
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Object Oriented Programming

#11

2

Python String format() Method

 Customizing String Formatting

The format() method formats the specified value(s) and insert them

inside the string's placeholder.
The placeholder is defined using curly brackets: {}.

The format() method returns the formatted string.

txt = "For only {price:.2f} dollars!"

print(txt.format(price = 49))

txt1 = "My name is {fname}, I'm {age}".format(fname = “Serdar”, age = 55)

txt2 = "My name is {0}, I'm {1}".format(“Serdar”, 55)

txt3 = "My name is {}, I'm {}".format(“Serdar”, 55)

3

Python String format() Method

 Customizing String Formatting

[:<] Left aligns [:>] Right aligns [:^] Center aligns
txt = "We have {:<8} students."

print(txt.format(38))

We have 38 students.

txt = "We have {:^8} students."

print(txt.format(38))

We have 38 students.

[:b] Binary [:c] Unicode [:d] Decimal [:f] Fixed point
txt = "We have {:b} students."

print(txt.format(38))

We have 100110 students.

txt = "We have {:c} students."

print(txt.format(38))

We have & students.

txt = "We have {:.2f} students."

print(txt.format(38))

We have 38.00 students.

4

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

5

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Changing the String Representation of Instances

To change the string representation of an instance, define the

__str__() and __repr__() methods. For example:

class Pair:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return 'Pair({0.x!r}, {0.y!r})'.format(self)

 def __str__(self):

 return '({0.x!s}, {0.y!s})'.format(self)

The __repr__() method returns the code representation of an

instance, and is usually the text you would type to re-create the

instance. The __str__() method converts the instance to a string, and

is the output produced by the str() and print() functions.

6

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Changing the String Representation of Instances

class Pair:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 #return 'Pair({0.x!r}, {0.y!r})'.format(self)

 #return 'Pair(%r, %r)' % (self.x, self.y)

 return f'Pair({self.x}, {self.y})‘

 def __str__(self):

 #return '({0.x!s}, {0.y!s})'.format(self)

 #return '(%s, %s)' % (self.x, self.y)

 return f'({self.x}, {self.y})‘

!r (repr), !s (str) and !a (ascii) were kept around just to ease compatibility with the

str.format alternative, you don't need to use them with f-strings.

7

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

 Customizing String Formatting

_formats = {

 'row' : '{d.x}-{d.y}',

 'col' : '\n{d.x}\n{d.y}'

 }

class Pair:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return 'Pair({0.x!r}, {0.y!r})'.format(self)

 def __str__(self):

 return '({0.x!s}, {0.y!s})'.format(self)

 def __format__(self, code):

 if code == '':

 code = 'row'

 fmt = _formats[code]

 return fmt.format(d=self)

8

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Customizing String Formatting

The __format__() method provides a hook into Python’s string

formatting function‐ality. It’s important to emphasize that the

interpretation of format codes is entirely up to the class itself.

>>> p = Pair(3,4)

>>> p

Pair(3, 4)

>>> format(p, 'col')

‘\n3\n4'

>>> print(p)

(3, 4)

>>> print('The pair is {:col}'.format(p))

The pair is

3

4

>>> print('The pair is {:row}'.format(p))

The pair is 3-4

import random

The Coin class simulates a coin that can be flipped.

class Coin:

 def __init__(self):

 self.sideup = 'Heads'

 def toss(self):

 if random.randint(0, 1) == 0:

 self.sideup = 'Heads'

 else:

 self.sideup = 'Tails'

 def get_sideup(self):

 return self.sideup

9

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

10

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

The main function.

def main():

Create an object from the Coin class

 my_coin = Coin()

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

 # Toss the coin

 print('I am tossing the coin...')

 my_coin.toss()

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

Call the main function

main()

11

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Tails

>>>

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Tails

>>>

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Heads

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

The main function.

def main():

Create an object from the Coin class

 my_coin = Coin()

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

 # Toss the coin

 print('I am tossing the coin...')

 my_coin.toss()

 # But now We are going to cheat!

 my_coin.sideup = ‘Tails'

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

Call the main function

main()
12

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Tails

>>>

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Tails

>>>

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

This side is up: Tails

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

13

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

14

The main function.

def main():

Create an object from the Coin class

 my_coin = Coin()

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

 # Toss the coin

 print('I am tossing the coin...')

 my_coin.toss()

 # Delete the proporties!

 del my_coin.sideup

 # Display the side of the coin that is facing up

 print('This side is up:', my_coin.get_sideup())

Call the main function

main()

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

15

===== RESTART: CoinToss.py =====

This side is up: Heads

I am tossing the coin...

Traceback (most recent call last):

 File "CoinToss.py", line 32, in <module>

 main()

 File "CoinToss.py", line 29, in main

 print('This side is up:', my_coin.get_sideup())

 File "CoinToss.py", line 14, in get_sideup

 return self.sideup

AttributeError: 'Coin' object has no attribute 'sideup'

16

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Rather than relying on language features to encapsulate data, Python

programmers are expected to observe certain naming conventions

concerning the intended usage of data and methods. The first

convention is that any name that starts with a single leading underscore

(_) should always be assumed to be internal implementation. For

example:
class A:

 def __init__(self):

 self._internal = 0 # An internal attribute

 self.public = 1 # A public attribute

 def public_method(self):

 ‘'‘ A public method '''

 def _internal_method(self):

Python doesn’t actually prevent someone from accessing internal

names. However, doing so is considered impolite, and may result in

fragile code.

17

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Indicating Privacy Using Double Underscores (__)

Python does not enforce this separation between the designer and

programmer. All methods and instance variables are public, so both

designers and programmers have access. Python does provide support

for the designer to indicate attributes that the programmer should not

modify directly. Whenever a class designer names an attribute with two

leading underscores, this is a message to anyone using the class that

the designer considers this a private variable. No one should change or

modify its value. To prevent this change from accidentally happening.

They can be accessed outside the class, but we must add
_ClassName to the start.

18

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class NewClass (object):

 def __init__ (self, attribute='default', name='Instance'):

 self.name = name # public attribute

 self. __attribute = attribute # a " private " attribute

 def __str__ (self):

 return '{} has attribute {}'.format(self.name, self.__attribute)

>>> inst1 = NewClass(name='Monty', attribute='Python')

>>> print(inst1)

Monty has attribute Python

>>> print(inst1.__attribute)

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 print(inst1.__attribute)

AttributeError: 'NewClass' object has no attribute '__attribute'

>>> dir(inst1)

['_NewClass__attribute', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',

'__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__weakref__', 'name']

>>> print(inst1._NewClass__attribute)

Python

19

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A property is a special member of a class.

_pi = 3.14159

class Circle:

 def __init__(self, radius):

 self.radius = radius

 @property

 def area(self):

 return self.__class__._pi * self.radius ** 2

 @property

 def perimeter(self):

 return 2 * self.__class__._pi * self.radius

20

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A property is a special member of a class.

>>> c = Circle(4.0)

>>> c.radius

4.0

>>> c.area # Notice lack of ()

50.26548245743669

>>> c.perimeter # Notice lack of ()

25.132741228718345

>>> c.perimeter = 5

Traceback (most recent call last):

 File "<pyshell#24>", line 1, in <module>

 c.perimeter = 5

AttributeError: can't set attribute

21

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Creating an Instance Without Invoking __init__.

>>> ========= RESTART: =========

>>> c = Circle.__new__(Circle)

>>> c

return 'Circle(r = {0.radius!r})'.format(self)

AttributeError: 'Circle' object has no attribute 'radius‘

>>> setattr(c, 'radius', 5)

>>> c

Circle(r = 5)

>>> c.perimeter

31.4159

p = getattr(c, 'perimeter')

>>> p

31.4159

22

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A property is a special member of a class. It gets and sets a value.

class Person:

 def __init__(self, first_name):

 self.first_name = first_name

p = Person('Serdar')

print(p.first_name)

p.first_name = 48

print(p.first_name)

del p.first_name

print(p.first_name)

23

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Person:

 def __init__(self, first_name):

 self.first_name = first_name

 # Getter function

 @property

 def first_name(self):

 return self._first_name

 # Setter function

 @first_name.setter

 def first_name(self, value):

 if not isinstance(value, str):

 raise TypeError('Expected a string')

 self._first_name = value

 # Deleter function (optional)

 @first_name.deleter

 def first_name(self):

 raise AttributeError(‘Can't delete attribute’)

d
e
f

f
i
r
s
t
_
n
a
m
e

24

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A>>> a = Person('Serdar')

>>> a.first_name = 48

Traceback (most recent call last):

 File "<pyshell#8>", line 1, in <module>

 a.first_name = 48

 File "ManagedAttributes.py", line 15, in first_name

 raise TypeError('Expected a string')

TypeError: Expected a string

>>> del a.first_name

Traceback (most recent call last):

 File "<pyshell#9>", line 1, in <module>

 del a.first_name

 File "ManagedAttributes.py", line 21, in first_name

 raise AttributeError("Can't delete attribute")

AttributeError: Can't delete attribute

25

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Person:

 def __init__(self, first_name):

 self.set_first_name(first_name)

 # Getter function

 def get_first_name(self):

 return self._first_name

 # Setter function

 def set_first_name(self, value):

 if not isinstance(value, str):

 raise TypeError('Expected a string')

 self._first_name = value

 # Deleter function (optional)

 def del_first_name(self):

 raise AttributeError("Can't delete attribute")

 # Make a property from existing get/set methods

 name = property(get_first_name, set_first_name, del_first_name)

d
e
f

f
i
r
s
t
_
n
a
m
e

26

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> a = Person('Serdar')

>>> a.name = 48

File "ManagedAttributes.py", line 15, in first_name

 raise TypeError('Expected a string')

TypeError: Expected a string

>>> del a.name

File "ManagedAttributes.py", line 21, in first_name

 raise AttributeError("Can't delete attribute")

AttributeError: Can't delete attribute

>>> a.set_first_name('Canan')

>>> a.get_first_name()

'Canan'

27

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Inheritance and the “Is a” Relationship

When one object is a specialized version of another object, there is an

“is a” relationship between them. For example, a grasshopper is an

insect. Here are a few other examples of the “is a” relationship:
• A car is a vehicle.

• A flower is a plant.

• A rectangle is a shape.

• A football player is an athlete.

• A destroyer is a ship

When an “is a” relationship exists between objects, it means that the

specialized object has all of the characteristics of the general object,

plus additional characteristics that make it special. In object-oriented

programming, inheritance is used to create an “is a” relationship among

classes.

28

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Inheritance involves a superclass and a subclass. The superclass is the

general class and the subclass is the specialized class. You can think

of the subclass as an extended version of the superclass. The subclass

inherits attributes and methods from the superclass without any of them

having to be rewritten. Furthermore, new attributes and methods may

be added to the subclass, and that is what makes it a specialized

version of the superclass.

Superclasses are also called base classes, and subclasses are also

called derived classes. Either set of terms is correct. For consistency,

this course we will use the terms superclass and subclass.

29

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

A class can inherit from one or more other classes in Python. The class

we want to derive from must first be defined. The derived class is

specified in the parentheses after the class name.
class A:

 def width(self):

 print("a, width called")

class B(A):

 def size(self):

 print("b, size called")

Create new class instance.

b = B()

Call method on B.

b.size()

Call method from derived class.

b.width()

30

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Correct use of the super() function is actually one of the most poorly

understood aspects of Python. Occasionally, you will see code written

that directly calls a method in a parent like this.

class Base:

 def __init__(self):

 print('Base.__init__')

class A(Base):

 def __init__(self):

 Base.__init__(self)

 print('A.__init__')

a = A()

Although this “works” for most code, it can lead to bizarre trouble in

advanced code involving multiple inheritance.

Base.__init__

A.__init__

31

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Base:

 def __init__(self):

 print('Base.__init__')

class A(Base):

 def __init__(self):

 Base.__init__(self)

 print('A.__init__')

class B(Base):

 def __init__(self):

 Base.__init__(self)

 print('B.__init__')

class C(A,B):

 def __init__(self):

 A.__init__(self)

 B.__init__(self)

 print('C.__init__')

32

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

You’ll see that the Base.__init__() method gets invoked twice

>>> c = C()

Base.__init__
A.__init__

Base.__init__
B.__init__

C.__init__

>>>

class Base:

 def __init__(self):

 print('Base.__init__')

class A(Base):

 def __init__(self):

 super().__init__()

 print('A.__init__')

class B(Base):

 def __init__(self):

 super().__init__()

 print('B.__init__')

class C(A,B):

 def __init__(self):

 super().__init__()

 print('C.__init__')

33

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

34

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

 each __init__() method only gets called once

>>> c = C()

Base.__init__

B.__init__

A.__init__

C.__init__

>>> C.__mro__

(<class '__main__.C'>, <class '__main__.A'>, <class

'__main__.B'>, <class '__main__.Base'>, <class 'object'>)

For every class that we define, Python computes what’s known as a

method resolution order (MRO) list. The MRO list is simply a linear

ordering of all the base classes.

35

Inheritance in Python is easier and more flexible than inheritance in

compiled languages such as Java and C++ because the dynamic

nature of Python doesn’t force as many restrictions on the language.

class Square:

 def __init__(self, side=1, x=0, y=0):

 self.side = side

 self.x = x

 self.y = y

class Circle:

 def __init__(self, radius=1, x=0, y=0):

 self.radius = radius

 self.x = x

 self.y = y

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Same Behaviour

36

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Instead of defining the x and y variables in each shape class, abstract
them out into a general Shape class, and have each class defining an

actual shape inherit from that general class.

class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

class Square(Shape):

 def __init__(self, side=1, x=0, y=0):

 super().__init__(x, y)

 self.side = side

class Circle(Shape):

 def __init__(self, r=1, x=0, y=0):

 super().__init__(x, y)

 self.radius = r

Says Square inherits from Shape

Must call __init__ method of Shape

37

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

There are two requirements in using an inherited class in Python. The

first requirement is defining the inheritance hierarchy, which you do by

giving the classes inherited from, in parentheses, immediately after the

name of the class being defined with the class keyword. In the

previous code, Circle and Square both inherit from Shape. The second

and more subtle element is the necessity to explicitly call the __init__

method of inherited classes. Python doesn’t automatically do this for

you, but you can use the super function to have Python figure out

which inherited class to use. This is accomplished in the example code
by the super().__init__(x,y) lines. Instead of using super, we

could call Shape’s __init__ by explicitly naming the inherited class

using Shape.__init__(self, x, y) which would also call the

Shape initialization function with the instance being initialized.

38

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Inheritance comes into effect when you attempt to use a method that

isn’t defined in the base classes but is defined in the superclass. To

see this, let’s define another method in the Shape class called move,

which will move a shape by a given displacement.

class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, delta_x, delta_y):

 self.x = self.x + delta_x

 self.y = self.y + delta_y

39

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> ========================= RESTART =========================

>>> class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, delta_x, delta_y):

 self.x = self.x + delta_x

 self.y = self.y + delta_y

>>> class Circle(Shape):

 def __init__(self, r=1, x=0, y=0):

 super().__init__(x, y)

 self.radius = r

>>> c = Circle(1)

>>> c.move(3, 4)

>>> c.x

3

>>> c.y

4

40

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Inheritance allows an instance to inherit attributes of the class.

Instance variables are associated with object instances, and only one

instance variable of a given name exists.
class P:

 z = “hello”

 def set_p(self):

 self.x = “Class P”

 def print_p(self):

 print(self.x)

class C(P):

 def set_c(self):

 self.x = "Class C“

 def print_c(self):

 print(self.x)

41

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> c = C()

>>> c.set_p()

>>> c.print_p()

Class P

>>> c.print_c()

Class P

>>> c.set_c()

>>> c.print_c()

Class C

>>> c.print_p()

Class C

>>>

The object c in this example is an instance of class C. C inherits from P but c

doesn’t inherit from some invisible instance of class P.

42

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> c.z; C.z; P.z

'hello'

'hello'

'hello'

>>> C.z = "Bonjour"

>>> c.z; C.z; P.z

'Bonjour'

'Bonjour'

'hello'

>>> c.z = "Ciao"

>>> c.z; C.z; P.z

'Ciao'

'Bonjour'

'hello‘

Similarly, if you try setting z through the instance c, a new instance variable is

created, and you end up with three different variables.

Class

instance

43

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

When comparing objects, a hash code can be used for better speed.
A dictionary uses hashes. With __hash__ we can implement custom

hash computations on a class. If one value is unique on the class, it

makes an excellent hash.
class Snake:

 def __init__(self, name, color, unique_id):

 self.name = name

 self.color = color

 self.unique_id = unique_id

 def __hash__(self):

 # Hash on a unique value of the class.

 return int(self.unique_id)

Hash now is equal to the unique ID values used.

p = Snake("Python", "green", 55)

print(hash(p))

p = Snake("Python", "green", 105)

print(hash(p))

44

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

int_val = 42

str_val = 'bco601'

flt_val = 45.356

Printing the hash values.

Notice Integer value doesn't change

print("The integer hash value is : " + str(hash(int_val)))

print("The string hash value is : " + str(hash(str_val)))

print("The float hash value is : " + str(hash(flt_val)))

The integer hash value is : 42

The string hash value is : 5061135356237158578

The float hash value is : 820880111280078893

tuple are immutable

tuple_val = (1, 2, 3, 4, 5)

list are mutable

list_val = [1, 2, 3, 4, 5]

Printing the hash values.

print("The tuple hash value is : " + str(hash(tuple_val)))

print("The list hash value is : " + str(hash(list_val)))

The tuple hash value is : -5659871693760987716

TypeError: unhashable type: 'list'

45

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

46

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __eq__(self, other):

 if isinstance(other, Student):

 return self.name == other.name and self.age == other.age

 return False

 def __hash__(self):

 return hash((self.name, self.age))

Creating instances

person1 = Student("Nihat", 30)

person2 = Student("Duru", 25)

person3 = Student("Nihat", 30)

Using the custom objects in a set

students = {person1, person2, person3}

print(len(students)) #2 person1 and person3 are equal and have the same hash

Checking hashes

print(hash(person1)) # Output: hash value of person1

print(hash(person2)) # Output: hash value of person2

print(hash(person3)) # Output: same hash value as person1

-6256235285033312628

4911415774109879472

-6256235285033312628

47

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

48

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Creating instances

person1 = Student("Nihat", 30)

person2 = Student("Duru", 25)

person3 = Student("Nihat", 30.1)

-6256235285033312628

4911415774109879472

1570563656813361925

• Usually comparing objects (which may involve several levels of recursion) is expensive.
• Preferably, the hash() function is an order of magnitude less expensive.

• Comparing two hashes is easier than comparing two objects.

49

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Method Overloading is a feature that allows a class to have two or

more methods having same name, if their argument lists are different.

Argument lists could differ in –

 1. Number of parameters.

 2. Data type of parameters.

 3. Sequence of Data type of parameters.

Method overloading is also known as Static Polymorphism.

def add_bullet(sprite, start, direction, speed):

def add_bullet(sprite, start, to, speed, acceleration):

For bullets that are controlled by a script

def add_bullet(sprite, script):

for bullets with curved paths

def add_bullet(sprite, curve, speed):

class Character(object):

 # your character __init__ and other methods go here

 def add_bullet(self, sprite=default, start= 0,

 direction=None):

 if direction is None:

 # just use sprite and start

 else:

 # use sprite, start and direction

direction will be none, so enter the ‘if’ clause

add_bullet(‘hollowPoint’, 100)

direction isn't None, it's 90, so enter the 'else' clause

add_bullet(‘hollowPoint’, 100, 90)

50

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

51

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

class Character(object):

 # your character __init__ and other methods go here

 def add_bullet(self, *args, **kwargs):

 # args -- tuple of anonymous arguments

 # kwargs -- dictionary of named arguments

*args, **kwargs ???

>>> def f(*args, **kwargs):

 print ('args: ', args, ' kwargs: ', kwargs)

>>> f('a')

args: ('a',) kwargs: {}

>>> f('bullet = hollow')

args: ('bullet = hollow',) kwargs: {}

>>> f(bullet = 'hollow')

args: () kwargs: {'bullet': 'hollow'}

>>> f('hollowPoint', 100)

args: ('hollowPoint', 100) kwargs: {}

>>> f('hollowPoint', 100, 90)

args: ('hollowPoint', 100, 90) kwargs: {}

>>> f('hollowPoint', 100, 90, speed = 120)

args: ('hollowPoint', 100, 90) kwargs: {'speed': 120}

>>>

52

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

53

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

Serializing a object is the process of converting the object to a stream

of bytes that can be saved to a file for later retrieval. In Python, object

serialization is called pickling. The Python standard library provides a
module named pickle that has various functions for serializing, or

pickling, objects. Once you import the pickle module, you perform the

following steps to pickle an object:

• You open a file for binary writing.

• You call the pickle module’s dump method to pickle the object and

write it to the specified file.

• After you have pickled all the objects that you want to save to the file,

you close the file.

54

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> import pickle

>>> telefonrehberi = {'Hacettepe‘ : '312-2970000',

 'SBF‘ : ‘312-2976890’,

 'SA' : ‘312-2976893’}

>>> output_file = open('phonebook.dat', 'wb')

>>> pickle.dump(telefonrehberi, output_file)

>>> output_file.close()

55

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

>>> import pickle

>>> input_file = open('phonebook.dat', ‘rb')

>>> pb = pickle.load(input_file)

>>> pb

{'SA': '312-2976893', 'Hacettepe': '312-2970000', 'SBF': '312-

2976890'}

>>>

>>> input_file.close()

56

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

import pickle

class SimpleObject:

 def __init__(self, name):

 self.name = name

 l = list(name)

 l.reverse()

 self.name_backwards = ''.join(l)

 return

data = []

data.append(SimpleObject('pickle'))

data.append(SimpleObject('cPickle'))

data.append(SimpleObject('last'))

output_file = open('mySimpleObjects.dat', 'wb')

pickle.dump(data, output_file)

output_file.close()

57

CLASSES AND OBJECT-ORIENTED

PROGRAMMING

import pickle

input_file = open('mySimpleObjects.dat', 'rb')

mydata = pickle.load(input_file)

for i, o in enumerate(mydata):

 print(f'myData {i} : {o.name} ({o.name_backwards})')

input_file.close()

myData 0 : pickle (elkcip)

myData 1 : cPickle (elkciPc)

myData 2 : last (tsal)

