PYTHON
PROGRAMMING

Network Programming
#14

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

PYTHON Python Network Programming
PROGRAMMING

Python provides two levels of access to network programming.

Low-Level Access: At the low level, you can access the basic socket
support of the operating system. You can implement client and server
for both connection-oriented and connectionless protocols.

High-Level Access: At the high level allows to implement protocols
like HTTP, FTP, etc.

Serdar ARITAN

PYTHON What is socket?
PROGRAMMING

Consider a bidirectional communication channel, the sockets are the
endpoints of this communication channel. These sockets (endpoints)

can communicate within a process, between processes on the same
machine, or between processes on different machines.

Sockets use different protocols for determining the connection type for
port-to-port communication between clients and servers.

Serdar ARITAN

PYTHON
PROGRAMMING

What is socket?

Sockets act as bidirectional communications channel where they are
endpoints of it.

Top

Bottom

Layer
Application

Transport
Internet

Network Access

Protocols

'HTTP, DNS
'TCP, UDP
P

. Ethernet

Serdar ARITAN

Application
Port# | Layer Type Description
Protocol
20 FTP TCP File Transfer Protocol - data
21 FTP TCP File Transfer Protocol - control
22 SSH TCP/UDP | Secure Shell for secure login
23 Telnet TCP Unencrypted login
25 SMTP TCP Simple Mail Transfer Protocol
53 DNS TCP/UDP | Domain Name Server
67/68 | DHCP uDP Dynamic Host
80 HTTP TCP HyperText Transfer Protocol
123 NTP uDP Network Time Protocol
161,162 | SNMP TCP/UDP | Simple Network Management Protocol
389 LDAP TCP/UDP | Lightweight Directory Authentication Protocol
443 HTTPS TCP/UDP | HTTP with Secure Socket Layer

PYTHON
PROGRAMMING

Sockets act as bidirectional communications channel where they are
endpoints of it.

Sockets Vocabulary

Term Description

Domain The set of protocols used for transport mechanisms like AF_INET, PF_INET, etc.
Type Type of communication between sockets
Protocol Identifies the type of protocol used within domain and type. Typically it is zero

b The server listens for clients calling on one or more ports. it can be a string containing a port
ort
number, a name of the service, or a Fixnum port

Identifies a network interface. It can be a

» a string containing hostname, IPv6 address, or a double-quad address.
Hostname *® aninteger
* a zero-length string

e a string “<broadcast>"

Serdar ARITAN

PYTHON
PROGRAMMING

TCP

Sender Reciever

Sender Request Reciever

Response .

Response

Response R

Where UDP is Used? Where TCP is Used?

Gaming Sending Emails
Video Streaming Transferring Files
Online Video Chats Web Browsing

Serdar ARITAN

PYTHON Sockets Programming
PROGRAMMING

Socket programming is a way of connecting two nodes on a network
to communicate with each other. One socket(node) listens on a
particular port at an IP, while the other socket reaches out to the other to

form a connection.
import socket

to create a socket we have to use the socket.socket() method.

Syntax:
socket.socket (socket family, socket type, protocol=0)

Where,
socket_family: Either AF UNIX or AF INET

socket_type: Either SOCK STREAM Oor SOCK DGRAM.
protocol: Usually left out, defaulting to O.

Serdar ARITAN

PYTHON Sockets Programming
PROGRAMMING

Socket Server Methods

Function Description

Name

Binds address to the socket. The address contains the pair of hostname and the port

s.bind()
number.
s.listen() Starts the TCP listener
s.accept() Passively accepts the TCP client connection and blocks until the connection arrives

Socket Client Methods

Function Name Description

s.connect() Actively starts the TCP server connection

Serdar ARITAN

PYTHON Sockets Programming
PROGRAMMING

Socket General Methods

Function Name Description
s.send() Sends the TCP message
s.sendto() Sends the UDP message
s.recv() Receives the TCP message
s.recvfrom() Receives the UDP message
s.close() Close the socket
socket.ghostname() Returns the host name

Serdar ARITAN

PYTHON Network Programming Server-Side
PROGRAMMING

import socket

s = socket.socket()

print ("Socket successfully created")

reserve a port on your computer

port = 40674

Bind to the port which have not typed any ip in the ip field this makes the server listen

to requests coming from other computers on the network
s.bind(('', port))
print (f"socket binded to {port}")

put the socket into listening mode
s.listen(5)
print ("socket is listening")
while True:
Establish connection with client.
c, addr = s.accept()
print ('Got connection from', addr)

send a thank you message to the client.
c.send(b'Thank you for connecting')

Close the connection with the client
c.close()
Serdar ARITAN

PYTHON Network Programming Server-Side

PROGRAMMING

NeLcqac

ed originally by Simon Tatham for the
are that is available with source code an

#2 puTTY Configuration ? X
PUTTY is an SSH and telnet client,
developed originally by Simon Tatham for [===
the Windows platform. PuTTY is open I
source software that is available with ey e
source code and is developed and
supported by a group of volunteers.

About Help Cancel

Serdar ARITAN

PYTHON Simple Port Scanner with Sockets
PROGRAMMING

Ports can be scanned to check which ports are engaged and which
ports are open or free. In Python “Socket” module provides access to
the BSD socket interface, which is available on all platforms.

To scan the ports, the following steps can be implemented:

] Recognize the host’s IP address

Create new socket

Forming a connection with port

Checks whether data is received or not

Close connection To use the socket module, we have to import it :

RCARE A

Serdar ARITAN

PYTHON Simple Port Scanner with Sockets
PROGRAMMING

import socket

#getting ip-address of host
ip = socket.gethostbyname (socket.gethostname())
#check for all available ports
for port in range (65535):
CXV.
create a new socket
serv = socket.socket (socket.AF INET, socket.SOCK_ STREAM)

socket.gethostname ()
'SA-LENOVO'

bind socket with address [OPEN] Port open : 135
serv.bind i ort [OPEN] Port open : 139
L . ((P.P)) [OPEN] Port open : 445
e A [OPEN] Port open : 5040
#print open port number [OPEN] Port open : 49664
print (' [OPEN] Port open :',port) [OPEN] Port open : 49665

[OPEN] Port open : 49666
[OPEN] Port open : 49667
serv.close() #close connection [OPEN] Port open : 49668
[OPEN] Port open : 49670

Serdar ARITAN [OPEN] Port open : 56480

PYTHON
PROGRAMMING

Python and FTP

The File Transfer Protocol (FTP) was developed by the late Jon Postel
and Joyce Reynolds in the Internet Request for Comment (RFC) 959
document and published in October 1985. It is primarily used to
download publicly accessible files in an anonymous fashion. You must
have a login/password to access the remote host running the FTP
server. The exception is anonymous logins, which are designed for guest

downloads

FTP client

-

M (> 1023)

P L

g |
[crlemd L p1

\ _x\.-

FTP server

Serdar ARITAN

M+ 1

AN _/ N (> 1023) [passive]

20 [active] or

PYTHON Python and FTP
PROGRAMMING

1. Client contacts the FTP server on the remote host

2. Client logs in with username and password (or anonymous and e-
mail address)

3. Client performs various file transfers or information requests

4. Client completes the transaction by logging out of the remote host
and FTP server

Serdar ARITAN

PYTHON Python and FTP
PROGRAMMING

Under the hood, it is good to know that FTP uses only TCP. —it does
not use UDP in any way. Also, FTP can be seen as a more unusual
example of client/server programming because both the clients and the
servers use a pair of sockets for communication: one is the control or
command port (port 21), and the other is the data port (sometimes port
20). We say sometimes because there are two FTP modes: Active and
Passive, and the server’s data port is only 20 for Active mode. After the
server sets up 20 as its data port, it “actively” initiates the connection to
the client’s data port. For Passive mode, the server is only responsible
for letting the client know where its random data port is; the client must
Initiate the data connection. As you can see in this mode, the FTP
server is taking a more passive role in setting up the data connection.
Finally, there is now support for a new Extended Passive Mode to
support version 6 Internet Protocol (IPv6) addresses.

Serdar ARITAN

PYTHON Python and FTP
“ PROGRAMMING

>>> from ftplib import FTP

>>> £ = FTP('lidya.hacettepe.edu.tr')
>>> f.login('serdar. aritan', ‘kkkkkkkk!)
'230 User saritan logged in'

>>> f£.dir()

drwxr-xr-x 2 saritan akd 3 Dec 21 15:06 dev
drwxr-xr-x 2 saritan akd 5 Nov 3 06:19 mail
-rw-r--r-- 1l saritan akd 22 Nov 3 06:19 pass
drwxr-xr-x 16 saritan akd 57 Nov 26 18:56 public_html
drwxr-xr-x 2 saritan akd 3 Nov 3 06:19 temp

>>> f.quit()
'221 Goodbye.'

Serdar ARITAN

PYTHON

>>> f.dir ()
drwxr—-xr-x=
drwzr—-=xr-x
—Irw—Ir——r——
drwzr—-=zr-x 2
drwzr—-=zr-x
>>>| f£.cwd

‘mnnect

debug
debugging
delete

dir
encoding
file

getline
getmultiline

Serdar ARITAN

O oy = B D

PROGRAMMING

saritan
saritan
saritan
saritan
saritan

akd
akd
akd
akd
akd

Python and FTP

Dec
Nowv
Now
Apr
Feb

21 2015
3 2015
3 2015

25 12:40
6 2017

dev
mail
pass
public html
temp

PYTHON Python and FTP
Y PROGRAMMING

login(user='anonymous', passwd='"", acct="") Log in to FTP server; all
arguments are optional

pwd() Current working directory

cwd (path) Change current working directory to path

dir([path[,...[,cb]]) Displays directory listing of path; optional callback cb passed

to retrlines()

nlst([path[,...]) Like dir() but returns a 1list of filenames instead of
displaying

retrlines(cmd [, cb]) Download text file given FTP cmd, for example,

RETR filename; optional callback cb for processing each line of file
retrbinary(emd, cb[, bs=8192[, ra]])Similar to retrlines() except for binary
file; callback cb for processing each block (size bs defaults to 8K) downloaded
required

storlines (cmd, f) Upload text file given FTP cmd, for example, STOR
filename; open file object f required

storbinary(cmd,£f[, bs=8192)]) Similar to storlines() but for binary file; open

file object f required, upload blocksize bs defaults to 8K

rename (0ld, new) Rename remote file from old to new

delete (path) Delete remote file located at path

mkd (directory) Create remote directory

rmd (directory) Remove remote directory

quit() Close connection and quit

Serdar ARITAN

Y PROGRAMMING

>>> from ftplib import FTP
>>> £ = FTP('lidya.hacettepe.edu.tr')

>>> f.login('saritan', ‘kkkkikkkk!)
'230 User saritan logged in‘

>>> £.pwd ()

l/\

>>> f.cwd('public html')
'250 CWD command successful'
>>> £.pwd()

'/public_html'

>>> f.retrlines ('LIST')
drwxr-xr-x 2 saritan akd
-rw-r--r—-- 1l saritan akd
'226 Transfer complete’

>>> f£f.quit()

'221 Goodbye.'

Serdar ARITAN

PYTHON Python and FTP

13 Dec 10 14:42 bco601l
2283 Dec 10 14:40 bco60l.htm

PYTHON
PROGRAMMING

Mame

= dir
[ftp_1

Q web

Serdar ARITAN

Python and FTP

', 'w') .write)
open ('web htm', 'wbh') .write)

from ftplib import FTP

f = FTP('lidya.hacettepe.edu.tr')
f.login('saritan',6K ‘h*kkdkkdkkk!)
f.cwd('public html"')

f.retrlines ('LIST', open('dir. tx
f.retrbinary ('RETR bca607.htm',
f.quit()

Date modified Type Size

28-Dec-21 11:35 AM Text Document S KB
28-Dec-21 11:35 aM Python File 1 KB
29-Dec-21 11:35 AM Microsoft Edge ... 4 KB

PYTHON Python and FTP
PROGRAMMING

ftplib
os

upload (ftp, file):
ext = os.path.splitext(file) [1]

ext in (" . " ’ " . " ’ " . ") :
ftp.storlines (" " + file, open(file,"’ "))
ftp.storbinary (" " + file, open(file, ‘rb’), 1024)
ftp = ftplib.FTP(' ")
ftp.login(' v, ")
upload (ftp, " ")
upload (ftp, “ ")
upload (ftp, “ ")

Serdar ARITAN

PYTHON
PROGRAMMING

File Edit View History Bookmarks Tools Help

ANR.pdf
MUTED

- &} 9, hacettepe.edu.tr

“) Getting Started

@D

Serdar ARITAN

Python and FTP

@ =
[0 other Bookmarks

— =4 AutomaticZoom ¥ _-..:-_ é El-, [»

A

Bu bir denemedir

Serdar ARITAN

PYTHON Python and SMTP
PROGRAMMING

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles
sending e-mail and routing e-mail between mail servers.

smtplib
smtpOb]j = smtplib.SMTP([host [, port [, local hostname]]])
host: This is the host running your SMTP server. You can specifiy IP
address of the host or a domain name like hacettepe.edu.tr. This is

optional argument.

port: If you are providing host argument, then you need to specify a port,
where SMTP server is listening. Usually this port would be 25.

local hostname: If your SMTP server is running on your local machine,
then you can specify just localhost as of this option

PYTHON Python and SMTP
PROGRAMMING

An smtplib and an smtplib.SMTP class to instantiate.

1. Connect to server

2. Log in (if applicable)

3. Make service request(s)
4. Quit

In addition to the smtplib.SMTP class, Python 2.6 introduced another
pair. SMTP_SSL. If omitted, the default port for SMTP_SSL is 465. For
most e-mail sending applications, only two are required sendmail() and

quit().

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

Method

sendmail (from, to,
msg[, mopts, ropts])

ehlo() or helo()

starttls(keyfile=None,
certfile=None)

set_debuglevel (Tevel)
quit()

login(user, passwd)?

Python and SMTP

Description

Sends msg from fromto to (list/tuple) with
optional ESMTP mail (mopts) and recipient
(ropts) options.

Initiates a session with an SMTP or ESMTP
server using EHLO or HELO, respectively.
Should be optional because sendmail () will
call these as necessary.

Directs server to begin Transport Layer Security
(TLS) mode. If either keyfile or certfile are
given, they are used in the creation of the secure
socket.

Sets the debug level for server communication.
Closes connection and quits.

Log in to SMTP server with username and
passwd.

a. SMTP-AUTH only.

PYTHON Python and SMTP
PROGRAMMING

FEile

Edit View History Bookmarks Tools Help
& Sign-in & security
&« (& ‘m' [OF https://myaccount.google.com/security e @ ﬁ CL Search i i @ =

Lt Most Visited @ Problem loading page @ Getting Started []] Suggested Sites @ Problem loading page @ Web Slice Gallery @ Problem loading page WA Novafile

My Account Sign-in & security

Welcome

| sign-in & security

Allow less secure apps: OFF
Signing in to Google PR

Device activity & security Some apps and devices use less secure sign-in technology, which could feave
events your account vulnerable. You can turn off access for these apps (which we
Apps with account access recommend) or choose to use them despite the risks.

Personal info & privacy

Your personal info

Manage your Google
activity

Ads Settings

Control your content Check your privacy settings =
W v

https://myaccount.google.com/security

Serdar ARITAN

PYTHON Python and SMTP
PROGRAMMING

port smtplib
1 email .mime. text import MIMEText
1 sys import platform

- send_email (subject, body, sender, recipient, password):
msg = MIMEText (body)
msg['Subject'] = subject
msg['From'] = sender
msg['To'] = recipient
smtp_server = smtplib.SMTP SSL('smtp.gmail.com', 465)
smtp server.login(sender, password)
smtp_server.sendmail (sender, recipient, msg.as_string())
smtp_server.quit()

subject = "BC0O601 Ara Sinav"
body = """Merhabalar,

Ara sinavlarinizi e-posta ile gonderirken mutlaka konu "Subject" kismina
dersin kodunu "BCO601l" yazmayi unutmayain.

mmun

sender = "serdar.aritan@gmail.com"
¢ platform == "darwin": # 0S X
password = “RXXXXXXXXXXRXXX"
¢ platform == "win32": # Windows

password = “XXXXXXXXXXKXX"

Serdar ARITAN

PYTHON Python and SMTP
PROGRAMMING

Using readlines()
filel = open('eMail bco601l.txt', 'r')
Lines = filel.readlines()

Strips the newline character

for line in Lines:
recipient = line.strip()
send_email (subject, body, sender, recipient, password)
print (f"eMail has been sent to : {recipient}")

Serdar ARITAN

PYTHON Python and IMAP
PROGRAMMING

the Internet Message Access Protocol, or IMAP. (IMAP has also been
known by various other names: “Internet Mail Access Protocol,”
“Interactive Mail Access Protocol” and “Interim Mail Access
Protocol.”). The current version of IMAP in use today is IMAP4, that is
widely used.

1. Connect to server
2.Login

3. Make service request(s)
4. Quit

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

Method

close()

fetch(message_set,
message_parts)

login(user, password)
Togout ()

noop ()

search(charset,
*criteria)

select(mailbox= "INBOX',
read-only=False)

Python and IMAP

Description

Closes the current mailbox. If access is not set to

read-only, any deleted messages will be
discarded.

Retrieve e-mail messages (or requested parts via
message_parts) stated by message_set.

Logs in user by using given password.

Logs out from the server.

Ping the server but take no action (“no
operation”).

Searches mailbox for messages matching at least
one piece of criteria. If charsetis False, it
defaults to US-ASCIL.

Selects a mailbox (default is INBOX); user not
allowed to modify contents if readonly is set.

FITHON Python and IMAP
PROGRAMMING

imaplib

mailserver = imaplib.IMAP4 SSL(‘mail .hacettepe.edu.tr', 993)
username = 'saritan'
password = ‘ddkkkkdkk!

mailserver.login (username, password)

status, count = mailserver.select('Inbox')

status, data = mailserver.fetch(count[0], ")
print (data[0]([1])

mailserver.close()

mailserver.logout ()

Serdar ARITAN

PYTHON Python and URL
PROGRAMMING

The urllib.request module defines functions and classes which help in

opening URLs (mostly HTTP) in a complex world — basic and digest
authentication, redirections, cookies and more

>>> import urllib.request
>>> f = urllib.request.urlopen('http://www.python.org/")

>>> print(f.read(300)) #displays the first 300 bytes
b'<!doctype html>\n<!--[if 1t IE 7]> <html class="no-js ieb6

lt-ie7 lt-ie8 lt-ie9"> <![endif]-->\n<!'--[if IE 7]> <html
class="no-js ie7 lt-ie8 lt-ie9%"> <![endif]-->\n<!--[if
IE 8]> <html class="no-js ie8 1lt-ied%">

<!'[endif]-->\n<!--[if gt IE 8]><!--><html class="no-js"'

Serdar ARITAN

PYTHON Python and URL
! PROGRAMMING

>>> with urllib.request.urlopen('http://www. hacettepe.edu.tr/"') as £:
print(f.read (100) .decode('utf-a"))

<!'doctype html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=de

Serdar ARITAN

PYTHON Python and URL
PROGRAMMING

The URL parsing functions focus on splitting a URL string into its
components, or on combining URL components into a URL string

>>> from urllib.parse ‘mport urlparse

>>> o=urlparse('https://yunus. hacettepe.edu.tr/~saritan/bco60l _htm')
>>> 0

ParseResult (scheme='https', netloc='yunus.hacettepe.edu.tr',
path='/~saritan/bco601l.htm', params='"', query='"', fragment='")

>>> o.scheme

'https'

>>> o.geturl ()
'https://yunus.hacettepe.edu. tr/~saritan/bco60l1l.htm'

Serdar ARITAN

PYTHON Python and URL
PROGRAMMING

http://beans.itcarlow.ie/prices.html

Eile Edit View History Bookmarks Tools Help

Welcome to the Beans'R'Us Pricing X ‘ +

=]
L C O ﬁ https://beans.itcarlow.ie/prices.htm > @ ﬁ
5]

Getting Started (3 other Bookmarks

Welcome to the Beans'R'Us
Pricing Page
Current price of coffee beans = $6.58

Price valid for 15 minutes from Tue Dec 24
08:12:02 2024.

Serdar ARITAN

PYTHON Python and URL
PROGRAMMING

File Edit View History Bookmarks Tools Help
Welcome to the Beans'R'Us Pri

<« C

) Getting Started [other Bookmarks

Welcome to the WS Pricing Page

-

ight or Dark theme in the Settings panel. Open Settings X
3 Inspector) ger f : {2} ditor () Performance g - Application 1 |j:| b

+ thov . C ted Changes onts Animat ¥
~

html * body > p

Serdar ARITAN

Serdar ARITAN

PYTHON
PROGRAMMING

urllib.request

price = 99.99

price > 4.74:
page = urllib.request.urlopen ("
text = page.read() .decode (" ")
where = text.find(' ")
start of price = where + 2
end of price = start of price + 4

price = float(text[start of price:end of price])
print (" ")

Python and URL

Welcome to the Beans'R"Us Pricing Page</h2»

w <p>

Current price of coffee beans =

Q | & http://beans.itcarlow.ie/prices.html

£~

= Welcome to the Beans'R'Us... ‘ |

File Edit View Favorites Tools Help

- Current price of coffee beans = $6.55

Welcome to the Beans'R'Us Pricing Page

Price valid for 15 minutes from Mon Dec 16 20:19:01 2013.

PYTHON Python and HTTP Server
PROGRAMMING

The Web was initially developed to be a global online repository or
archive of documents (mostly educational and research-oriented).
Such pieces of information generally come in the form of static text
and usually in HTML. HTML is not as much a language as it is a text
formatter, indicating changes in font types, sizes, and styles. The
main feature of HTML is in its hypertext capability. This refers to the
ability to designate certain text (usually highlighted in some fashion)
or even graphic elements as links that point to other “documents” or
locations on the Internet and Web that are related in context to the
original. Such a document can be accessed by a simple mouse click
or other user selection mechanism. These (static) HTML documents
live on the Web server and are sent to clients when requested.

Serdar ARITAN

PYTHON Python and HTTP Server
PROGRAMMING

The Python standard library has everything you need to handle the standard
internet protocols and to create both clients and servers.

The standard library has a number of modules for writing servers for various
network protocols. In many cases, you can create a server in only a few lines
of code. Suppose we want to make a particular folder’s files freely accessible
via HTTP, perhaps to share a few files with coworkers without the hassle of
setting up a formal repository or file share. With Python, we don’t need to install
and configure a server.

>>> http.server HTTPServer, SimpleHTTPRequestHandler
>>> server = HTTPServer (("", 8080), SimpleHTTPRequestHandler)
>>> server.serve forever()

This server will serve the contents of the folder it’s run in on port 8080 for all
active network interfaces. The tuple ("", 8080) sets the address and port for
the server.

Serdar ARITAN

PYTHON Python and HTTP Server
PROGRAMMING

sys

http.server

socketserver

Handler = http.server.SimpleHTTPRequestHandler

sys.argv[l:]:
PORT = int(sys.argv[l])

PORT = 8080

httpd = socketserver.TCPServer (("", PORT), Handler)
print (" ", PORT)

httpd.serve forever ()

http.server can also be invoked directly using the -m switch of the interpreter
with a port number argument. This serves files relative to the current directory.
python -m http.server 8080

Serdar ARITAN

PYTHON Python and HTTP Server
PROGRAMMING

Local Disk (C) » Lectures » BCO 601 Python Programming * Internet v D

' Seart
index. htm ~ MName B Date modified Type Size
cgi-bin 21 3113 PM File folder
<ldoctype html> o 150AM e folder
IMAP File folder
< htm I > & index Microsoft Edge ... 1KB
[# server1 Python File 1KB

<body>

Hello, from Python worild!
</b0dy> File Edit View History Bookn Tools Help
</html>

) Getting Started

(3 other Bookmarks
Hello, from Python world!

55 DevTools now follow the overall Firefox theme. You can revert to Light or Dark theme in the Settings panel. Open Settings

o O Inspector =

Serdar ARITAN

PYTHON Python and HTTP Server
PROGRAMMING

Writing Python code to interact with an HTTP server is also quite easy.
The urllib.request module is designed to enable interaction with

URLs in all their real world complexity, including authentication,
cookies, redirections, and the like.

>>> from urllib.request import urlopen

>>> url file = urlopen("http://localhost:8080")
>>> print(url file.geturl())
http://localhost:8080

>>> print(url file.info())

Server: SimpleHTTP/0.6 Python/3.10.1

Date: Wed, 29 Dec 2021 10:13:29 GMT
Content-type: text/html

Content-Length: 89

Last-Modified: Tue, 25 May 2021 12:08:28 GMT

Serdar ARITAN

PYTHON Python and HTTP Server
PROGRAMMING

Although the http.server module has the basics of a web
server, you need more than the basics to write a full-featured
web application. You need to manage users, authentication, and
sessions; you need a way to generate HTML pages. The solution
to this is to use a web framework, and over the years many
frameworks have been created in Python, leading to the present
generation, which includes ZzZope and Plone, Django,
TurboGears, web2py, and many more.

Serdar ARITAN

PYTHON Asynchrony in Python
PROGRAMMING

The operating system only sees your code as running in a single
process, with a single thread,; it is Python itself that manages the
multitasking, with some help from you, thereby sidestepping some of
the issues that crop up with threading. Still, writing good
asynchronous code in Python requires some forethought and
planning.

It's important to keep in mind that asynchrony is not parallelism. In
Python, a mechanism called the Global Interpreter Lock (GIL)
ensures that any single Python process is constrained to a single
CPU core, regardless of how many cores are available to the system.

Serdar ARITAN

PYTHON
PROGRAMMING

TIME SLICE

Asynchrony in Python
CPU - BOLIND

Serdar ARITAN

| THE SUCE T/0-BOUND

PYTHON Asynchrony in Python
PROGRAMMING

The Collatz conjecture is one of the most famous unsolved problems
In mathematics. The conjecture asks whether repeating two simple
arithmetic operations will eventually transform every positive integer
into 1.

1. Start with any positive integer n.

2. If n is even, the next term in the sequence should be n / 2.

3. If n is odd, the next term in the sequence should be 3 * n + 1.
4.1fnis 1, stop.

Even if you start with a fantastically large number, you'll always wind up
at 1 after relatively few steps. Starting with 942 488 749 153 153, for
example, the Collatz sequence arrives at 1 in only 262 steps.

Serdar ARITAN

PYTHON Asynchrony in Python
PROGRAMMING

Let's create a simple game that challenges the user to guess how
many Collatz sequences have a particular length. We will restrict the
range of starting numbers to integers between 2 and 1,000,000.

For example, exactly 782 starting numbers will yield Collatz
sequences with a length of exactly 42 values.

Serdar ARITAN

PYTHON
PROGRAMMING

port time

BOUND= 10**¢
def collatz(n):
steps = 0
: n > 1:
"n % 2:
n=n%*3+1

n=n/2
steps += 1
steps

=f length counter (target):
count = 0
“or 1 in range (2, BOUND):

- collatz (i) == target:

count += 1
count

Serdar ARITAN

Asynchrony in Python

PYTHON
PROGRAMMING

def get_input (prompt) :

while True:

Asynchrony in Python

input (prompt)
ry.

n = int(n)
:cept ValueError:

n
c

print ("Value must be an integer.")

continue

if n<=0:

= - =
=)

print ("Value must be positive.")

o

2CUrXrn n

Serdar ARITAN

PYTHON ‘
PROGRAMMING Asynchrony in Python

main () :

print("Collatz Sequence Counter")

target = get_input("Collatz sequence length to search for: ")
print (f"Searching in range 1-{BOUND}...")

»

f\'j

count = length counter (target)
print (f"Your target number {target} occuried {count} times")

h

1f _name == " main ":
Start timer
start_time = time.time ()
main ()

end time = time.time ()

Calculate elapsed time
elapsed time = end time - start time
print ("Elapsed time: ", elapsed time)

Serdar ARITAN

PYTHON _
PROGRAMMING Asynchrony in Python

======= RESTART: C:\Lectures\BCO 601 Python Programming\asynch\collatz.py
Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 22.951388835906982

======= RESTART: C:\Lectures\BCO 601 Python Programming\asynch\collatz.py
Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 21.74228024482727

Serdar ARITAN

PYTHON _
PROGRAMMING Asynchrony in Python

asyncio

BOUND = 10**6

collatz(n):
steps = 0
n>1:
n$%$ 2:
n=n?%3+1

n=n/2
steps += 1
steps

This function will always return almost instantly, so it neither needs to
call an awaitable nor run concurrently with another awaitable. It can
remain as a normal function..

Serdar ARITAN

PYTHON

PROGRAMMING Asynchrony in Python
length counter() is labor intensive and CPU-bound.
async def length counter (target):
count = 0
- i in range (2, BOUND):
° collatz (i) == target:

count += 1
‘ # allow other tasks to run for a moment
await asyncio.sleep(0)

return count

This function turn into a coroutine function with async and use
await asyncio.sleep(0) to tell Python where the coroutine
function can pause and let something else work.

Serdar ARITAN

PYTHON
PROGRAMMING

def get_input (prompt) :

while True:

Asynchrony in Python

input (prompt)
ry.

n = int(n)
:cept ValueError:

n
c

print ("Value must be an integer.")

continue

if n<=0:

= - =
=)

print ("Value must be positive.")

o

2CUrXrn n

Serdar ARITAN

PYTHON
PROGRAMMING

async def main():

=

h

Serdar ARITAN

print("Collatz Sequence Counter")

Asynchrony in Python

target = get_input("Collatz sequence length to search for: ")
print (f"Searching in range 1-{BOUND}...")

length_counter_ task = asyncio.create task(length_ counter (target))
count = await length counter task
print (f"Your target number {target} occuried {count} times")

name == " main ":

Start timer
start_time = time.time ()
asyncio.run (main())

end time = time.time ()

Calculate elapsed time

elapsed time = end time - start time
print ("Elapsed time: ", elapsed time)

PYTHON _
PROGRAMMING Asynchrony in Python

=== RESTART: C:\Lectures\BCO 601 Python Programming\asynch\asynch collatz.py
Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 19.947562217712402

=== RESTART: C:\Lectures\BCO 601 Python Programming\asynch\asynch collatz.py
Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 19.881373643875122

Serdar ARITAN

