PYTHON
PROGRAMMING

Graphical User Interface Il

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Using a stringVar t0 connect a text-entry box and a label is the first step
toward separating models (How do we represent the data?), views (How do
we display the data?), and controllers (How do we modify the data?), which
IS the key to building larger GUIs (as well as many other kinds of applications).

IS something that displays information to the user, like Label. Many views,
like Entry, also accept input, which they display immediately. The key is that
they don't do anything else.

, on the other hand, store data, like a piece of text or the current
inclination of a telescope. They also don't do calculations; their job is simply to
keep track of the application’s current state.

are the pieces that convert user input into calls on functions in
the model that manipulate the data.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter
The controller.
click(): €
counter.set (counter.get() + 1)
__name == ' main ':
window = tkinter.Tk()
The model.
counter = tkinter.IntVar()
counter.set (0)
The views.
frame = tkinter.Frame (window)
frame.pack()
button = tkinter.Button(frame, text='Click', command=click)
button.pack ()
label = tkinter.Label (frame, textvariable=counter)
label .pack()
Controllers -> Start the machinery!
window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

The first two arguments used to construct the Button should be
familiar by now. The third, command=click, tells it to call function
click each time the user presses the button. This makes use of the
fact that in Python a function is just another kind of object and can be
passed as an argument like anything else.

Function click in the previous code does not have any parameters
but uses variable counter, which is defined outside the function.
Variables like this are called global variables, and their use should be
avoided, since they make programs hard to understand.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

port tkinter

window = tkinter.Tk()

The model.

counter = tkinter.IntVar ()

counter.set (0)

Two controllers.

def click up(): €
counter.set (counter.get() + 1)

def click down() : ¢
counter.set (counter.get() - 1)

The views.

frame = tkinter.Frame (window)

frame.pack()

button = tkinter.Button(frame, text='Up', command=click up)
button.pack()
button = tkinter.Button(frame, text='Down', command=click down)

button.pack()
label = tkinter.Label (frame, textvariable=counter)
label.pack()

window.mainloop ()
Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter

window = tkinter.Tk()
The model.
counter = tkinter.IntVar()
counter.set (0)
General controller.

click (var, value):

var.set(var.get() + value)
The views.
frame = tkinter.Frame (window)
frame.pack()

button = tkinter.Button (frame, text= ', command= : click(counter, 1))
button.pack()
button = tkinter.Button (frame, text= ', command= : click(counter,-1))

button.pack()

label = tkinter.Label (frame, textvariable=counter)
label .pack()

window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter
Counter:
"""A simple counter GUI using object-oriented programming."""
__init_ (self, parent):
"nw"Create the GUI."""
Framework.
self.parent = parent
self.frame = tkinter.Frame (parent)
self. frame.pack()
Model.
self.state = tkinter.IntVar()
self.state.set(1l)
Label displaying current state.
self.label = tkinter.Label (self.frame, textvariable=self.state)
self.label.pack()
Buttons to control application.
self.up = tkinter.Button(self.frame, text='up', command=self.up_ click)
self.up.pack(side="'left')
self.right = tkinter.Button(self.frame, text='quit',
command=self.quit_click)
self.right.pack(side="'left')
up_click(self):
"""Handle click on 'up' button."""
self.state.set(self.state.get() + 1)
quit_click(self):
"""Handle click on 'quit' button."""
self.parent.destroy()
__name__ == ' main_':
window = tkinter.Tk()
myapp = Counter (window)
window.mainloop ()

Serdar ARITAN

PYTHON GUI : Creating a Dialog-Style Application
PROGRAMMING

from tkinter imporx *

ass Application (Frame) : Creates application class
ef init (self, master=ione): From Tkinter’s Frame class
Frame._ init_(self, master)
self.grid()
self.create_widgets()
self.count_value = 0

lef create_widgets (self):
self.count_label = Label (self, text="Count: 0")
self.count_label.grid(row=0, column=1)
self.incr_button = Button(self, text="Increment",
command=self.increment_count)
self.incr_button.grid(row=0, column=0)
self.quit_button = Button(self, text="Quit",
command=self.master.destroy)
self.quit_button.grid(row=1l, column=0)
increment count (self):
self.count_value += 1

self.count_label.configure (text='Count: ' + str(self.count_value))
app = Application() Create instance app
app.mainloop () Runs app

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Events and Bindings : Tkinter application spends most of its time
iInside an event loop (entered via the mainloop method). Events can
come from various sources, including key presses and mouse
operations by the user, and redraw events from the window manager
(indirectly caused by the user, in many cases). Tkinter provides a
powerful mechanism to let you deal with events yourself. For each
widget, you can bind Python functions and methods to events.

widget.bind (event, handler)

Serdar ARITAN

PYTHON
PROGRAMMING

Capturing clicks in a window

tkinter *
window = Tk()

callback (event) :

GUI : Using Module Tkinter

print (" ", event.x, event.y)

frame = Frame (window, width=100, height=100)
frame.bind (" ", callback)

frame.pack ()

window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Capturing keyboard events : Keyboard events are sent to the widget that
currently owns the keyboard focus. You can use the focus set method to

move focus to a widget:
tkinter *

window = Tk()
key (event) :
print (" ", repr (event.char))

callback (event) :
frame.focus_set()
print (" ", event.x, event.y)

frame = Frame (window , width=100, height=100)
frame.bind (" ", key)

frame.bind (" ", callback)
frame.pack()

window.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Events : Events are given as strings, using a special event syntax

Event Formats

<Button-1>A mouse button is pressed over the widget. Button 1 is the
leftmost button, button 2 is the middle button, and button 3 the rightmost
button. When you press down a mouse button over a widget, Tkinter will
automatically “grab” the mouse pointer, and subsequent mouse events (e.g.
Motion and Release events) will then be sent to the current widget as long as
the mouse button is held down, even if the mouse is moved outside the
current widget. The current position of the mouse pointer (relative to the
widget) is provided in the x and y members of the event object passed to the
callback.

You can use ButtonPress instead of Button, or even leave it out completely:
<Button-1>, <ButtonPress-1>, and <1> are all synonyms.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

<B1-Motion>The mouse is moved, with mouse button 1 being held down (use
B2 for the middle button, B3 for the right button). The current position of the
mouse pointer is provided in the x and y members of the event object passed
to the callback.

<ButtonRelease-1>Button 1 was released. The current position of the mouse
pointer is provided in the x and y members of the event object passed to the
callback.

<Double-Button-1>Button 1 was double clicked. You can use Double or Triple

as prefixes. Note that if you bind to both a single click (<Button-1>) and a
double click, both bindings will be called.

Serdar ARITAN

PROGRAMMING

<Button-1> <Double-Button-1>

tkinter *

hello (event) :
print ("

quit (event) :
print ("
import sys; sys.exit()

widget = Button (None, text='
widget.pack ()

widget.bind (" ', hello)
widget.bind (" ', quit)
widget.mainloop ()

Serdar ARITAN

")

PYTHON GUI : Using Module Tkinter

")

")

PYTHON GUI : Using Module Tkinter
PROGRAMMING

<Enter> The mouse pointer entered the widget (this event doesn't
mean that the user pressed the Enter key!).

<Leave> The mouse pointer left the widget.

<Focuslin> Keyboard focus was moved to this widget, or to a child of
this widget.

<FocusOut> Keyboard focus was moved from this widget to another
widget.

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

http://www.tkdocs.com/index.html
TkDocs [Google™ custo

Information you need to build high-quality Tk user interfaces.

HOME

Tk is the only cross-platform (Windows, Mac, Unix) graphical user interface toolkit designed exclusively for high-level

dynamic languages, like Tcl, Ruby, Perl, Python and many others. Whatever language you use, this site brings you the

current, high-quality essential information you need to get the most out of Tk.

Welcome!
Learn the latest modern Tk features so you can make better GUI's.

This site is here to supplement the existing documentation available for Tk, especially focusing on the newest innovations
found in Tk 8.5 and beyond. This "newer" Tk is so much better than the eldand cruddy "classic” Tk you may be familiar
with, and this site makes it fast and easy to learn what you need.

While not fully complete, there's a very significant amount of very helpful material here (notably the tutorial), with more to
come. It would be a great help if you could have a look around, provide any comments, corrections or suggestions, or even
help fill in some of the missing pieces.

For some more on the "what" and "why" of this site, have a peek at the about page.

Updated by Mark March 19, 2013

http://www.tkdocs.com/tutorial/firstexample.html#walkthrough

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Design

The example we'll use is a simple GUI tool that will convert a number of feet to the equivalent number of meters. If we were
to sketch this out, it might lock something like this

|
/ [" @ Feet to Meters

’Ifs ec‘;ﬂw&d h reteck

123 feet

is equivalent to 37.49045 meters

A sketch of our feet to meters conversion program.

So it looks like we have a short text entry widget that will let us type in the number of feet, and a ‘Calculate’ button that will
get the value out of that entry, perform the calculation, and then put the resulting number of meters on the screen just below
where the entry is. We've also got three static labels ("feet”, "is equivalent to", and "meters”) which help our user figure out
how to use the interface.

In terms of layout, things seem to naturally divide into three columns and three rows

1 Fect |
[reted 1 Jractess |

:
T

Calevsladte

i I

The layout of our user interface, which follows a 3 x 3 grid

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

Event Bindings : For events that don't have a command callback associated

with

them, you can use Tk's "bind" to capture any event, and then (like with

callbacks) execute an arbitrary piece of code.

1 tkinter impo:x *
1 tkinter in » ttk

root = Tk()

1b

1b.
1b.
1b.
1b.
1b.
1b.
{e.

=ttk.Label (root, text="Starting...")

grid()

bind('<Enter>', lam! e: lb.configure (text='Moved mouse inside'))
bind('<Leave>', lam! e: lb.configure (text='Moved mouse outside'))
bind('<1>", ol e: lb.configure (text='Clicked left mouse button'))
bind('<Double-1>"', ' e: lb.configure (text='Double clicked'))
bind('<B3-Motion>"', I e: lb.configure (text=f'right button drag to
x}, {e.y}))

root.mainloop ()

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

A canvas widget manages a 2D collection of graphical objects — lines, circles,
images, other widgets and more.
tkinter * . 7 tk =N =R 1
tkinter ttk

lastx, lasty =0, 0

xy (event) :
lastx, lasty
lastx, lasty = event.x, event.y

addLine (event) :

lastx, lasty
canvas.create line((lastx, lasty, event.x, event.y))
lastx, lasty = event.x, event.y

root = Tk()

root.columnconfigure (0, weight=1)
root.rowconfigure (0, weight=1)

canvas = Canvas (root)

canvas.grid(column=0, row=0, sticky=(N, W, E, S))
canvas .bind ("<Button-1>", xy)

canvas .bind ("<Bl-Motion>", addLine)

root.mainloop ()
Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

tkinter *
tkinter ttk
root = Tk()

h = ttk.Scrollbar (root, orient=HORIZONTAL)

v = ttk.Scrollbar (root, orient=VERTICAL)

canvas = Canvas (root, scrollregion=(0, 0, 1000, 1000), yscrollcommand=v.set, xscrollcommand=h.set)
h['command'] = canvas.xview

v['command'] = canvas.yview

ttk.Sizegrip (root) .grid(column=1, row=l, sticky=(S,E))

canvas.gri
h.grid(col
v.grid(col

d(column=0, row=0, sticky=(N,W,E,S))
umn=0, row=1l, sticky=(W,E))
umn=1, row=0, sticky=(N,S))

root.grid columnconfigure (0, weight=1)
root.grid rowconfigure (0, weight=1)

lastx, las
xy (eve
lastx,
setCol

color
canvas

canvas.

canvas

canvas.

Serdar ARITAN

ty =0, 0

nt) :
lastx, lasty
lasty = canvas.canvasx(event.x), canvas.canvasy (event.y)

or (newcolor) :

color
= newcolor

.dtag('all', 'paletteSelected')
itemconfigure ('palette', outline='white')
.addtag('paletteSelected', 'withtag', 'palette%s' % color)
itemconfigure ('paletteSelected', outline='#999999"')

PYTHON GUI : Using Module Tkinter
PROGRAMMING

addLine (event) :
lastx, lasty
X, y = canvas.canvasx(event.x), canvas.canvasy (event.y)
canvas.create line((lastx, lasty, x, y), fill=color, width=5, tags='currentline')

lastx, lasty = x, y "0 =)
- 5
doneStroke (event) : : =

canvas.itemconfigure ('currentline', width=1)
canvas .bind ("<Button-1>", xy)
canvas .bind ("<Bl-Motion>", addLine)
canvas .bind ("<Bl-ButtonRelease>", doneStroke)

id = canvas.create rectangle((10, 10, 30, 30), fill="red", tags=('palette',K 'palettered'))

canvas.tag_bind(id, "<Button-1>", x: setColor("red"))
id = canvas.create rectangle((10, 35, 30, 55), fill="blue", tags=('palette',K 'paletteblue'))
canvas.tag_bind(id, "<Button-1>", x: setColor("blue"))

id = canvas.create_ rectangle((10, 60, 30, 80), fill="black", tags=('palette',K 'paletteblack',
'paletteSelected'))
canvas.tag bind(id, "<Button-1>", x: setColor("black"))

setColor ('black')
canvas.itemconfigure ('palette', width=5)
root.mainloop ()

Serdar ARITAN

PYTHON GUI : Prevent Data Errors
PROGRAMMING

There is no universal answer to how a widget should react to a user trying to enter
bad data. The validation logic found in various GUI toolkits can differ greatly;

Tkinter's validation system is one of those parts of the toolkit that is less than
Intuitive. It relies on three configuration arguments that we can pass into any input
widget:

validate: This option determines which type of event will trigger the validation
callback.

validatecommand: This option takes the command that will determine if the
data is valid.

invalidcommand:. This option takes a command that will run if
validatecommand returns False.

Serdar ARITAN

PYTHON GUI : Prevent Data Errors
PROGRAMMING

The validate argument specifies what kind of event triggers the validation. It can
be one of the following string values:

Value Trigger event

none Never. This option turns off validation.
focusin The user selects or enters the widget.
focusout The user leaves the widget.

focus Both focusin and focusout.

key The user presses a key while in the widget.
all Any of the focusin, focusout, or key events

How do we get a reference to a Tcl/Tk function? We just need to pass a Python
callable to the register () method of any Tkinter widget. This returns string
reference that we can use with validatecommand.

Serdar ARITAN

PYTHON GUI : Prevent Data Errors
PROGRAMMING

tkinter as tk

always good():

return Tz § - O
no_t for me (proposed) :
't' not in proposed Serdar

win = tk.Tk() Arian
isim = tk.Entry(win)
isim.grid()

isim ref = win.register (always good)

isim.configure(validate='all',K validatecommand =(isim ref,))

we're passing the $P substitution code into our validatecommand

tuple so that our callback function will be passed the proposed new value

soyisim.grid(pady=10) for the widget (that is, the value of the widget if the keystroke is accepted).
In this case, we're going to return False if the proposed value contains
the t character.

soyisim = tk.Entry(win)

soyisim ref = win.register (no_t_ for me)
soyisim.configure(validate='all',6 validatecommand =(soyisim ref, '$P'))

win.mainloop ()
Serdar ARITAN

PYTHON
PROGRAMMING

GUI : Prevent Data Errors

=== RESTART: C:/Lectures/BCO 601 Python Programming/G

>>>|check num(newval="'1")
check num(newval='12")
check num(newval='123")
check num(newval='1234") i - 0 ¢
check num(newval='12345")

tkinter as tk che ck:num newval='123455")
tkinter.ttk as ttk check num(newval='123456")
re check num(newval='123456")

check num(newval) :

e e

check:num newval='12345¢6")

prlnt(f check num({newval='!a})"')
. re.match('~[0-9]1*$', newval) is n Non nd len(newval) <= 5

root = tk.Tk()

check num wrapper = (root.register(check num), '%P')

num = tk.StringVar()

e = ttk.Entry(root, textvariable=num, validate='key'
validatecommand=check num wrapper)

e.grid(column=0, row=0,

Serdar ARITAN

sticky='we')

PYTHON

Code

%S

v
sV

W

Serdar ARITAN

GUI : Prevent Data Errors

PROGRAMMING

Value passed

A code indicating the action being attempted: O for delete, 1 for
insert, and -1 for other events. Note that this is passed as a
string, and not as an integer.

The proposed value that the field would have after the change
(key events only).

The value currently in the field (key events only).

The index (from 0) of the text being inserted or deleted on key
events, or -1 on non-key events. Note that this is passed as a
string, not an integer.

For insertion or deletion, the text that is being inserted or deleted
(key events only).

The widget's validate value.

The event type that triggered validation, one of focusin, focusout, key, or
forced (indicating the widget's variable was changed).

The widget's name in Tcl/Tk, as a string.

PYTHON Calculate Your Body Mass Index
PROGRAMMING

Body mass index (BMI) is a measure of body fat based on height and weight
that applies to adult men and women.

Body Mass Index

massge massyy,

BMI = x 703

height? N height?

Serdar ARITAN

PYTHON

PROGRAMMING

Serdar ARITAN

Calculate Your Body Mass Index

1 2
% emi = >
Body Mass Index Calculator
& Metric " Imperial
Weight : kilograms
Height : meters

Calculate BMI Result

BMI CATEGORY

Below 1€.5
18.5-24.9)

25.0-29.9
30.0-34.9

35.0-39.9
Above 40

CLASSIFICATION

Underweight
Norrral weight

Pre-obesity
Obesity class |
Obesity class |l

Obaesity class Il

SYECTO

9

PYTHON Calculate Your Body Mass Index

MODEL
i rt tkinter as tk
1 . Application(tk.Tk):
ef __init__ (self):
super () .__init__ ()
self.title("BMI")
self .resizable(false, False)
self.iconphoto (False, tk.PhotoImage (file="logo.png"))
self.config(bg='lightcyan')
self.unit = tk.IntVar()
self.unit.set(l) # initializing the choice, i.e. Metric
self.unit_weight = tk.StringVar()
self.unit_weight.set('kilograms')

Serdar ARITAN

self
self
self
self

self

.unit_height = tk.StringVar()
.unit_height.set('meters')
.result = tk.StringVar()
.result.set('"'")

.create_widgets()

Serdar ARITAN

PYTHON Calculate Your Body Mass Index
PROGRAMMING

VIEW

create_widgets(self):
Unit selection: Radio Button

self.
self.
self.
self.
self.
self.

i

self.
self.

self

self.

title label = tk.Label(self, text="Body Mass Index Calculator", bg='lightcyan')

title_ label.grid(row=0, columnspan =3, sticky=tk.E + tk.W)

radio_buttonl = tk.Radiobutton(self, text="Metric",bg='lightcyan',6 variable=self.unit, value=l, command=self.sel)
radio_buttonl.grid(row=1l, column = 1, padx=10)

radio_button2 = tk.Radiobutton(self, text="Imperial" ,fbg='lightcyan', variable=self.unit,value=2, command=self.sel)
radio_button2.grid(row=1l, column = 2, padx=10)

weight label = tk.Label (self, text="Weight : ", bg='lightcyan')
weight label.grid(row=2, column = 0, padx=10, sticky=tk.W)
.height_label = tk.Label (self, text="Height : ", bg='lightcyan')
height label.grid(row=3, column =0, padx=10, sticky=tk.W)

Input for height and weight

self.
self.
self.
self.

weight entry = tk.Entry (self)
weight entry.grid(row=2, column =1, padx=10, sticky=tk.W+tk.E)
height_entry = tk.Entry (self)
height_entry.grid(row=3, column =1, padx=10, sticky=tk.W+tk.E)

Unit for height and weight

self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.

weight unit_label = tk.Label(self, textvariable= self.unit weight, bg='lightcyan')
weight unit_label.grid(row=2, column = 2, padx=10, sticky=tk.W)

height unit_label = tk.Label(self, textvariable= self.unit_height, bg='lightcyan')
height unit_label.grid(row=3, column =2, padx=10, sticky=tk.W)

calculate button = tk.Button(self, text="Calculate BEMI Result", command=self.calculate)
calculate_ button.grid(row=4, columnspan =3, padx=10, sticky=tk.E + tk.W)
result_label = tk.Label(self, textvariable= self.result , bg='lightcyan')
result_label.grid(row=5, columnspan =3, padx=10, sticky=tk.E + tk.W)

bmiGraph = tk.PhotoImage (file = "bmicalculator.png")

bmiLabel = tk.Label (self, image=self.bmiGraph)

bmiLabel .grid (row=6, columnspan =3)

PYTHON Calculate Your Body Mass Index
PROGRAMMING CONTROLLER

¢ sel (self):
print("You selected the option " + str(self.unit.get()))
self.unit.get() ==
self.unit _weight.set('kilograms')
self.unit_height.set('meters')

self.unit_weight.set('pounds')
self.unit_height.set('inches')

calculate(self):

print("You selected the option " + str(self.unit.get()))
self.unit.get() ==
result = float(self.weight entry.get())/float(self.height_entry.get())**2
print (result)

result = 703*float(self.weight_entry.get())/float(self.height_entry.get())**2
print (result)

show the result

self.result.set('Your BMI result is {:.2f)}'.format(result))

clear the entry

self.weight_entry.delete (0, tk.END)

self . height_entry.delete (0, tk.END)

__name == " main_ "
app = Application()
app.mainloop ()

Serdar ARITAN

PYTHON
PROGRAMMING

Serdar ARITAN

Calculate Your Body Mass Index

& B — X
Body Mass Index Calculator
& Metric " Imperial
Weight kilograms
Height : meters

Calculate BMI Result

BMI CATEGORY

Below 18.5
18.5-24.9

25.0-29.9
30.0-34.9

35.0-39.9
Above 40

CLASSIFICATION

Underweight
Maormal weight

Pre-obesity
Obesity class |

Obesity class ||

Obesity class Il

PYTHON

GUI : Using Module Tkinter

PROGRAMMING

Designing a Calculator Application

Homework
¢ Calculator |]
7 g 9
4 5 6
1 2 3
0

Serdar ARITAN

PYTHON GUI : Using Module Tkinter
PROGRAMMING

from tkinter import *

from tkinter import ttk Designing a Calculator Application

root = Tk()
root.title('Calculator’')

style = ttk.Style()
style.map ("C.TButton",
foreground=|[('pressed', 'red'), ('active', 'blue')],
background=[('pressed', '!disabled', 'black'), ('active', 'white')])

Entry (root) .grid(row=0, column=0, sticky='nswe', columnspan = 6)
ttk.Button (root, text="=", style="C.TButton") .grid(row=1l, column=5, padx=2, pady=2,
sticky='nswe', rowspan=4)

ttk.Button (root, text="7", style="C.TButton") .grid(row=1l, column=0, padx=2, pady=2,
sticky='we')
ttk.Button (root, text="8", style="C.TButton") .grid(row=1l, column=1l, padx=2, pady=2,
sticky='we')
ttk.Button (root, text="9", style="C.TButton") .grid(row=1l, column=2, padx=2, pady=2,
sticky='we')

root.mainloop ()
Serdar ARITAN

PYTHON SQLite History
PROGRAMMING

« SQLite is an open source embedded database. The original
iImplementation was designed by D. Richard Hipp.

- Hipp was designing software used on board guided missile systems
and thus had limited resources to work with.

« The resulting design goals of SQLite were to allow the program to be
operated without a database installation or administration.

« In 2000 version 1.0 of SQLite was released. This initial release was
based off of GDBM (GNU Database Manager). Version 2.0 replaced
GBDM with a custom implementation of B-tree data structure.

« Version 3.0 added many useful improvements such as internalization
and manifest typing.

Serdar ARITAN

PYTHON SQLite Major Users
PROGRAMMING

Adobe - Uses SQLite in Photoshop and Acrobat\Adobe reader. The
Application file Format of SQLite is used in these products.

Apple - Several functions in Mac OS X use SQL.ite:

-Apple Mail,
-Safari Web Browser,
-Aperture

The IPhone and iPad platforms may also contain SQLite
Implementations.

http://www.sqlite.org/famous.htmi

Serdar ARITAN

PYTHON SQLite Major Users
PROGRAMMING

Mozilla - Uses SQLite in the Mozilla Firefox Web Browser. SQL.ite is
used in Firefox to store metadata.

Google - Google uses SQLite in Google Desktop and in Google
Gears. SQLite is also used in the mobile OS platform, Android.

McAfee- Uses SQLite in its various Anti-virus programs
PHP - Php comes with SQLite 2 and 3 built in.

Python - SQLite is bundled with the Python programming language.

Serdar ARITAN

PYTHON Specifications for SQLite
PROGRAMMING

(+) Portable - uses only ANSI-standard C and VFS, file format is
cross platform (little vs big endian, 32 vs 64 bit)

(+) Reliable — has 100% test coverage, open source code and bug
database, transactions are ACID even if power fails

(+) Small — 300 kb library, runs in 16kb stack and 100kb heap
(-) High concurrency — reader/writer locks on the entire file

(-) Huge datasets — DB file can’t exceed file system limit or 2TB
(-) Access control — there isn't any

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

SQLite is a C library that provides a lightweight disk-based database that doesn't
require a separate server process and allows accessing the database using a
nonstandard variant of the SQL query language. Some applications can use SQLite
for internal data storage. SQLite stands alone and doesn't require any special
dependencies. All the database interaction is done through whatever program needs
to access the information, and the database itself is stored in a single file. Because of
this, there is no confusing configuration involved, and SQLite is small and, in many
applications, quite fast. It's also been released in the public domain.
>>> sqglite3
>>> sqlite3.version #ithe version of the pysglite
DeprecationWarning: version is deprecated and will be removed
in Python 3.14
'2.6.0"
>>> sqlite3.sqlite version #the version of the SQLite
database library
'3.45.3"
>>>

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Creating a database in SQLite is really easy, but the process requires that you know
a little SQL to do it. Here's some code that will create a database to hold music
albums:

sqlite3 # Import the sglite3 module
Call connect function to obtain a Connection
conn = sqglite3.connect ("mydatabase.db")
or use :memory: to put it in RAM
conn = sqglite3.connect (" :memory:")
cursor = conn.cursor|()
#Ask the Connection object to give you a Cursor object:

First we have to import the sqlite3 library and create a connection to the database.
You can pass it a file path, file name or just use use the special string “:memory:” to
create the database in memory. In our case, we created it on disk in a file called
mydatabase.db. Next we create a cursor object, which allows you to interact with the
database and add records, among other things.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Here we use SQL syntax to create a table named albums with 5 text fields: title,
artist, release_date, publisher and media_type. SQLite only supports five data types :
null, integer, real, text and blob.

create a table
cursor.execute ("""CREATE TABLE albums
(title text, artist text,
release date text, publisher text,
media type text)

mnmn ll)

<sqglite3.Cursor object at 0x0000000003333B90>

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Let’s build on this code and insert some data into our new table!

insert some data
cursor.execute ("INSERT INTO albums VALUES ('Glow', 'Andy
Hunter', '7/24/2012', 'Xplore Records', 'MP3')")

save data to database
conn.commit ()

Here we use the INSERT INTO SQL command to insert a record into our database.
Note that each item had to have single quotes around it. This can get complicated
when you need to insert strings that include single quotes in them. Anyway, to save
the record to the database, we have to commit it .

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

insert multiple records using the more secure "?" method

albums =[('Exodus', 'Andy Hunter',6'7/9/2002', 'Sparrow Records', 'CD'),
('Until We Have',6 'Red','2/1/2011', 'Essential Records', 'CD'),
('The End', 'Thousand Foot', '4/17/2012', 'TFKmusic', 'CD'),
('Life', 'Trip Lee', '4/10/2012', 'Reach Records', 'CD')]

cursor.executemany ("INSERT INTO albums VALUES (?,7?,?,7?,7?)", albums)

conn.commit ()

The code shows how add multiple records at once be using the cursor’'s
executemany method. Note that we're using question marks (?) instead of string
substitution (%s) to insert the values. Using string substitution is NOT safe and
should not be used as it can allow SQL injection attacks to occur. The question
mark method is much better because it does all the escaping for you so you won't
have to mess with the annoyances of converting embedded single quotes into
something that SQL.ite will accept.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Updating Records

Being able to update your database records is key to keeping your data accurate.

sqglite3
conn = sqlite3.connect ("mydatabase.db")
cursor = conn.cursor ()
sql = """ UPDATE albums SET artist = 'John Doe' WHERE artist = 'Andy
Hunter' """
cursor.execute (sql)
conn.commit ()

we use SQL's UPDATE command to update out albums table. You can use SET to
change a field, so in this case we change the artist field to be “John Doe” in any
record WHERE the artist field is set to “Andy Hunter”. Note that if you don’t commit
the changes, then your changes won’t be written out to the database.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Deleting Records

sqglite3
conn = sqglite3.connect ("mydatabase.db")
cursor = conn.cursor ()

sql = """ DELETE FROM albums
WHERE artist = 'John Doe' ""™

cursor.execute (sql)
conn.commit ()

The SQL is only 2 lines! In this case, all we had to do was tell SQLite which table to

delete from (albums) and which records to delete using the WHERE clause. Thus is
looked for any records that had “John Doe” in its artist field and deleted it.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Basic SQLite Queries : Queries in SQLite are pretty much the same as what you'd use for other
databases, such as MySQL or Postgres.

sqglite3
conn = sqglite3.connect ("mydatabase.db")
#conn.row factory = sqlite3.Row
cursor = conn.cursor ()
sql = "SELECT * FROM albums WHERE artist=?"
cursor.execute(sql, [("Red")])
print (cursor.fetchall()) # or use fetchone()

The first query we execute is a SELECT * which means that we want to select all the records that
match the artist name we pass in, which in this case is “Red”. Next we execute the SQL and use
fetchall () to return all the results. You can also use fetchone () to grab the first result. If
you un-comment row_factory, the results will be returned as Row objects.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Basic SQLite Queries :

mport sqlite3
conn = sqglite3.connect("mydatabase.db")

print ("\nHere's a listing of all the records in the table:\n")

“or row in cursor.execute ("SELECT rowid, *FROM albums ORDER BY artist"):
print (row)

The second query is much like the first, but it returns every record in the database and orders the
results by the artist name in ascending order. This also demonstrates how we can loop over the
results.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

Basic SQLite Queries :

mport sqlite3
conn = sqglite3.connect ("mydatabase.db")

print ("\nResults from a LIKE query:\n")
sql = ""“ SELECT * FROM albums

WHERE title LIKE 'The$%'"""
cursor.execute (sql)
print (cursor.fetchall())

The last query shows how to use SQL’s LIKE command to search for partial phrases. In this case,
we do a search of the entire table for titles that start with “The”. The percent sign (%) is a wildcard
operator.

Serdar ARITAN

PYTHON
PROGRAMMING

import sqlite3 as lite
mporc sys
con = None

Database Programming

con= lite.connect ("mydatabase.db")
cur = con.cursor()

cur.execute ("SELECT SQLITE VERSION()")
data = cur.fetchone()

print ("SQLite version: %s" % data)

(lite.Error, e):
print ("Error %s:" % e.args[0])
sys.exit (1)
na Ly s
. con:
con.close()

Serdar ARITAN

PYTHON
PROGRAMMING

con = None

Database Programming

We initialize the con variable to None. In case we could not create a connection to the database

(for example the disk is full), we would not have a connection variable defined. This would lead to
an error in the finally clause.

(lite.Error, e):
print ("Error %s:" % e.args[0])
sys.exit (1)

In case of an exception, we print an error message and exit the script with an error code 1.

con:
con.close()

In the final step, we release the resources.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

mport sqlite3d as lite

con = lite.connect ("F:\Lectures\Python\mydatabase.db")
with is used when working with unmanaged resources

con:

cur = con.cursor ()
cur.execute ("SELECT SQLITE VERSION()")

data = cur.fetchone()
print ("SQLite version: %s" % data)
With the with keyword, the Python interpreter automatically releases the resources. It also

provides error handling. The with statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed.

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

create database
import sqlite3 as lite

with lite.connect('mydb.db') as conn:
cur = conn.cursor ()
create table
cur.execute ('''CREATE TABLE my db
(id TEXT, my varl TEXT, my var2 INT)''')

insert one row of data
cur.execute ("INSERT INTO my_db VALUES (‘ID_2352532‘,‘YES', a4m)

insert multiple lines of data
multi lines =[('ID_2352533','¥YES', 1),
('ID_2352534','NO', 0),
('ID_2352536','YES', 9),
('ID_2352535','YES', 3),
('ID_2352537','YES', 10)
1
cur.executemany ('INSERT INTO my db VALUES (?,?,7?)', multi_lines)

save (commit) the changes
conn.commit ()

close connection
conn.close()

Serdar ARITAN

PYTHON Database Programming
PROGRAMMING

querying database
import sqlite3 as lite

open existing database
with lite.connect('mydb.db') as conn:

cur = conn.cursor ()

print all lines ordered by integer value in my var2

for row in cur.execute('SELECT * FROM my db ORDER BY my var2'):
print (row)

print('---- ordered by integer value in my var2 ----'")

print all lines that have "YES" as my varl value

and have an integer value <= 7 in my_var2

t= ('¥YES',?7,)

for row in cur.execute('SELECT * FROM my db WHERE my varl=? AND my var2 <= ?', t):
print (row)

print('have YES" as my varl value and have an integer value <= 7 in my var2')

print all lines that have "YES" as my varl value
and have an integer value <= 7 in my_var2
t= ('¥YES',?7,)
cur.execute ('SELECT * FROM my db WHERE my varl=? AND my var2 <= ?', t)
rows = cur.fetchall ()
for r in rows:
print(r)
close connection

SemﬁmAEQIIFAﬂonn.close()

PYTHON Database Programming
PROGRAMMING

update database
import sqlite3 as lite

with lite.connect('mydb.db') as conn:

cur = conn.cursor ()

update field

t = ('NO', 'ID 2352533',)

cur.execute ("UPDATE my db SET my varl=? WHERE id=?", t)
print ("Total number of rows changed:", conn.total_changes)

delete rows

t = ('NO',)

cur.execute ("DELETE FROM my db WHERE my varl=?", t)

print ("Total number of rows deleted: ", conn.total_changes)
add column

cur.execute ("ALTER TABLE my db ADD COLUMN 'my var3' TEXT")
save changes

conn.commit ()

print column names

cur.execute ("SELECT * FROM my db")

col _name list = [tup[0] for tup in cur.description]

print (col_name_list)

close connection
conn.close()

Serdar ARITAN

