = r

 self.__class__._all_circles.append(self)

 def __str__(self):

 return ' r: ' + str(self.radius)

 def __repr__(self):

 return 'Circle(r = {0.radius!r})'.format(self)

 def area(self):

 """determine the area of the Circle"""

 return self.__class__.pi * self.radius **2

 @classmethod

 def total_area(cls):

 total = 0

 for c in cls._all_circles:

 total = total + c.area()

 return total

54

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> c1 = Circle()

>>> c2 = Circle(2)

>>> c1

Circle(r = 1)

>>> c2

Circle(r = 2)

>>> print(c2)

 r: 2

55

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Operator overloading means that the operation performed by the

operator depends on the type of operands provided to the operator.

56

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Whenever the meaning of an operator is not obviously clear and

undisputed, it should not be overloaded. Instead, provide a function

with a well-chosen name.

57

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Always stick to the operator’s well-known semantics.

58

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

+ =

object.__add__(self, other)

If we want to add two circle objects!

59

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 all_circles = []

 from math import pi

 def __init__(self, r=1):

 “""Create a Circle with the given radius"""

 self.radius = r

 self.__class__.all_circles.append(self)

 def __add__(self, other):

 if type(other) is Circle:

 return Circle(self.radius + other.radius)

 else:

 print('Unsupported object for adding: Both object must be Circle')

>>> c1 = Circle(5)

>>> c2 = Circle(8)

>>> c3 = c1 + c2

>>> c3 + 5

>>> 5 + c3 __add__(self, other):

60

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> 5 + c3

def __radd__(self, other):

 if type(other) is Circle:

 return Circle(self.radius + other.radius)

 else:

 print('Unsupported object for adding: Both object must be Circle')

-

object.__sub__(self, other)

If we want to subtract two circle objects!

= =

61

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

If we want to compare two circle objects!

= > True / False

62

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

• Think before you program!

• A program is a human-readable essay on problem solving that also

happens to execute on a computer.

• The best way to improve your programming and problem skills is to

practice!

• Test your code, often and thoroughly!

• If it was hard to write, it is probably hard to read. Add a comment.

• All input is evil, until proven otherwise.

• A function should do one thing.

63

CLASSWORK

Write a simple interactive calculator that takes commands from the user. The

calculator maintains and displays an Accumulator, which is the current stored

value. Commands can be any of the following:

clear zero the accumulator

show display the accumulator value

add k add k to the accumulator

sub k subtract k from the accumulator

mult k multiply accumulator by k

div k divide accumulator by k

help show commands

exit terminate the computation

This version need only accept non-negative integer arguments, though it can

yield negative and float results.

64

CLASSWORK

class Calc:

 """This is a simple calculator class. It stores and displays

 a single number in the accumulator. To that number, you can

 add, subtract, multiply or divide.

 """

 def __init__(self):

 "Constructor for new Calc objects, with display 0."

 self._accumulator = 0

 def getAccumulator(self):

 """Accessor for the accumulator."""

 return self._accumulator

 def __str__(self):

 """Printing displays the accumulator value."""

 return "Value is: " + str(self._accumulator)

 def clear(self):

 """Zero the accumulator."""

 self._accumulator = 0

 print(self)

 def add(self, num):

 """Add num to accumuator."""

 self._accumulator += num

 print(self)

65

CLASSWORK

 def sub(self, num):

 """Subtract num from accumuator."""

 def mult(self, num):

 """Multiply accumuator by num."""

 def div(self, num):

 """Divide accumuator by num (unless num is 0)."""

c = Calc() # create a new calculator object

c.add(5) # add 5 to the accumulator

c.add(3) # add 3 to the accumulator

print(c) # print the result

66

CLASSWORK

Let’s consider a more complicated physical object: a

television. With this more complicated example, we’ll

take a closer look at how arguments work in classes.

A simplified TV remote
Power state (on or off)

Mute state (is it muted?)

List of channels available

Current channel setting

Current volume setting

Range of volume levels available

And the actions that the TV must provide include:

Turn the power on and off

Raise and lower the volume

Change the channel up and down

Mute and unmute the sound

Get information about the current settings

Go to a specified channel

67

CLASSWORK

class TV():

 def __init__(self):

 self.isOn = False

 self.isMuted = False

 # Some default list of channels

 self.channelList = [2, 4, 5, 7, 9, 11, 20, 36, 44, 54, 65]

 self.nChannels = len(self.channelList)

 self.channelIndex = 0

 self.VOLUME_MINIMUM = 0 # constant

 self.VOLUME_MAXIMUM = 10 # constant

 self.volume = self.VOLUME_MAXIMUM

 def power(self): 2

 self.isOn = not self.isOn # toggle

68

CLASSWORK

 def volumeUp(self):

 if not self.isOn:

 return

 if self.isMuted:

 self.isMuted = False # changing the volume while muted unmutes

 if self.volume < self.VOLUME_MAXIMUM:

 self.volume = self.volume + 1

 def volumeDown(self):

 …

 …

 …

69

CLASSWORK

 def channelUp(self):

 if not self.isOn:

 return

 self.channelIndex = self.channelIndex + 1

 if self.channelIndex > self.nChannels:

 self.channelIndex = 0 # wrap around to the first channel

 def channelDown(self):

 …

 …

 …

70

CLASSWORK

 def setChannel(self, newChannel):

 if newChannel in self.channelList:

 self.channelIndex = self.channelList.index(newChannel)

 # if the newChannel is not in our list of channels, don't do anything

 def mute(self):

 …

 …

 …

 def showInfo(self):

 …

 …

 …

71

CLASSWORK

Main code

oTV = TV() # create the TV object

Turn the TV on and show the status

oTV.power()

oTV.showInfo()

Change the channel up twice, raise the volume twice, show status

oTV.channelUp()

oTV.channelUp()

oTV.volumeUp()

oTV.volumeUp()

oTV.showInfo()

Turn the TV off, show status, turn the TV on, show status

oTV.power()

oTV.showInfo()

oTV.power()

oTV.showInfo()

Lower the volume, mute the sound, show status

oTV.volumeDown()

oTV.mute()

oTV.showInfo()

Change the channel to 11, mute the sound, show status

oTV.setChannel(11)

oTV.mute()

oTV.showInfo()

TV Status:

 TV is: On

 Channel is: 2

 Volume is: 5

TV Status:

 TV is: On

 Channel is: 5

 Volume is: 7

TV Status:

 TV is: Off

TV Status:

 TV is: On

 Channel is: 5

 Volume is: 7

TV Status:

 TV is: On

 Channel is: 5

 Volume is: 6 (sound is muted)

TV Status:

 TV is: On

 Channel is: 11

 Volume is: 6

72

CLASSWORK

