
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Graphical User Interface II

SQLite

 #13

2

GUI : Using Module Tkinter

Using a StringVar to connect a text-entry box and a label is the first step

toward separating models (How do we represent the data?), views (How do

we display the data?), and controllers (How do we modify the data?), which

is the key to building larger GUIs (as well as many other kinds of applications).

View is something that displays information to the user, like Label. Many views,

like Entry, also accept input, which they display immediately. The key is that

they don’t do anything else.

Models, on the other hand, store data, like a piece of text or the current

inclination of a telescope. They also don’t do calculations; their job is simply to

keep track of the application’s current state.

Controllers are the pieces that convert user input into calls on functions in

the model that manipulate the data.

3

GUI : Using Module Tkinter

import tkinter

The controller.

def click():

 counter.set(counter.get() + 1)

if __name__ == '__main__':

 window = tkinter.Tk()

 # The model.

 counter = tkinter.IntVar()

 counter.set(0)

 # The views.

 frame = tkinter.Frame(window)

 frame.pack()

 button = tkinter.Button(frame, text='Click', command=click)

 button.pack()

 label = tkinter.Label(frame, textvariable=counter)

 label.pack()

 # Controllers -> Start the machinery!

 window.mainloop()

The first two arguments used to construct the Button should be
familiar by now. The third, command=click, tells it to call function

click each time the user presses the button. This makes use of the

fact that in Python a function is just another kind of object and can be

passed as an argument like anything else.

Function click in the previous code does not have any parameters

but uses variable counter, which is defined outside the function.

Variables like this are called global variables, and their use should be

avoided, since they make programs hard to understand.

4

GUI : Using Module Tkinter

5

GUI : Using Module Tkinter

import tkinter

window = tkinter.Tk()

The model.

counter = tkinter.IntVar()

counter.set(0)

Two controllers.

def click_up():

 counter.set(counter.get() + 1)

def click_down():

 counter.set(counter.get() - 1)

The views.

frame = tkinter.Frame(window)

frame.pack()

button = tkinter.Button(frame, text='Up', command=click_up)

button.pack()

button = tkinter.Button(frame, text='Down', command=click_down)

button.pack()

label = tkinter.Label(frame, textvariable=counter)

label.pack()

window.mainloop()

6

GUI : Using Module Tkinter

import tkinter

window = tkinter.Tk()

The model.

counter = tkinter.IntVar()

counter.set(0)

General controller.

def click(var, value):

 var.set(var.get() + value)

The views.

frame = tkinter.Frame(window)

frame.pack()

button = tkinter.Button(frame, text='Up', command=lambda: click(counter, 1))

button.pack()

button = tkinter.Button(frame, text='Down', command=lambda: click(counter,-1))

button.pack()

label = tkinter.Label(frame, textvariable=counter)

label.pack()

window.mainloop()

7

GUI : Using Module Tkinter

import tkinter

class Counter:

 """A simple counter GUI using object-oriented programming."""

 def __init__(self, parent):

 """Create the GUI."""

 # Framework.

 self.parent = parent

 self.frame = tkinter.Frame(parent)

 self.frame.pack()

 # Model.

 self.state = tkinter.IntVar()

 self.state.set(1)

 # Label displaying current state.

 self.label = tkinter.Label(self.frame, textvariable=self.state)

 self.label.pack()

 # Buttons to control application.

 self.up = tkinter.Button(self.frame, text='up', command=self.up_click)

 self.up.pack(side='left')

 self.right = tkinter.Button(self.frame, text='quit',

 command=self.quit_click)

 self.right.pack(side='left')

 def up_click(self):

 """Handle click on 'up' button."""

 self.state.set(self.state.get() + 1)

 def quit_click(self):

 """Handle click on 'quit' button."""

 self.parent.destroy()

if __name__ == '__main__':

 window = tkinter.Tk()

 myapp = Counter(window)

 window.mainloop()

8

GUI : Creating a Dialog-Style Application

from tkinter import *

class Application(Frame):

 def __init__(self, master=None):

 Frame.__init__(self, master)

 self.grid()

 self.create_widgets()

 self.count_value = 0

 def create_widgets(self):

 self.count_label = Label(self, text="Count: 0")

 self.count_label.grid(row=0, column=1)

 self.incr_button = Button(self, text="Increment",

 command=self.increment_count)

 self.incr_button.grid(row=0, column=0)

 self.quit_button = Button(self, text="Quit",

 command=self.master.destroy)

 self.quit_button.grid(row=1, column=0)

 def increment_count(self):

 self.count_value += 1

 self.count_label.configure(text='Count: ' + str(self.count_value))

app = Application()

app.mainloop()

Create instance app

Runs app

Creates application class
From Tkinter’s Frame class

9

GUI : Using Module Tkinter

Events and Bindings : Tkinter application spends most of its time

inside an event loop (entered via the mainloop method). Events can

come from various sources, including key presses and mouse

operations by the user, and redraw events from the window manager

(indirectly caused by the user, in many cases). Tkinter provides a

powerful mechanism to let you deal with events yourself. For each

widget, you can bind Python functions and methods to events.

widget.bind(event, handler)

10

GUI : Using Module Tkinter

Capturing clicks in a window

from tkinter import *

window = Tk()

def callback(event):

 print ("clicked at", event.x, event.y)

frame = Frame(window, width=100, height=100)

frame.bind("<Button-1>", callback)

frame.pack()

window.mainloop()

Capturing keyboard events : Keyboard events are sent to the widget that

currently owns the keyboard focus. You can use the focus_set method to

move focus to a widget:
from tkinter import *

window = Tk()

def key(event):

 print ("pressed", repr(event.char))

def callback(event):

 frame.focus_set()

 print ("clicked at", event.x, event.y)

frame = Frame(window , width=100, height=100)

frame.bind("<Key>", key)

frame.bind("<Button-1>", callback)

frame.pack()

window.mainloop()

11

GUI : Using Module Tkinter

12

GUI : Using Module Tkinter

Events : Events are given as strings, using a special event syntax

Event Formats

<Button-1>A mouse button is pressed over the widget. Button 1 is the

leftmost button, button 2 is the middle button, and button 3 the rightmost

button. When you press down a mouse button over a widget, Tkinter will

automatically “grab” the mouse pointer, and subsequent mouse events (e.g.

Motion and Release events) will then be sent to the current widget as long as

the mouse button is held down, even if the mouse is moved outside the

current widget. The current position of the mouse pointer (relative to the

widget) is provided in the x and y members of the event object passed to the

callback.

You can use ButtonPress instead of Button, or even leave it out completely:

<Button-1>, <ButtonPress-1>, and <1> are all synonyms.

13

GUI : Using Module Tkinter

<B1-Motion>The mouse is moved, with mouse button 1 being held down (use

B2 for the middle button, B3 for the right button). The current position of the

mouse pointer is provided in the x and y members of the event object passed

to the callback.

<ButtonRelease-1>Button 1 was released. The current position of the mouse

pointer is provided in the x and y members of the event object passed to the

callback.

<Double-Button-1>Button 1 was double clicked. You can use Double or Triple

as prefixes. Note that if you bind to both a single click (<Button-1>) and a

double click, both bindings will be called.

14

GUI : Using Module Tkinter

 from tkinter import *

def hello(event):

 print("Single Click, Button-l")

def quit(event):

 print("Double Click, so let's stop")

 import sys; sys.exit()

widget = Button(None, text='Mouse Clicks')

widget.pack()

widget.bind('<Button-1>', hello)

widget.bind('<Double-1>', quit)

widget.mainloop()

<Button-1> <Double-Button-1>

15

GUI : Using Module Tkinter

<Enter> The mouse pointer entered the widget (this event doesn’t

mean that the user pressed the Enter key!).

<Leave> The mouse pointer left the widget.

<FocusIn> Keyboard focus was moved to this widget, or to a child of

this widget.

<FocusOut> Keyboard focus was moved from this widget to another

widget.

16

GUI : Using Module Tkinter

http://www.tkdocs.com/tutorial/firstexample.html#walkthrough

http://www.tkdocs.com/index.html

17

GUI : Using Module Tkinter

18

GUI : Using Module Tkinter

Event Bindings : For events that don't have a command callback associated

with them, you can use Tk's "bind" to capture any event, and then (like with

callbacks) execute an arbitrary piece of code.

from tkinter import *

from tkinter import ttk

root = Tk()

lb =ttk.Label(root, text="Starting...")

lb.grid()

lb.bind('<Enter>', lambda e: lb.configure(text='Moved mouse inside'))

lb.bind('<Leave>', lambda e: lb.configure(text='Moved mouse outside'))

lb.bind('<1>', lambda e: lb.configure(text='Clicked left mouse button'))

lb.bind('<Double-1>', lambda e: lb.configure(text='Double clicked'))

lb.bind('<B3-Motion>', lambda e: lb.configure(text=f'right button drag to

{e.x}, {e.y}))

root.mainloop()

19

GUI : Using Module Tkinter

A canvas widget manages a 2D collection of graphical objects — lines, circles,

images, other widgets and more.
from tkinter import *

from tkinter import ttk

lastx, lasty = 0, 0

def xy(event):

 global lastx, lasty

 lastx, lasty = event.x, event.y

def addLine(event):

 global lastx, lasty

 canvas.create_line((lastx, lasty, event.x, event.y))

 lastx, lasty = event.x, event.y

root = Tk()

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

canvas = Canvas(root)

canvas.grid(column=0, row=0, sticky=(N, W, E, S))

canvas.bind("<Button-1>", xy)

canvas.bind("<B1-Motion>", addLine)

root.mainloop()

20

GUI : Using Module Tkinter

from tkinter import *

from tkinter import ttk

root = Tk()

h = ttk.Scrollbar(root, orient=HORIZONTAL)

v = ttk.Scrollbar(root, orient=VERTICAL)

canvas = Canvas(root, scrollregion=(0, 0, 1000, 1000), yscrollcommand=v.set, xscrollcommand=h.set)

h['command'] = canvas.xview

v['command'] = canvas.yview

ttk.Sizegrip(root).grid(column=1, row=1, sticky=(S,E))

canvas.grid(column=0, row=0, sticky=(N,W,E,S))

h.grid(column=0, row=1, sticky=(W,E))

v.grid(column=1, row=0, sticky=(N,S))

root.grid_columnconfigure(0, weight=1)

root.grid_rowconfigure(0, weight=1)

lastx, lasty = 0, 0

def xy(event):

 global lastx, lasty

 lastx, lasty = canvas.canvasx(event.x), canvas.canvasy(event.y)

def setColor(newcolor):

 global color

 color = newcolor

 canvas.dtag('all', 'paletteSelected')

 canvas.itemconfigure('palette', outline='white')

 canvas.addtag('paletteSelected', 'withtag', 'palette%s' % color)

 canvas.itemconfigure('paletteSelected', outline='#999999')

21

GUI : Using Module Tkinter

def addLine(event):

 global lastx, lasty

 x, y = canvas.canvasx(event.x), canvas.canvasy(event.y)

 canvas.create_line((lastx, lasty, x, y), fill=color, width=5, tags='currentline')

 lastx, lasty = x, y

def doneStroke(event):

 canvas.itemconfigure('currentline', width=1)

canvas.bind("<Button-1>", xy)

canvas.bind("<B1-Motion>", addLine)

canvas.bind("<B1-ButtonRelease>", doneStroke)

id = canvas.create_rectangle((10, 10, 30, 30), fill="red", tags=('palette', 'palettered'))

canvas.tag_bind(id, "<Button-1>", lambda x: setColor("red"))

id = canvas.create_rectangle((10, 35, 30, 55), fill="blue", tags=('palette', 'paletteblue'))

canvas.tag_bind(id, "<Button-1>", lambda x: setColor("blue"))

id = canvas.create_rectangle((10, 60, 30, 80), fill="black", tags=('palette', 'paletteblack',

'paletteSelected'))

canvas.tag_bind(id, "<Button-1>", lambda x: setColor("black"))

setColor('black')

canvas.itemconfigure('palette', width=5)

root.mainloop()

GUI : Prevent Data Errors

There is no universal answer to how a widget should react to a user trying to enter

bad data. The validation logic found in various GUI toolkits can differ greatly;

Tkinter's validation system is one of those parts of the toolkit that is less than

intuitive. It relies on three configuration arguments that we can pass into any input

widget:

•validate: This option determines which type of event will trigger the validation

callback.
•validatecommand: This option takes the command that will determine if the

data is valid.
•invalidcommand: This option takes a command that will run if

validatecommand returns False.

22

GUI : Prevent Data Errors

The validate argument specifies what kind of event triggers the validation. It can

be one of the following string values:

Value Trigger event

none Never. This option turns off validation.

focusin The user selects or enters the widget.

focusout The user leaves the widget.

focus Both focusin and focusout.

key The user presses a key while in the widget.

all Any of the focusin, focusout, or key events

How do we get a reference to a Tcl/Tk function? We just need to pass a Python
callable to the register() method of any Tkinter widget. This returns string

reference that we can use with validatecommand.

23

24

import tkinter as tk

def always_good():

 return True

def no_t_for_me(proposed):

 return 't' not in proposed

win = tk.Tk()

isim = tk.Entry(win)

isim.grid()

isim_ref = win.register(always_good)

isim.configure(validate='all', validatecommand =(isim_ref,))

soyisim = tk.Entry(win)

soyisim.grid(pady=10)

soyisim_ref = win.register(no_t_for_me)

soyisim.configure(validate='all', validatecommand =(soyisim_ref, '%P'))

win.mainloop()

GUI : Prevent Data Errors

we're passing the %P substitution code into our validatecommand
tuple so that our callback function will be passed the proposed new value
for the widget (that is, the value of the widget if the keystroke is accepted).
In this case, we're going to return False if the proposed value contains
the t character.

import tkinter as tk

import tkinter.ttk as ttk

import re

def check_num(newval):

 print(f'check_num({newval=!a})')

 return re.match('^[0-9]*$', newval) is not None and len(newval) <= 5

root = tk.Tk()

check_num_wrapper = (root.register(check_num), '%P')

num = tk.StringVar()

e = ttk.Entry(root, textvariable=num, validate='key',

validatecommand=check_num_wrapper)

e.grid(column=0, row=0, sticky='we')

25

GUI : Prevent Data Errors

26

GUI : Prevent Data Errors

Code Value passed
%d A code indicating the action being attempted: 0 for delete, 1 for

 insert, and -1 for other events. Note that this is passed as a

 string, and not as an integer.
%P The proposed value that the field would have after the change

 (key events only).
%s The value currently in the field (key events only).

%i The index (from 0) of the text being inserted or deleted on key

 events, or -1 on non-key events. Note that this is passed as a

 string, not an integer.
%S For insertion or deletion, the text that is being inserted or deleted

 (key events only).
%v The widget's validate value.

%V The event type that triggered validation, one of focusin, focusout, key, or

 forced (indicating the widget's variable was changed).
%W The widget's name in Tcl/Tk, as a string.

27

Body mass index (BMI) is a measure of body fat based on height and weight

that applies to adult men and women.

Calculate Your Body Mass Index

28

Calculate Your Body Mass Index

 0 1 2

0
 1

 2
 3

 4
 5

 6

29

Calculate Your Body Mass Index

import tkinter as tk

class Application(tk.Tk):

 def __init__(self):

 super().__init__()

 self.title("BMI")

 self.resizable(False, False)

 self.iconphoto(False, tk.PhotoImage(file="logo.png"))

 self.config(bg='lightcyan')

 self.unit = tk.IntVar()

 self.unit.set(1) # initializing the choice, i.e. Metric

 self.unit_weight = tk.StringVar()

 self.unit_weight.set('kilograms')

 self.unit_height = tk.StringVar()

 self.unit_height.set('meters')

 self.result = tk.StringVar()

 self.result.set('')

 self.create_widgets()

MODEL

 def create_widgets(self):

 # Unit selection: Radio Button

 self.title_label = tk.Label(self, text="Body Mass Index Calculator", bg='lightcyan')

 self.title_label.grid(row=0, columnspan =3, sticky=tk.E + tk.W)

 self.radio_button1 = tk.Radiobutton(self,text="Metric",bg='lightcyan',variable=self.unit, value=1, command=self.sel)

 self.radio_button1.grid(row=1, column = 1, padx=10)

 self.radio_button2 = tk.Radiobutton(self,text="Imperial",bg='lightcyan',variable=self.unit,value=2, command=self.sel)

 self.radio_button2.grid(row=1, column = 2, padx=10)

 #

 self.weight_label = tk.Label(self, text="Weight : ", bg='lightcyan')

 self.weight_label.grid(row=2, column = 0, padx=10, sticky=tk.W)

 self.height_label = tk.Label(self, text="Height : ", bg='lightcyan')

 self.height_label.grid(row=3, column =0, padx=10, sticky=tk.W)

 # Input for height and weight

 self.weight_entry = tk.Entry(self)

 self.weight_entry.grid(row=2, column =1, padx=10, sticky=tk.W+tk.E)

 self.height_entry = tk.Entry(self)

 self.height_entry.grid(row=3, column =1, padx=10, sticky=tk.W+tk.E)

 # Unit for height and weight

 self.weight_unit_label = tk.Label(self, textvariable= self.unit_weight, bg='lightcyan')

 self.weight_unit_label.grid(row=2, column = 2, padx=10, sticky=tk.W)

 self.height_unit_label = tk.Label(self, textvariable= self.unit_height, bg='lightcyan')

 self.height_unit_label.grid(row=3, column =2, padx=10, sticky=tk.W)

 self.calculate_button = tk.Button(self, text="Calculate BMI Result", command=self.calculate)

 self.calculate_button.grid(row=4, columnspan =3, padx=10, sticky=tk.E + tk.W)

 self.result_label = tk.Label(self, textvariable= self.result , bg='lightcyan')

 self.result_label.grid(row=5, columnspan =3, padx=10, sticky=tk.E + tk.W)

 self.bmiGraph = tk.PhotoImage(file = "bmicalculator.png")

 self.bmiLabel = tk.Label(self, image=self.bmiGraph)

 self.bmiLabel.grid(row=6, columnspan =3)

30

Calculate Your Body Mass Index

VIEW

 def sel(self):

 print("You selected the option " + str(self.unit.get()))

 if self.unit.get() == 1:

 self.unit_weight.set('kilograms')

 self.unit_height.set('meters')

 else:

 self.unit_weight.set('pounds')

 self.unit_height.set('inches')

 def calculate(self):

 print("You selected the option " + str(self.unit.get()))

 if self.unit.get() == 1:

 result = float(self.weight_entry.get())/float(self.height_entry.get())**2

 print(result)

 else:

 result = 703*float(self.weight_entry.get())/float(self.height_entry.get())**2

 print(result)

 # show the result

 self.result.set('Your BMI result is {:.2f}'.format(result))

 # clear the entry

 self.weight_entry.delete(0, tk.END)

 self.height_entry.delete(0, tk.END)

if __name__ == "__main__" :

 app = Application()

 app.mainloop()

 31

Calculate Your Body Mass Index

CONTROLLER

32

Calculate Your Body Mass Index

33

GUI : Using Module Tkinter

Designing a Calculator Application

Homework

from tkinter import *

from tkinter import ttk

root = Tk()

root.title('Calculator')

style = ttk.Style()

style.map("C.TButton",

 foreground=[('pressed', 'red'), ('active', 'blue')],

 background=[('pressed', '!disabled', 'black'), ('active', 'white')])

Entry(root).grid(row=0, column=0, sticky='nswe', columnspan = 6)

ttk.Button(root, text="=", style="C.TButton").grid(row=1, column=5, padx=2, pady=2,

sticky='nswe', rowspan=4)

ttk.Button(root, text="7", style="C.TButton").grid(row=1, column=0, padx=2, pady=2,

sticky='we')

ttk.Button(root, text="8", style="C.TButton").grid(row=1, column=1, padx=2, pady=2,

sticky='we')

ttk.Button(root, text="9", style="C.TButton").grid(row=1, column=2, padx=2, pady=2,

sticky='we')

root.mainloop()

Designing a Calculator Application

34

GUI : Using Module Tkinter

35

SQLite History

• SQLite is an open source embedded database. The original

implementation was designed by D. Richard Hipp.

• Hipp was designing software used on board guided missile systems

and thus had limited resources to work with.

• The resulting design goals of SQLite were to allow the program to be

operated without a database installation or administration.

• In 2000 version 1.0 of SQLite was released. This initial release was

based off of GDBM (GNU Database Manager). Version 2.0 replaced

GBDM with a custom implementation of B-tree data structure.

• Version 3.0 added many useful improvements such as internalization

and manifest typing.

36

SQLite Major Users

Adobe - Uses SQLite in Photoshop and Acrobat\Adobe reader. The

Application file Format of SQLite is used in these products.

Apple - Several functions in Mac OS X use SQLite:

 -Apple Mail,

 -Safari Web Browser,

 -Aperture

 The iPhone and iPad platforms may also contain SQLite

 implementations.

http://www.sqlite.org/famous.html

37

SQLite Major Users

Mozilla - Uses SQLite in the Mozilla Firefox Web Browser. SQLite is

used in Firefox to store metadata.

Google - Google uses SQLite in Google Desktop and in Google

Gears. SQLite is also used in the mobile OS platform, Android.

McAfee- Uses SQLite in its various Anti-virus programs

PHP - Php comes with SQLite 2 and 3 built in.

Python - SQLite is bundled with the Python programming language.

38

Specifications for SQLite

(+) Portable - uses only ANSI-standard C and VFS, file format is

cross platform (little vs big endian, 32 vs 64 bit)

(+) Reliable – has 100% test coverage, open source code and bug

database, transactions are ACID even if power fails

(+) Small – 300 kb library, runs in 16kb stack and 100kb heap

(-) High concurrency – reader/writer locks on the entire file

(-) Huge datasets – DB file can’t exceed file system limit or 2TB

(-) Access control – there isn’t any

39

Database Programming

SQLite is a C library that provides a lightweight disk-based database that doesn’t

require a separate server process and allows accessing the database using a

nonstandard variant of the SQL query language. Some applications can use SQLite

for internal data storage. SQLite stands alone and doesn't require any special

dependencies. All the database interaction is done through whatever program needs

to access the information, and the database itself is stored in a single file. Because of

this, there is no confusing configuration involved, and SQLite is small and, in many

applications, quite fast. It's also been released in the public domain.
>>> import sqlite3

>>> sqlite3.version #the version of the pysqlite

DeprecationWarning: version is deprecated and will be removed

in Python 3.14

'2.6.0‘

>>> sqlite3.sqlite_version #the version of the SQLite

database library

'3.45.3'

>>>

40

Database Programming

Creating a database in SQLite is really easy, but the process requires that you know

a little SQL to do it. Here’s some code that will create a database to hold music

albums:

import sqlite3 # Import the sqlite3 module

Call connect function to obtain a Connection

conn = sqlite3.connect("mydatabase.db")

or use :memory: to put it in RAM

conn = sqlite3.connect(":memory:")

cursor = conn.cursor()

#Ask the Connection object to give you a Cursor object:

First we have to import the sqlite3 library and create a connection to the database.

You can pass it a file path, file name or just use use the special string “:memory:” to

create the database in memory. In our case, we created it on disk in a file called

mydatabase.db. Next we create a cursor object, which allows you to interact with the

database and add records, among other things.

41

Database Programming

Here we use SQL syntax to create a table named albums with 5 text fields: title,

artist, release_date, publisher and media_type. SQLite only supports five data types :

null, integer, real, text and blob.

create a table

cursor.execute("""CREATE TABLE albums

 (title text, artist text,

 release_date text, publisher text,

 media_type text)

 """)

<sqlite3.Cursor object at 0x0000000003333B90>

42

Database Programming

Let’s build on this code and insert some data into our new table!

insert some data

cursor.execute("INSERT INTO albums VALUES ('Glow', 'Andy

Hunter', '7/24/2012', 'Xplore Records', 'MP3')")

save data to database

conn.commit()

Here we use the INSERT INTO SQL command to insert a record into our database.

Note that each item had to have single quotes around it. This can get complicated

when you need to insert strings that include single quotes in them. Anyway, to save

the record to the database, we have to commit it .

43

Database Programming

insert multiple records using the more secure "?" method

albums =[('Exodus','Andy Hunter','7/9/2002','Sparrow Records', 'CD'),

 ('Until We Have','Red','2/1/2011','Essential Records', 'CD'),

 ('The End', 'Thousand Foot', '4/17/2012', 'TFKmusic', 'CD'),

 ('Life', 'Trip Lee', '4/10/2012', 'Reach Records', 'CD')]

cursor.executemany("INSERT INTO albums VALUES (?,?,?,?,?)", albums)

conn.commit()

The code shows how add multiple records at once be using the cursor’s

executemany method. Note that we’re using question marks (?) instead of string

substitution (%s) to insert the values. Using string substitution is NOT safe and

should not be used as it can allow SQL injection attacks to occur. The question

mark method is much better because it does all the escaping for you so you won’t

have to mess with the annoyances of converting embedded single quotes into

something that SQLite will accept.

44

Database Programming

Updating Records

Being able to update your database records is key to keeping your data accurate.

import sqlite3

conn = sqlite3.connect("mydatabase.db")

cursor = conn.cursor()

sql = """ UPDATE albums SET artist = 'John Doe' WHERE artist = 'Andy

Hunter' """

cursor.execute(sql)

conn.commit()

we use SQL’s UPDATE command to update out albums table. You can use SET to

change a field, so in this case we change the artist field to be “John Doe” in any

record WHERE the artist field is set to “Andy Hunter”. Note that if you don’t commit

the changes, then your changes won’t be written out to the database.

45

Database Programming

Deleting Records

import sqlite3

conn = sqlite3.connect("mydatabase.db")

cursor = conn.cursor()

sql = """ DELETE FROM albums

 WHERE artist = 'John Doe' ""“

cursor.execute(sql)

conn.commit()

The SQL is only 2 lines! In this case, all we had to do was tell SQLite which table to

delete from (albums) and which records to delete using the WHERE clause. Thus is

looked for any records that had “John Doe” in its artist field and deleted it.

46

Database Programming

Basic SQLite Queries : Queries in SQLite are pretty much the same as what you’d use for other

databases, such as MySQL or Postgres.

import sqlite3

conn = sqlite3.connect("mydatabase.db")

#conn.row_factory = sqlite3.Row

cursor = conn.cursor()

sql = "SELECT * FROM albums WHERE artist=?"

cursor.execute(sql, [("Red")])

print (cursor.fetchall()) # or use fetchone()

The first query we execute is a SELECT * which means that we want to select all the records that

match the artist name we pass in, which in this case is “Red”. Next we execute the SQL and use
fetchall() to return all the results. You can also use fetchone() to grab the first result. If

you un-comment row_factory, the results will be returned as Row objects.

47

Database Programming

Basic SQLite Queries :

import sqlite3

conn = sqlite3.connect("mydatabase.db")

print ("\nHere's a listing of all the records in the table:\n")

for row in cursor.execute("SELECT rowid, *FROM albums ORDER BY artist"):

 print (row)

The second query is much like the first, but it returns every record in the database and orders the

results by the artist name in ascending order. This also demonstrates how we can loop over the

results.

48

Database Programming

Basic SQLite Queries :

import sqlite3

conn = sqlite3.connect("mydatabase.db")

print ("\nResults from a LIKE query:\n")

sql = ""“ SELECT * FROM albums

 WHERE title LIKE 'The%'"""

cursor.execute(sql)

print (cursor.fetchall())

The last query shows how to use SQL’s LIKE command to search for partial phrases. In this case,

we do a search of the entire table for titles that start with “The”. The percent sign (%) is a wildcard

operator.

49

Database Programming

import sqlite3 as lite

import sys

con = None

try:

 con= lite.connect("mydatabase.db")

 cur = con.cursor()

 cur.execute("SELECT SQLITE_VERSION()")

 data = cur.fetchone()

 print ("SQLite version: %s" % data)

except (lite.Error, e):

 print ("Error %s:" % e.args[0])

 sys.exit(1)

finally:

 if con:

 con.close()

50

Database Programming

con = None

We initialize the con variable to None. In case we could not create a connection to the database

(for example the disk is full), we would not have a connection variable defined. This would lead to

an error in the finally clause.

except (lite.Error, e):

 print ("Error %s:" % e.args[0])

 sys.exit(1)

In case of an exception, we print an error message and exit the script with an error code 1.

finally:

 if con:

 con.close()

In the final step, we release the resources.

51

Database Programming

import sqlite3 as lite

con = lite.connect("F:\Lectures\Python\mydatabase.db")

with is used when working with unmanaged resources

with con:

 cur = con.cursor()

 cur.execute("SELECT SQLITE_VERSION()")

 data = cur.fetchone()

 print ("SQLite version: %s" % data)

With the with keyword, the Python interpreter automatically releases the resources. It also

provides error handling. The with statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed.

52

Database Programming

create database

import sqlite3 as lite

with lite.connect('mydb.db') as conn:

 cur = conn.cursor()

 # create table

 cur.execute('''CREATE TABLE my_db

 (id TEXT, my_var1 TEXT, my_var2 INT)''')

 # insert one row of data

 cur.execute("INSERT INTO my_db VALUES ('ID_2352532','YES', 4)")

 # insert multiple lines of data

 multi_lines =[('ID_2352533','YES', 1),

 ('ID_2352534','NO', 0),

 ('ID_2352536','YES', 9),

 ('ID_2352535','YES', 3),

 ('ID_2352537','YES', 10)

]

 cur.executemany('INSERT INTO my_db VALUES (?,?,?)', multi_lines)

 # save (commit) the changes

 conn.commit()

close connection

conn.close()

53

Database Programming

querying database

import sqlite3 as lite

open existing database

with lite.connect('mydb.db') as conn:

 cur = conn.cursor()

 # print all lines ordered by integer value in my_var2

 for row in cur.execute('SELECT * FROM my_db ORDER BY my_var2'):

 print(row)

 print('---- ordered by integer value in my_var2 ----')

 # print all lines that have "YES" as my_var1 value

 # and have an integer value <= 7 in my_var2

 t = ('YES',7,)

 for row in cur.execute('SELECT * FROM my_db WHERE my_var1=? AND my_var2 <= ?', t):

 print(row)

 print('have YES" as my_var1 value and have an integer value <= 7 in my_var2')

 # print all lines that have "YES" as my_var1 value

 # and have an integer value <= 7 in my_var2

 t = ('YES',7,)

 cur.execute('SELECT * FROM my_db WHERE my_var1=? AND my_var2 <= ?', t)

 rows = cur.fetchall()

 for r in rows:

 print(r)

close connection

conn.close()

54

Database Programming

update database

import sqlite3 as lite

with lite.connect('mydb.db') as conn:

 cur = conn.cursor()

 # update field

 t = ('NO', 'ID_2352533',)

 cur.execute("UPDATE my_db SET my_var1=? WHERE id=?", t)

 print ("Total number of rows changed:", conn.total_changes)

 # delete rows

 t = ('NO',)

 cur.execute("DELETE FROM my_db WHERE my_var1=?", t)

 print ("Total number of rows deleted: ", conn.total_changes)

 # add column

 cur.execute("ALTER TABLE my_db ADD COLUMN 'my_var3' TEXT")

 # save changes

 conn.commit()

 # print column names

 cur.execute("SELECT * FROM my_db")

 col_name_list = [tup[0] for tup in cur.description]

 print (col_name_list)

close connection

conn.close()

