PYTHON
PROGRAMMING

Graphical User Interface I
#12

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Python's standard library includes Tcl/Tk—Tcl is an almost syntax-free
scripting language and Tk is a GUI library written in_Tcl and C.
Python'’s tkinter module provides Python bindings for the Tk GUI library.
Tk has three advantages compared with the other GUI libraries that are
available for Python.

First, it is installed as standard with Python, so it is always available;
second, it is small (even including Tcl);

and third, it comes with IDLE which is very useful for experimenting with
Python and for editing and debugging Python programs.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Tcl Developer Xchange »

HOME ABOUT TCL/TK SOFTWARE CORE DEVELOPMENT COMMUNITY DOCUMENTATION
SEARCH @
!
Welcome to the Tcl Developer Xchange! el Conference News
Join the many thousands of software developers who are already more productive The 20t European OpenACS and Tcl conference
with help from the Tcl programming language and the Tk graphical user interface took place in Vienna, on July 11th and 12th 2024
toolkit.

Please visit the main conference page for details.

Tel (Tool Command Language) is a very powerful but easy to learn dynamic programming Older conference info
language, suitable for a very wide range of uses, including web and desktop applications,
networking, administration, testing and many more. Open source and business-friendly, Tcl

is @ mature yet evolving language that is truly cross platform, easily deployed and highly
extensible. Latest Software Releases

TcliTk 9.0.0 Source
Tcl/Tk 8.6.15 Source
All Tcl/'Tk Downloads

Tk is a graphical user interface toolkit that takes developing desktop applications to a
higher level than conventional approaches. Tk is the standard GUI not only for Tcl, but for
many other dynamic languages, and can produce rich, native applications that run

unchanged across Windows, Mac OS X, Linux and more. ActiveTcl Multi-platform and commercially
supported
Activestate BAWT Multi-platform
Komﬂdﬂ Magicsplat Windows
» Learn more IDE IronTcl Windows
» Get Tel/Tk (9.0) (8.6) Tol debugger, code intel, unit testing + more ;kllli_lla:'cgizl Jé.-.* 6,2%0% e
» Browse the Tcler's Wiki Wiki Category: Distributions

» Read the reference pages and other documentation

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

The three most well-established crossplatform GUI libraries with Python
bindings are PyGtk (www.pygtk.org), PyQt
(www.riverbankcomputing.com/software/pygt), and wxPython
(www.wxpython.oxrg). All three of these offer far more widgets than
Tk, produce better-looking GUIs and make it possible to create custom
widgets drawn in code.

All of them are easier to learn and use than Tk and all have more and
much better Python-oriented documentation than Tk. And in general,
programs that use PyGtk, PyQt, or wxPython need less code and
produce better results than programs written using Tk.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Every tkinter program consists of these things:

Tk

Windows, buttons, scrollbars, text areas, and other widgets—
anything that you can see on the computer screen (Generally, the
term widget means any useful object; in programming, it is short for
“‘window gadget.”)

Modules, functions, and classes that manage the data that is being
shown in the GUI—you are familiar with these; they are the tools
you've seen so far in this book.

An event manager that listens for events such as mouse clicks and
keystrokes and reacts to these events by calling event handler
functions

was written by John Ousterhout while at Berkeley.

Tkinter was written by Steen Lumholt and Guido van Rossum.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Here is a small but complete tkinter program: %t B

tkinter
window = tkinter.Tk()
Code to add widgets will go here...
window.mainloop ()

Tk is a class that represents the root window of a tkinter GUI. This root
window’s mainloop method handles all the events for the GUI, so it's
Important to create only one instance of Tk.

The root window is initially empty. If the window on the screen is closed,
the window object is destroyed (though we can create a new root
window by calling Tk() again).

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

The call on method mainloop doesn’t exit until the window is destroyed
(which happens when you click the appropriate widget in the title bar of
the window), so any code following that call won't be executed until
later:

tkinter
window = tkinter.Tk()
window.mainloop ()
print (")

When you try this code, you'll see that the call on function print doesn'’t
get executed until after the window is destroyed. That means that if you
want to make changes to the GUI after you have called mainloop, you
need to do it in an event-handling function.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Widget Description
Button A clickable button
Canvas An area used for drawing or displaying images

Checkbutton A clickable box that can be selected or unselected

Entry A single-line text field that the user can type in
Frame A container for widgets

Label A single-line display for text

Listbox A drop-down list that the user can select from
Menu A drop-down menu

Message A multiline display for text

Menubutton ~ An item in a drop-down menu
Text A multiline text field that the user can type in

TopLevel An additional window

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

window : This term has different meanings in different contexts, but in
general it refers to a rectangular area somewhere on your display
screen.

top-level window : A window that exists independently on your screen. It
will be decorated with the standard frame and controls for your system's
desktop manager.

widget : The generic term for any of the building blocks that make up
an application in a graphical user interface.

frame : In tkinter, the Frame widget is the basic unit of organization for
complex layouts.

child, parent : When any widget is created, a parent-child relationship is
created. For example, if you place a text label inside a frame, the frame
IS the parent of the label.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Labels are widgets that are used to display short pieces of text.

tkinter
window = tkinter.Tk()
label = tkinter.Label (window, text='This is our label.')
label .pack()
window.mainloop () {%ﬁ;TETEEJ]

This is our label.

Method calll 1abel.pack ()| IS crucial. Each widget has a method called
pack that places it in its parent widget and then tells the parent to resize
Itself as necessary. If we forget to call this method, the child widget (in
this case, Label) won't be displayed or will be displayed improperly.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Labels display text. Often, applications will want to update a label's text
as the program runs to show things like the name of a file or the time of
day. One way to do this is simply to assign a new value to the widget's
text using method config:

>>> tkinter

>>> window = tkinter.Tk()

>>> label = tkinter.Label (window, text='‘First Label.')
>>> label .pack()

>>> label.config(text='Second Label.')

Serdar ARITAN

PYTHON
PROGRAMMING

Serdar ARITAN

ion,

Label (master, opt

W =

Option

anchor

bitmap
bd

cursor

font

fg

height

image
justify
padx
pady

relief

text

textvariable

underline

width

wraplength

GUI : Using Module Tkinter

Description

This options controls where the text is positioned if the widget has more space
than the text needs. The default is anchor=CENTER, which centers the text in the
available space.

The normal background color displayed behind the label and indicator.

Set this option equal to a bitmap or image object and the label will display that
graphic.

The size of the border around the indicator. Default is 2 pixels.

If you set this option to a cursor name (arrow, dot etc.), the mouse cursor will
change to that pattern when it is over the checkbutton.

If you are displaying text in this label (with the text or textvariable option, the font
option specifies in what font that text will be displayed.

If you are displaying text or a bitmap in this label, this option specifies the color of
the text. If you are displaying a bitmap, this is the color that will appear at the
position of the 1-bits in the bitmap.

The vertical dimension of the new frame.

To display a static image in the label widget, set this option to an image object.

Specifies how muitiple lines of text will be aligned with respect to each other:

LEFT for flush left, CENTER for centered (the default), or RIGHT for right-justified.

Extra space added to the left and right of the text within the widget. Default is 1.
Extra space added above and below the text within the widget. Default is 1.

Specifies the appearance of a decorative border around the label. The default is
FLAT; for other values.

To display one or more lines of text in a label widget, set this option to a string
containing the text. Internal newlines ("\n") will force a line break.

To slave the text displayed in a label widget to a control variable of class
StringVar, set this option to that variable.

You can display an underline (_) below the nth letter of the text, counting from 0,
by setting this option to n. The default is underline=-1, which means no
underlining.

Width of the label in characters (not pixels!). If this option is not set, the label will
be sized to fit its contents.

You can limit the number of characters in each line by setting this option to the
desired number. The default value, 0, means that lines will be broken only at
newlines.

PYTHON GUI : Using Module Tkinter
PROGRAMMING

from tkinter ‘mport *
window = Tk() []
Thro |-]
label = Label (window, text = 'Hello', }{: 1«
background = 'white', €110
foreground = 'red',
font = 'Times 20",
relief = 'groove',

borderwidth = 3)

mainloop () !

label.grid(row=0, column=0) =
> 7

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

from tkinter import *

root = Tk()
logo = Photolmage (file="python-logo-glassy.gif")
wl = Label (root, image=logo);pack(side=“ri ht")
explanation = """At present, only GIF and PPM/PGM
formats are supported, but an interface — —
exists to allow additional image file

formats to be added easily."""

w2 = Label (root,)
justify=LEFT, p s
padx = 10, s i

text=explanation) .pack (side="left")

root.mainloop ()

Try using gzddl

Serdar ARITAN

PYTHON GUI : Using Module Tkinter

PROGRAMMING

4 tk (o] @ (w3 J
from tkinter import * Red Text in Times Font
root = Tk() 4
Label (root , Blue Text in Verdana bold
text="Red Text in Times Font",
fg = "red",
font = "Times") .pack()

Label (root,

text="Green Text in Helvetica Font",

fg = "light green",

bg = "dark green",

font = "Helvetica 16 bold italic") .pack()
Label (root,

text="Blue Text in Verdana bold",

fg = "blue",

bg = "yellow",

font = "Verdana 10 bold") .pack()
root.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

port tkinter : tk

74 counting... [i”@&]

counter = 0 15
=f counter label (label): Stop [
=f count():
globs counter

counter += 1

label.config(text=str (counter))

label.after (1000, count)
count ()

root = tk.Tk()

root.title("Counting Seconds")

label = tk.Label (rocot, fg="blue")

label.pack()

counter label (label)

button = tk.Button(root, text='Stop', width=25, command = root.destroy)
button.pack()

root.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Suppose we want to display a string, such as the current time or a score
In a game, in several places in a GUl—the application’s status bar,
some dialog boxes, and so on. Calling method config on each widget
every time there is new information isn't hard, but as the application
grows, so too do the odds that we’'ll forget to update at least one of the
widgets that's displaying the string. What we really want is a string that
‘knows” which widgets care about its value and can alert them itself
when that value changes.

Python’s strings, integers, floating-point numbers, and Booleans
are immutable, so module tkinter provides one class for each of the
immutable types: for str, for int, for bool,
and for float.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter
window = tkinter.Tk()

data = tkinter.StringVar()<::::::j

data.set('Data to display')

label = tkinter.Label (window, textvariable = data) <::::::j
label .pack()
window.mainloop ()

Notice that this time we assign to the textvariable parameter of the
label rather than the text parameter. The values in tkinter containers are
set and retrieved using the methods set and get. Whenever a set
method is called, it tells the label, and any other widgets it has been
assigned to, that it's time to update the GUI. There is one small trap
here for newcomers: because of the way module tkinter iS Structured,
you cannot create a stringvar Or any other mutable variable until you
have created the root Tk window.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Getting Information from the User with the Entry Type: Two widgets let
users enter text. The simplest one is Entry, which allows for a single line
of text. If we associate a stringvar With the Entry, then whenever a user
types anything into that Entry, the stringvar’s value will automatically be

updated to the contents of the Entry.

tkinter 0 i
window = tkinter.Tk() L JESR BOR 555
frame = tkinter.Frame (window) Merhaba
frame.pack() Merhabd

= tkinter.StringVar ()

label = tkinter.Label (frame, textvariable=)
label .pack()
entry = tkinter.Entry(frame, textvariable=)
entry.pack()
window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Grouping Widgets with the Frame Type: A tkinter Frame is a container,
much like the root window is a container. Frames are not directly visible
on the screen; instead, they are used to organize other widgets.

tkinter
window = tkinter.Tk() (

frame = tkinter.Frame (window)
frame.pack()

Tl |- 3| (3|
First label

Second label

first = tkinter.Label (frame, text=' ") Third label
first.pack()

second = tkinter.Label (frame, text=' ")
second.pack ()

third = tkinter.Label (frame, text=' ")

third.pack()
window.mainloop ()

Note that we call pack on every widget; if we omit one of these calls,
that widget will not be displayed.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

| U] o
import tkinter e First label
window = tkinter.Tk() P B e
frame = tkinter.Frame(window) Third label
frame.pack()

frame2=tkinter.Frame (window, borderwidth=4, relief=tkinter.GROOVE)
frame2.pack()

first = tkinter.Label (frame, text='First label')

first.pack()

second = tkinter.Label (frame2, text='Second label')

second.pack ()

third = tkinter.Label (frame2, text='Third label')

third.pack()

window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Radio Buttons: sometimes called option button, is a graphical user
Interface element of Tkinter, which allows the user to choose (exactly)
one of a predefined set of options. Radio buttons can contain text or

Images. r —
tkinter * 74 th = EcR =

Choose a programming language:
root = Tk() 2 ol
v = IntVar()

" Python

" Perl

Label (root,
text="""Choose a programming language:""",
justify = LEFT, padx = 20) .pack()
Radiobutton (root, text="Python" ,padx = 20,
variable = v, value=l) .pack (anchor=W)
Radiobutton (root, text="Perl", padx = 20,
variable = v, value=2) .pack (anchor=W)
mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

7

from tkinter import * 74 tk [B=8 O %=
root = Tk() Chooseyogrfavourite ‘
programming language:

v = IntVar () & Python

v.set(l) # initializing the choice, i.e. Python O Perl

languages = [("Python",1), ("Perl",2), O Java
("Java",3), ("C++",4),("C",35)] O Cer

Jdef ShowChoice() : o -

print(v.get())
Label (root, text="""Choose your favourite programming language:""",

justify = LEFT, padx = 20) .pack()

for txt, val in languages:
Radiobutton (root, text=txt, padx = 20, variable=v,

command=ShowChoice, value = val) .pack(anchor = W)
mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

for txt, val in languages:
Radiobutton (root,
text = txt,
indicatoron = 0,
padx = 20,
width = 40,

variable = v,
command = ShowChoice,
value = val) .pack (anchor = W)

7% tk =8E=E~"
Choose your favourite programming language:
Python
Perl

Java
C++
C

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Checkboxes, also known as tickboxes or tick boxes or check boxes, are
widgets that permit the user to make multiple selections from a number
of different options. This is different to a radio button, where the user
can make only one choice.

7o) -O-)
tkinter * ™ male Although there are three
master = Tk() Wi different “geometry

varl = IntVar ()
Checkbutton (master, text=" ",
variable=varl) .grid (row=0, sticky=W)

managers” in tkinter,
prefers the .grid()

var2 = IntVar() geometry manager. This
Checkbutton (master, text=" " manager treats every
variable=var2) .grid(row=1l, sticky=W) window or frame as a
mainloop () table—a gridwork of rows

and columns.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Entry widgets are the basic widgets of tkinter used to get input, i.e. text
strings, from the user of an application. This widget allows the user to
enter a single line of text. If the user enters a string, which is longer than
the available display space of the widget, the content will be scrolled.
This means, that the string cannot be seen in its entirety.

tkinter *
74 tk o[- @ | (3]
master = Tk() First Name
Label (master, text=" ") .grid (row=0) Lt Name
Label (master, text=" ") .grid (row=1)

el = Entry(master)

e2 = Entry(master)
el.grid(row=0, column=1)
e2.grid(row=1, column=1)
mainloop()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter *

show_entry fields():

print (" " % (el.get(), e2.get()))
master = Tk() _ 7% th ===
Label (master, text=" ") .grid (row=0) SR
Label (master, text=" ") .grid (row=1) Last Name
el = Entry(master) :

Cuit Show

e2 = Entry (master)
el.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button (master, text=' ', command=master.quit) .grid(row=3,
column=0, sticky=W, pady=4)
Button (master, text=' ', command=show entry fields) .grid(row=3,

column=1, sticky=W, pady=4)
mainloop()

Serdar ARITAN

PYTHON
PROGRAMMIN

tkinter *

show_entry fields():

print ("
el .delete (0,END)
e2.delete (0,END)

master = Tk()
Label (master, text="
Label (master, text="

el = Entry (master)

e2 = Entry (master)
el.insert (10, ")
e2.insert(10,™ ")
el.grid(row=0, column=1)
e2.grid(row=1l, column=1)

Button (master, text='
Button (master, text='
pady=4)

mainloop()

Serdar ARITAN

GUI : Using Module Tkinter

" % (el.get(), e2.get()))

The delete () method has the

format delete(first, last=None).

If only one number is given, it

") .grid(row=0) deletes the character at index.

") grid(zow=1) If two are given, the range

from “first" to "last" will be

we want to start the Entry deleted. Use delete(0, END)
fields with default values, e.g. to delete all text in the widget.

we fill in “ " and

', command=master.quit) .grid(row=3, column=0, sticky=W, pady=4)
', command=show_entry fields) .grid(row=3, column=1, sticky=W,

PYTHON
PROGRAMMING

The tkinter.ttk module provides access to the Tk themed widget set,
introduced in Tk 8.5. To start using Ttk, import its module:

GUI : Using Module Tkinter

tkinter ttk

To override the basic Tk widgets, the import should follow the Tk
import:

tkinter *
tkinter. ttk *

That code causes several tkinter.ttk widgets (Button, Checkbutton,
Entry, Frame, Label, LabelFrame, Menubutton, PanedWindow,

Radiobutton, Scale and Scrollbar) to automatically replace the Tk
widgets.

Serdar ARITAN

PYTHON
PROGRAMMING

GUI : Using Module Tkinter

Ttk comes with 17 widgets, eleven of which already existed in tkinter:
Button, Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton,
PanedWindow, Radiobutton, Scale and Scrollbar. The other six are
new: Combobox, Notebook, Progressbar, Separator, Sizegrip and
Treeview. And all them are subclasses of Widget.

tk code:

1l = tkinter.Label (text="
12 = tkinter.Label (text="

ttk code:
style = ttk.Style()
style.configure ("

background=" ")
1l = ttk.Label (text="
12 = ttk.Label (text="

Serdar ARITAN

" ’ fg:" " , bg:"

" ’ fg:" " , bg:"

", foreground=" ",
" ’ Style=" ")
" , Style=" ")

")
")

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter ttk
tkinter

root = tkinter.Tk ()

ttk.Style () .configure (" ", padding=6, relief=" ,
background=" ")

btn = ttk.Button (text=" ")
btn.pack()

root.mainloop ()

Serdar ARITAN

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter
tkinter ttk

Mo [| w

root = tkinter.Tk()

style = ttk.Style()

style.map (" ",
foreground=| (' v,)y, (' v, 31,
background=| (' v, v,),
(' ", ")]
)
colored btn = ttk.Button (text=" ", style=" ") .pack()

root.mainloop ()

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter *
tkinter ttk
root = Tk()
content = ttk.Frame (root)
frame = ttk.Frame (content, borderwidth=5, relief=" ", width=200, height=100)
namelbl = ttk.Label (content, text=" ")
name = ttk.Entry(content)
onevar = BooleanVar()
twovar = BooleanVar ()
threevar = BooleanVar ()
onevar.set (True)
twovar.set (False)
threevar.set (True)

one = ttk.Checkbutton (content, text=" ", variable=onevar, onvalue=True)

two = ttk.Checkbutton (content, text=" ", variable=twovar, onvalue=True)

three = ttk.Checkbutton(content, text=" ", variable=threevar, onvalue=True)

ok = ttk.Button(content, text=" ") . .
cancel = ttk.Button(content, text=" ") =% th o
content.grid(column=0, row=0) L

frame.grid (column=0, row=0, columnspan=3, rowspan=2) Nabne

namelbl.grid(column=3, row=0, columnspan=2)
name.grid(column=3, row=l, columnspan=2)
one.grid(column=0, row=3)
two.grid(column=1, row=3)
three.grid(column=2, row=3)
ok.grid(column=3, row=3) | One Two | Three Olkay ” Cancel |
cancel.grid(column=4, row=3)

root.mainloop ()
Serdar ARITAN

PYTHON

tkinter
root = Tk()
Button (root,
Button (root,
Button (root,
anchor=NE)
Button (root,
Button (root,
Button (root,
Button (root,
Button (root,
Button (root,
Button (root,

PROGRAMMING

*
text="A")
text="B")
text="C")
text="D")
text="E")
text="F")
text="G")
text="H")
text="1")
text="J")

root.mainloop ()

Serdar ARITAN

.pack (side=LEFT, expand=YES, fill=Y)
.pack (side=TOP, expand=YES, f£ill=BOTH)
.pack (side=RIGHT, expand=YES, fill=NONE,

GUI : Using Module Tkinter

¢ (=l ==

E

|
T4

A H

J11
s

.pack (side=LEFT, expand=NO, fill=Y)
.pack (side=TOP, expand=NO, £fill=BOTH)
.pack (side=RIGHT, expand=NO, fill=NONE)
.pack (side=BOTTOM, expand=YES, fill=Y)
.pack (side=TOP, expand=NO, £ill=BOTH)
.pack (side=RIGHT, expand=NO)

.pack (anchor=SE)

PYTHON GUI : Pack Geometry Manager
PROGRAMMING

« When you insert button A in the root frame, it captures the
left-most area of the frame, it expands, and fills the Y

dimension.

« When you insert the next button, B, into the root window, it ¢ =)=
picks up space from the remaining area but aligns itself to ’ ‘
TOP, expand-fills the available area, and fills both X and Y y : ﬂ
coordinates of the available space. Al | H

 The third button, C, adjusts to the right-hand side of the
remaining space.

« The anchor attribute used in some lines provides a means
to position a widget relative to a reference point. If the
anchor attribute is not specified, the pack manager places
the widget in the center of the available space or the
packing box.

Serdar ARITAN

PYTHON GUI : Grid Geometry Manager
PROGRAMMING

7w ey

tkinter * Username

root = Tk() Password
Label (root, text="Username") .grid(row=0, sticky=W) g

Label (root, text="Password") .grid(row=1l, sticky=W)

Entry (root) .grid(row=0, column=1, sticky=E)

Entry (root) .grid(row=1, column=1, sticky=E)

Button (root, text="Login") .grid(row=2, column=1, sticky=E)

root.mainloop ()

 the grid position defined in terms of rows and column positions for an
imaginary grid table spanning the entire frame.

 The width of each column (or height of each row) is automatically
decided by the height or width of the widgets contained in the cell.

 You can use the argument sticky=N+S+E+W to make the widget

expandable to fill the entire cell of the grid.

Serdar ARITAN

PYTHON GUI : Grid Geometry Manager
PROGRAMMING e e— e

Find: Find

Replace: Find All

[~ Match whole word only Direction: Replace

tkinter hy [~ Match Case T Up Down Replace All
top = Tk() -
top.title('Find & Replace')
Label (top, text="Find:") .grid(row=0, column=0, sticky='e')
Entry (top) .grid (row=0, column=1,padx=2,pady=2,sticky='we',columnspan=9)
Label (top, text="Replace:").grid(row=l, column=0, sticky='e')
Entry (top) .grid (row=1, column=1,padx=2,pady=2,sticky="'we',6 columnspan=9)
Button (top, text="Find") .grid(row=0, column=10, sticky='ew', padx=2, pady=2)
Button (top, text="Find All") .grid(row=1l, column=10, sticky='ew',6 padx=2)
Button (top, text="Replace") .grid(row=2, column=10, sticky='ew',6K padx=2)
Button (top, text="Replace All") .grid(row=3, column=10, sticky='ew',6 padx=2)
Checkbutton (top, text='Match whole word only') .grid(row =2, column=1l, columnspan=4,
sticky='w"')
Checkbutton (top, text='Match Case') .grid(row =3, column=1, columnspan=4, sticky='w')
Checkbutton (top, text='Wrap around') .grid(row =4, column=1, columnspan=4, sticky='w')
Label (top, text="Direction:") .grid(row=2, column=6, sticky='w'")
Radiobutton (top, text='Up', value=l) .grid(row=3, column=6, columnspan=6, sticky='w')
Radiobutton (top, text='Down', value=2) .grid(row=3, column=7, columnspan=2, sticky='e')
top.mainloop ()

[wWrap around

Serdar ARITAN

PYTHON GUI : Grid Geometry Manager
PROGRAMMING

 Notice how just 14 lines of core grid manager code generates a
complex layout such as the one shown in the following screenshot.
In contrast, developing this with the pack manager would have been
much more tedious.

« Another grid option that you can sometimes use is the
widget.grid forget() Method. This method can be used to hide the
widget from the screen. When you use this option, the widget exists
In its place but becomes invisible. The hidden widget may be made
visible again but any grid options that you had originally assigned to
the widget will be lost. e e

Find: Find

Replace: Find All

I” Match whole word only Direction: Replace

I” Match Case T Up @ Down Replace All

I~ Wrap around

Serdar ARITAN

PYTHON GUI : Place Geometry Manager
PROGRAMMING

Absolute Placement ‘

Relative ‘

from tkinter mport *

root = Tk()

Absolute positioning
Button (root, text="Absolute Placement") .place(x=20, y=10)
Relative positioning

Button (root, text="Relative") .place(relx=0.8, rely=0.2,

relwidth=0.5, width=10, anchor = NE)

root.mainloop ()

Serdar ARITAN

7 =)

PYTHON GUI : Place Geometry Manager
PROGRAMMING

« The place geometry manager is the most rarely used geometry
manager in tkinter.
« The important options for place geometry include:
Absolute positioning (specified in terms of x=N Or y=N)
Relative positioning (key options Iinclude relx, rely,
relwidth, and relheight)
You may not see much of a difference between absolute and relative
positions simply by looking at the code or the window frame. If,
however, you try resizing the window, you will notice that the button
placed absolutely does not change its coordinates, while the relative
button changes its coordinates and size to fit the new size of the root
window. I o

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Tkinter provides three modules that can create dialog
windows for you

The tkinter.messagebox dialogs module, provides an assortment of
common popups for simple tasks.

The tkinter.filedialog, allows the user to browse for files.

The tkinter.colorchooser module, allows the user to select a
color.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Tkinter provides a set of dialogues, which can be used to display
message boxes, showing warning or errors, or widgets to select files
and colours. There are also simple dialogues, asking the user to enter
string, integers or float numbers.

r',-"'.é Verify £3)

{9} Really quit?

es Mo

Serdar ARITAN

PYTHON
PROGRAMMING

tkinter *
tkinter .messagebox

answer () :
showerror (" "“,o"

callback() :
askyesno (' ',
showwarning (' ',

showinfo (' v,
Button (text="

Button (text="
mainloop ()

Serdar ARITAN

l):
")

")

', command=callback) .pack (£ill=X)
', command=answer) .pack (£ill=X)

: Using Module Tkinter

b =] X
Quit

Answer

")

r',-"'.é Verify

{0} Really quit?

es

Mo

Serdar ARITAN

PYTHON
Y PROGRAMMING

askokcancel (title=None, message=None, **gptions)

Ask if operation should proceed; return true if the answer is ok
askquestion (title=None, message=None, **options)

Ask a question

askretrycancel (title=None, message=None, **options)
Ask if operation should be retried; return true if the answer is yes
askyesno (title=None, message=None, **options)

Ask a question; return true if the answer is yes

askyesnocancel (title=None, message=None, **options)

Ask a question; return true if the answer is yes, None if cancelled.

showerror (title=None, message=None, **options)
Show an error message

showinfo (title=None, message=None, **options)
Show an info message

showwarning (title=None, message=None, **options)
Show a warning message

GUI : Using Module Tkinter

PYTHON GUI : Using Module Tkinter
PROGRAMMING

mport tkinter

nport tkinter.messagebox

window = tkinter.Tk ()

def helloCallBack():
tkinter.messagebox.showwarning("Hello Python", "Hello

World")
button = tkinter.Button(window, text = "Hello", command =
helloCallBack) (% tiaie Poiren =

button.pack ()

1 i . Hello World
window.mainloop () |, HelloWor

OK

Serdar ARITAN

PYTHON

PROGRAMMING

tkinter *

tkinter.filedialog askopenfilename

tkinter .messagebox showerror
callback():

fname = askopenfilename (filetypes=(("
("
("

fname:
print (fname)
showerror (" w_on

Button (text=" ', command=callback)
mainloop ()

Serdar ARITAN

Network

GUI : Using Module Tkinter

==
o @t

.pack (£i11=X)

"))

" % fname)

PYTHON GUI : Using Module Tkinter
PROGRAMMING

A geometry string is a standard way of describing the

tkinter * size and location of a top-level window on a desktop.
tkinter.colorchooser * 'wxhxty

The w and h parts give the window width and height in

mGui = Tk() pixels. They are separated by the character 'x'. +x and

mGui . geometry (" ") ty, specify that the left and top sides of the window

mGui . title (" ") should be x and y pixels from the left side of the

desktop.

tkinter.colorchooser.askcolor returns a two-item tuple like
this: ((128.5, 64.25, 64.25), '#804040"')
getColor () :
color_choice = colorchooser.askcolor()[1l] # get the hex code
color = Label (mGui, bg=color choice)
color.pack()
hexcode = Label (mGui, text=" “ +color_choice)
hexcode.pack()

button = Button (mGui, text=" ", command = getColor)
button.place (x=0, y=0)
mGui .mainloop ()

Serdar ARITAN

PYTHON
PROGRAMMING

Serdar ARITAN

AC

©O = i N

Class Work
Design a GUI for a Calculator

8 9 X
5 6 -
2 3 +

