
1

Biomechanics Research Group,

Faculty of Sports Sciences, and

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Network Programming

#14

Python provides two levels of access to network programming.

 Low-Level Access: At the low level, you can access the basic socket

support of the operating system. You can implement client and server

for both connection-oriented and connectionless protocols.

 High-Level Access: At the high level allows to implement protocols

like HTTP, FTP, etc.

2

Python Network Programming

3

What is socket?

Consider a bidirectional communication channel, the sockets are the

endpoints of this communication channel. These sockets (endpoints)

can communicate within a process, between processes on the same

machine, or between processes on different machines.

Sockets use different protocols for determining the connection type for

port-to-port communication between clients and servers.

4

What is socket?

Sockets act as bidirectional communications channel where they are

endpoints of it.

Sockets Vocabulary

Sockets act as bidirectional communications channel where they are

endpoints of it.

5

6

Where TCP is Used?

 Sending Emails
 Transferring Files
 Web Browsing

Where UDP is Used?

 Gaming
 Video Streaming
 Online Video Chats

Sockets Programming

Socket programming is a way of connecting two nodes on a network

to communicate with each other. One socket(node) listens on a

particular port at an IP, while the other socket reaches out to the other to

form a connection.
import socket

to create a socket we have to use the socket.socket() method.

Syntax:
socket.socket(socket_family, socket_type, protocol=0)

Where,
 socket_family: Either AF_UNIX or AF_INET

 socket_type: Either SOCK_STREAM or SOCK_DGRAM.

 protocol: Usually left out, defaulting to 0.
7

Sockets Programming

8

Socket Server Methods

Socket Client Methods

Sockets Programming

9

Socket General Methods

Network Programming Server-Side

10

import socket

s = socket.socket()

print ("Socket successfully created")

reserve a port on your computer

port = 40674

Bind to the port which have not typed any ip in the ip field this makes the server listen

to requests coming from other computers on the network

s.bind(('', port))

print (f"socket binded to {port}")

put the socket into listening mode

s.listen(5)

print ("socket is listening")

while True:

 # Establish connection with client.

 c, addr = s.accept()

 print ('Got connection from', addr)

 # send a thank you message to the client.

 c.send(b'Thank you for connecting')

 # Close the connection with the client

 c.close()

Network Programming Server-Side

11

PuTTY is an SSH and telnet client,

developed originally by Simon Tatham for

the Windows platform. PuTTY is open

source software that is available with

source code and is developed and

supported by a group of volunteers.

Ports can be scanned to check which ports are engaged and which

ports are open or free. In Python “Socket” module provides access to

the BSD socket interface, which is available on all platforms.

To scan the ports, the following steps can be implemented:

1] Recognize the host’s IP address

2] Create new socket

3] Forming a connection with port

4] Checks whether data is received or not

5] Close connection To use the socket module, we have to import it :

Simple Port Scanner with Sockets

12

13

import socket

#getting ip-address of host

ip = socket.gethostbyname (socket.gethostname())

#check for all available ports

for port in range(65535):

 try:

 # create a new socket

 serv = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # bind socket with address

 serv.bind((ip,port))

 except:

 #print open port number

 print('[OPEN] Port open :',port)

 serv.close() #close connection

[OPEN] Port open : 135

[OPEN] Port open : 139

[OPEN] Port open : 445

[OPEN] Port open : 5040

[OPEN] Port open : 49664

[OPEN] Port open : 49665

[OPEN] Port open : 49666

[OPEN] Port open : 49667

[OPEN] Port open : 49668

[OPEN] Port open : 49670

[OPEN] Port open : 56480

socket.gethostname()

'SA-LENOVO'

Simple Port Scanner with Sockets

14

Python and FTP

The File Transfer Protocol (FTP) was developed by the late Jon Postel

and Joyce Reynolds in the Internet Request for Comment (RFC) 959

document and published in October 1985. It is primarily used to

download publicly accessible files in an anonymous fashion. You must

have a login/password to access the remote host running the FTP

server. The exception is anonymous logins, which are designed for guest

downloads

15

Python and FTP

1. Client contacts the FTP server on the remote host

2. Client logs in with username and password (or anonymous and e-

mail address)

3. Client performs various file transfers or information requests

4. Client completes the transaction by logging out of the remote host

and FTP server

16

Python and FTP

Under the hood, it is good to know that FTP uses only TCP. —it does

not use UDP in any way. Also, FTP can be seen as a more unusual

example of client/server programming because both the clients and the

servers use a pair of sockets for communication: one is the control or

command port (port 21), and the other is the data port (sometimes port

20). We say sometimes because there are two FTP modes: Active and

Passive, and the server’s data port is only 20 for Active mode. After the

server sets up 20 as its data port, it “actively” initiates the connection to

the client’s data port. For Passive mode, the server is only responsible

for letting the client know where its random data port is; the client must

initiate the data connection. As you can see in this mode, the FTP

server is taking a more passive role in setting up the data connection.

Finally, there is now support for a new Extended Passive Mode to

support version 6 Internet Protocol (IPv6) addresses.

17

Python and FTP

>>> from ftplib import FTP

>>> f = FTP('lidya.hacettepe.edu.tr')

>>> f.login('serdar.aritan', ‘********')

'230 User saritan logged in'

>>> f.dir()

drwxr-xr-x 2 saritan akd 3 Dec 21 15:06 dev

drwxr-xr-x 2 saritan akd 5 Nov 3 06:19 mail

-rw-r--r-- 1 saritan akd 22 Nov 3 06:19 pass

drwxr-xr-x 16 saritan akd 57 Nov 26 18:56 public_html

drwxr-xr-x 2 saritan akd 3 Nov 3 06:19 temp

>>> f.quit()

'221 Goodbye.'

18

Python and FTP

19

Python and FTP

login(user='anonymous', passwd='', acct='') Log in to FTP server; all

 arguments are optional

pwd() Current working directory

cwd(path) Change current working directory to path

dir([path[,...[,cb]]) Displays directory listing of path; optional callback cb passed

to retrlines()

nlst([path[,...]) Like dir() but returns a list of filenames instead of

 displaying

retrlines(cmd [, cb]) Download text file given FTP cmd, for example,

 RETR filename; optional callback cb for processing each line of file

retrbinary(cmd, cb[, bs=8192[, ra]])Similar to retrlines() except for binary

file; callback cb for processing each block (size bs defaults to 8K) downloaded

required

storlines(cmd, f) Upload text file given FTP cmd, for example, STOR

 filename; open file object f required

storbinary(cmd,f[, bs=8192]) Similar to storlines() but for binary file; open

file object f required, upload blocksize bs defaults to 8K

rename(old, new) Rename remote file from old to new

delete(path) Delete remote file located at path

mkd(directory) Create remote directory

rmd(directory) Remove remote directory

quit() Close connection and quit

20

Python and FTP

>>> from ftplib import FTP

>>> f = FTP('lidya.hacettepe.edu.tr')

>>> f.login('saritan', ‘********')

'230 User saritan logged in‘

>>> f.pwd()

'/‘

>>> f.cwd('public_html')

'250 CWD command successful'

>>> f.pwd()

'/public_html'

>>> f.retrlines('LIST')

drwxr-xr-x 2 saritan akd 13 Dec 10 14:42 bco601

-rw-r--r-- 1 saritan akd 2283 Dec 10 14:40 bco601.htm

'226 Transfer complete‘

>>> f.quit()

'221 Goodbye.'

21

Python and FTP

from ftplib import FTP

f = FTP('lidya.hacettepe.edu.tr')

f.login('saritan', ‘********')

f.cwd('public_html')

f.retrlines('LIST', open('dir.txt', 'w').write)

f.retrbinary('RETR bca607.htm', open('web.htm', 'wb').write)

f.quit()

22

Python and FTP

import ftplib

import os

def upload(ftp, file):

 ext = os.path.splitext(file)[1]

 if ext in (".txt", ".htm", ".html"):

 ftp.storlines("STOR " + file, open(file,'rb'))

 else:

 ftp.storbinary("STOR " + file, open(file, ‘rb’), 1024)

ftp = ftplib.FTP('lidya.hacettepe.edu.tr')

ftp.login('saritan', ‘********')

upload(ftp, "SBA.pdf")

upload(ftp, “web.htm")

upload(ftp, “msFTP.jpg")

23

Python and FTP

24

Python and SMTP

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles

sending e-mail and routing e-mail between mail servers.

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

host: This is the host running your SMTP server. You can specifiy IP

address of the host or a domain name like hacettepe.edu.tr. This is

optional argument.

port: If you are providing host argument, then you need to specify a port,

where SMTP server is listening. Usually this port would be 25.

local_hostname: If your SMTP server is running on your local machine,

then you can specify just localhost as of this option

25

Python and SMTP

An smtplib and an smtplib.SMTP class to instantiate.

1. Connect to server

2. Log in (if applicable)

3. Make service request(s)

4. Quit

In addition to the smtplib.SMTP class, Python 2.6 introduced another

pair. SMTP_SSL. If omitted, the default port for SMTP_SSL is 465. For

most e-mail sending applications, only two are required sendmail() and

quit().

26

Python and SMTP

27

Python and SMTP

https://myaccount.google.com/security

28

Python and SMTP

import smtplib

from email.mime.text import MIMEText

from sys import platform

def send_email(subject, body, sender, recipient, password):

 msg = MIMEText(body)

 msg['Subject'] = subject

 msg['From'] = sender

 msg['To'] = recipient

 smtp_server = smtplib.SMTP_SSL('smtp.gmail.com', 465)

 smtp_server.login(sender, password)

 smtp_server.sendmail(sender, recipient, msg.as_string())

 smtp_server.quit()

subject = "BCO601 Ara Sınav"

body = """Merhabalar,

Ara sınavlarınızı e-posta ile gönderirken mutlaka konu "Subject" kısmına

dersin kodunu "BCO601" yazmayı unutmayın.

"""

sender = "serdar.aritan@gmail.com"

if platform == "darwin": # OS X

 password = “xxxxxxxxxxxxx"

elif platform == "win32": # Windows

 password = “xxxxxxxxxxxxx”

Using readlines()

file1 = open('eMail_bco601.txt', 'r')

Lines = file1.readlines()

Strips the newline character

for line in Lines:

 recipient = line.strip()

 send_email(subject, body, sender, recipient, password)

 print(f"eMail has been sent to : {recipient}")

29

Python and SMTP

30

Python and IMAP

the Internet Message Access Protocol, or IMAP. (IMAP has also been

known by various other names: “Internet Mail Access Protocol,”

“Interactive Mail Access Protocol” and “Interim Mail Access

Protocol.”). The current version of IMAP in use today is IMAP4, that is

widely used.

1. Connect to server

2. Log in

3. Make service request(s)

4. Quit

31

Python and IMAP

import imaplib

mailserver = imaplib.IMAP4_SSL(‘mail.hacettepe.edu.tr', 993)

username = 'saritan'

password = ‘********'

mailserver.login(username, password)

status, count = mailserver.select('Inbox')

status, data = mailserver.fetch(count[0], '(UID BODY[TEXT])')

print (data[0][1])

mailserver.close()

mailserver.logout()

32

Python and IMAP

33

Python and URL

>>> import urllib.request

>>> f = urllib.request.urlopen('http://www.python.org/')

>>> print(f.read(300)) #displays the first 300 bytes

b'<!doctype html>\n<!--[if lt IE 7]> <html class="no-js ie6

lt-ie7 lt-ie8 lt-ie9"> <![endif]-->\n<!--[if IE 7]> <html

class="no-js ie7 lt-ie8 lt-ie9"> <![endif]-->\n<!--[if

IE 8]> <html class="no-js ie8 lt-ie9">

<![endif]-->\n<!--[if gt IE 8]><!--><html class="no-js"'

The urllib.request module defines functions and classes which help in

opening URLs (mostly HTTP) in a complex world — basic and digest

authentication, redirections, cookies and more

34

Python and URL

>>> with urllib.request.urlopen('http://www.hacettepe.edu.tr/') as f:

 print(f.read(100).decode('utf-8'))

<!doctype html>

<html>

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=de

35

Python and URL

The URL parsing functions focus on splitting a URL string into its

components, or on combining URL components into a URL string

>>> from urllib.parse import urlparse

>>> o=urlparse('https://yunus.hacettepe.edu.tr/~saritan/bco601.htm')

>>> o

ParseResult(scheme='https', netloc='yunus.hacettepe.edu.tr',

path='/~saritan/bco601.htm', params='', query='', fragment='')

>>> o.scheme

'https'

>>> o.geturl()

'https://yunus.hacettepe.edu.tr/~saritan/bco601.htm'

36

Python and URL

http://beans.itcarlow.ie/prices.html

37

Python and URL

import urllib.request

price = 99.99

while price > 4.74:

 page = urllib.request.urlopen("http://beans.itcarlow.ie/prices.html")

 text = page.read().decode("utf8")

 where = text.find('>$')

 start_of_price = where + 2

 end_of_price = start_of_price + 4

 price = float(text[start_of_price:end_of_price])

print ("Buy!")

38

Python and URL

39

The Web was initially developed to be a global online repository or

archive of documents (mostly educational and research-oriented).

Such pieces of information generally come in the form of static text

and usually in HTML. HTML is not as much a language as it is a text

formatter, indicating changes in font types, sizes, and styles. The

main feature of HTML is in its hypertext capability. This refers to the

ability to designate certain text (usually highlighted in some fashion)

or even graphic elements as links that point to other “documents” or

locations on the Internet and Web that are related in context to the

original. Such a document can be accessed by a simple mouse click

or other user selection mechanism. These (static) HTML documents

live on the Web server and are sent to clients when requested.

Python and HTTP Server

40

Python and HTTP Server

The Python standard library has everything you need to handle the standard

internet protocols and to create both clients and servers.

The standard library has a number of modules for writing servers for various

network protocols. In many cases, you can create a server in only a few lines

of code. Suppose we want to make a particular folder’s files freely accessible

via HTTP, perhaps to share a few files with coworkers without the hassle of

setting up a formal repository or file share. With Python, we don’t need to install

and configure a server.

>>> from http.server import HTTPServer, SimpleHTTPRequestHandler

>>> server = HTTPServer(("", 8080), SimpleHTTPRequestHandler)

>>> server.serve_forever()

This server will serve the contents of the folder it’s run in on port 8080 for all
active network interfaces. The tuple ("", 8080) sets the address and port for
the server.

41

Python and HTTP Server

import sys

import http.server

import socketserver

Handler = http.server.SimpleHTTPRequestHandler

if sys.argv[1:]:

 PORT = int(sys.argv[1])

else:

 PORT = 8080

httpd = socketserver.TCPServer(("", PORT), Handler)

print("serving at port", PORT)

httpd.serve_forever()

http.server can also be invoked directly using the -m switch of the interpreter

with a port number argument. This serves files relative to the current directory.

python -m http.server 8080

42

Python and HTTP Server

index.htm
<!doctype html>
<html>
 <body>
 Hello, from Python world!
 </body>
</html>

43

Python and HTTP Server

Writing Python code to interact with an HTTP server is also quite easy.
The urllib.request module is designed to enable interaction with

URLs in all their real world complexity, including authentication,

cookies, redirections, and the like.

>>> from urllib.request import urlopen

>>> url_file = urlopen("http://localhost:8080")

>>> print(url_file.geturl())

http://localhost:8080

>>> print(url_file.info())

Server: SimpleHTTP/0.6 Python/3.10.1

Date: Wed, 29 Dec 2021 10:13:29 GMT

Content-type: text/html

Content-Length: 89

Last-Modified: Tue, 25 May 2021 12:08:28 GMT

44

Python and HTTP Server

Although the http.server module has the basics of a web

server, you need more than the basics to write a full-featured

web application. You need to manage users, authentication, and

sessions; you need a way to generate HTML pages. The solution

to this is to use a web framework, and over the years many

frameworks have been created in Python, leading to the present

generation, which includes Zope and Plone, Django,

TurboGears, web2py, and many more.

45

Asynchrony in Python

The operating system only sees your code as running in a single

process, with a single thread; it is Python itself that manages the

multitasking, with some help from you, thereby sidestepping some of

the issues that crop up with threading. Still, writing good

asynchronous code in Python requires some forethought and

planning.

It’s important to keep in mind that asynchrony is not parallelism. In

Python, a mechanism called the Global Interpreter Lock (GIL)

ensures that any single Python process is constrained to a single

CPU core, regardless of how many cores are available to the system.

46

Asynchrony in Python

47

Asynchrony in Python

The Collatz conjecture is one of the most famous unsolved problems

in mathematics. The conjecture asks whether repeating two simple

arithmetic operations will eventually transform every positive integer

into 1.

 1. Start with any positive integer n.

 2. If n is even, the next term in the sequence should be n / 2.

 3. If n is odd, the next term in the sequence should be 3 * n + 1.

 4. If n is 1, stop.

Even if you start with a fantastically large number, you’ll always wind up

at 1 after relatively few steps. Starting with 942 488 749 153 153, for

example, the Collatz sequence arrives at 1 in only 262 steps.

Asynchrony in Python

Let’s create a simple game that challenges the user to guess how

many Collatz sequences have a particular length. We will restrict the

range of starting numbers to integers between 2 and 1,000,000.

For example, exactly 782 starting numbers will yield Collatz

sequences with a length of exactly 42 values.

48

49

Asynchrony in Python

import time

BOUND= 10**6

def collatz(n):

 steps = 0

 while n > 1:

 if n % 2:

 n = n * 3 + 1

 else:

 n = n / 2

 steps += 1

 return steps

def length_counter(target):

 count = 0

 for i in range(2, BOUND):

 if collatz(i) == target:

 count += 1

 return count

50

Asynchrony in Python

def get_input(prompt):

 while True:

 n = input(prompt)

 try:

 n = int(n)

 except ValueError:

 print("Value must be an integer.")

 continue

 if n <= 0:

 print("Value must be positive.")

 else:

 return n

51

Asynchrony in Python

def main():

 print("Collatz Sequence Counter")

 target = get_input("Collatz sequence length to search for: ")

 print(f"Searching in range 1-{BOUND}...")

 count = length_counter(target)

 print(f"Your target number {target} occuried {count} times")

if __name__ == "__main__":

 # Start timer

 start_time = time.time()

 main()

 end_time = time.time()

 # Calculate elapsed time

 elapsed_time = end_time - start_time

 print("Elapsed time: ", elapsed_time)

52

Asynchrony in Python

======= RESTART: C:\Lectures\BCO 601 Python Programming\asynch\collatz.py

Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 22.951388835906982

======= RESTART: C:\Lectures\BCO 601 Python Programming\asynch\collatz.py

Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 21.74228024482727

53

Asynchrony in Python

import asyncio

BOUND = 10**6

def collatz(n):

 steps = 0

 while n > 1:

 if n % 2:

 n = n * 3 + 1

 else:

 n = n / 2

 steps += 1

 return steps

This function will always return almost instantly, so it neither needs to

call an awaitable nor run concurrently with another awaitable. It can

remain as a normal function..

54

Asynchrony in Python

length_counter() is labor intensive and CPU-bound.

async def length_counter(target):

 count = 0

 for i in range(2, BOUND):

 if collatz(i) == target:

 count += 1

 # allow other tasks to run for a moment

 # await asyncio.sleep(0)

 return count

This function turn into a coroutine function with async and use

await asyncio.sleep(0) to tell Python where the coroutine

function can pause and let something else work.

55

Asynchrony in Python

def get_input(prompt):

 while True:

 n = input(prompt)

 try:

 n = int(n)

 except ValueError:

 print("Value must be an integer.")

 continue

 if n <= 0:

 print("Value must be positive.")

 else:

 return n

56

Asynchrony in Python

async def main():

 print("Collatz Sequence Counter")

 target = get_input("Collatz sequence length to search for: ")

 print(f"Searching in range 1-{BOUND}...")

 length_counter_task = asyncio.create_task(length_counter(target))

 count = await length_counter_task

 print(f"Your target number {target} occuried {count} times")

if __name__ == "__main__":

 # Start timer

 start_time = time.time()

 asyncio.run(main())

 end_time = time.time()

 # Calculate elapsed time

 elapsed_time = end_time - start_time

 print("Elapsed time: ", elapsed_time)

57

Asynchrony in Python

=== RESTART: C:\Lectures\BCO 601 Python Programming\asynch\asynch_collatz.py

Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 19.947562217712402

=== RESTART: C:\Lectures\BCO 601 Python Programming\asynch\asynch_collatz.py

Collatz Sequence Counter

Collatz sequence length to search for: 88

Searching in range 1-1000000...

Your target number 88 occuried 4091 times

Elapsed time: 19.881373643875122

