
1

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Blender - Python API

#2

Blender/Python API

2

Blender/Python API

3

Blender/Python API

4

Blender/Python API

5

CTRL+ALT+SPACE

Blender/Python API

6

CTRL+ALT+SPACE

Blender/Python API

To check what symbols are loaded into the default environment, type

dir() and press <ENTER>

7

Blender/Python API

bpy. and then press <TAB> and you will see the Console auto-complete

.

8

• The interactive console is great for testing one-liners, It also has auto

complication so you can inspect the api quickly.

• Button tool tips show Python attributes and operator names. Right

clicking on buttons and menu items directly links to API

documentation.

• For more examples, the text menu has a templates section where

some example operators can be found to examine further scripts

distributed with Blender, see ~/.blender/scripts/startup/bl_ui for the

user interface and ~/.blender/scripts/startup/bl_operators for

operators.
 C:\Program Files\Blender Foundation\Blender 4.2\4.2\scripts\startup

9

Blender/Python API

Blender/Python API

>>> bpy.app.binary_path

'C:\\Program Files\\Blender Foundation\\Blender 4.2\\blender.exe‘

>>> bpy.app.version <TAB>

 _char

 _cycle

 _string

>>> bpy.app.version

(4, 2, 2)

>>> bpy.app.version_string

'4.2.2 LTS'

10

Blender/Python API
Contextual access of information in a Blender file/scene

>>> bpy.context.mode

'OBJECT'
Will print the current 3D View mode

(Object, Edit, Sculpt etc.,)

>>> bpy.context.object

bpy.data.objects['Cube']

>>> C.mode

'OBJECT'

>>> C.object

bpy.data.objects['Cube']

11

>> bpy.context.mode

'OBJECT'

>>> bpy.context.object

bpy.data.objects['Cube']

>>> bpy.context.object

bpy.data.objects['Camera']

12

Blender/Python API
Contextual access of information in a Blender file/scene

Left Mouse Click to Select

Object Mode and Edit Mode

13

>>> bpy.context.selected_objects

[bpy.data.objects['Cube'], bpy.data.objects['Light'],

bpy.data.objects['Camera']]

Blender/Python API
Contextual access of information in a Blender file/scene

14

Shift Left Mouse Click to Multiple Select

>>> for object in bpy.data.scenes['Scene'].objects:

... print(object.name)

...

Camera

Cube

Lamp

Blender/Python API
Data access of information in a Blender file/scene

You can access following data in the

current Blender file

objects, meshes, materials, textures,

scenes, screens, sounds, scripts,

texts, cameras, curves, lamps,

brushes, armatures, images, lattices,

libraries, worlds, groups, metaballs,

particles, node_groups

15

Blender/Python API
Data access of information in a Blender file/scene

>>> for object in bpy.data.objects:

... print(object.name + ‘ is at location' + str(object.location))

...

Camera is at location<Vector (7.4811, -6.5076, 5.3437)>

Cube is at location<Vector (0.0000, 0.2765, -0.2134)>

Lamp is at location<Vector (4.0762, 1.0055, 5.9039)>

16

Blender/Python API
Python access to calling operators in Blender file/scene

>>> add_cube = bpy.ops.mesh.primitive_cube_add

>>> for index in range(5):

... add_cube(location=(index*3, 0, 0))

...

{'FINISHED'}

{'FINISHED'}

{'FINISHED'}

{'FINISHED'}

{'FINISHED'}

17

Blender/Python API
Running Our First Python Script

18

bpy.ops.wm.console_toggle()

Import Libraries
Importing the Blender Python API is the first step for any Blender script.

import bpy # Imports the Blender Python API

import mathutils # Imports Blender vector math utilities

import math # Imports the standard Python math library

Set up some variables

a = 'hello'
b = ' world!‘

Print the addition to the system console

print (a + b)

open the system console

bpy.ops.wm.console_toggle()
19

Blender/Python API
Running Our First Python Script

20

Blender/Python API
Running Our First Python Script

open the system console

bpy.ops.wm.console_toggle()

Blender/Python API
Running Our First Python Script

21

Press ‘X’ delete “Cube”

Blender/Python API
Running Our First Python Script

22

Press ‘<SHIFT><A>’ to add “Cube”

Blender/Python API

Blender's 'Info' view port shows you all recent Blender activity as

executable Python commands. This is very handy for prototyping a

process using modeling methods and then assembling them into a script

The selected text from above can be copied and pasted into the Text

Editor. We can delete any unneeded options from the command. This

script will create a single mesh cube in the scene.
import bpy #Imports the Blender Python API

Create a mesh cube in the scene

bpy.ops.mesh.primitive_cube_add(location=(5, 5, 5))

23

Blender/Python API
Object Mode Manipulation

24

Blender/Python API

25

Blender/Python API

26

bpy.ops.transform.translate(value=(3.05332, 0, 0), constraint_axis=(True, False,

 False),constraint_orientation='GLOBAL', mirror=False,

 proportional='DISABLED', proportional_edit_falloff='SMOOTH',

 proportional_size=1, release_confirm=True)

Blender/Python API

27

bpy.ops.transform.translate(value=(3.0, 0, 0))

<SHIFT>Left Click to Select

Crtl+C to Copy

Blender/Python API

import bpy

for i in range (5):

 x = i * 3

 y = 0

 z = 0

 # Create a mesh cube in the scene

 bpy.ops.mesh.primitive_cube_add(location=(x, y, z))

28

The For Loop

for loop: Repeats a set of statements over a group of values.

– Syntax:

 for variableName in groupOfValues:

 statements

We indent the statements to be repeated with tabs or spaces.

variableName gives a name to each value, so you can refer to
it in the statements.

groupOfValues can be a range of integers, specified with the
range function.

indent

29

30

The For Loop

– Example:
 for x in range(6):

 print (x)

 Output:

 0

 1

 2

 3

 4

 5

31

The For Loop

– Example:

 for harfler in 'Serdar':

 print('Harf : ', harfler)

Harf : S

Harf : e

Harf : r

Harf : d

Harf : a

Harf : r

32

– Example:
 for x in range(1, 6):

 print (x, "squared is", x**2)

 Output:

 1 squared is 1

 2 squared is 4

 3 squared is 9

 4 squared is 16

 5 squared is 25

The For Loop

33

The For Loop

range

 range(start, stop) - the integers between start (inclusive) and stop (exclusive)

It can also accept a third value specifying the change between values.

• range(start, stop, step) - the integers between start (inclusive) and
stop (exclusive) by step

Example:
 for x in range(5, 0, -1):

 print(x)

 print ("Blastoff!“)

 Output:
 5
 4
 3
 2
 1
 Blastoff!

34

Example:

>>> for i in range(1,7):

 print (i, i**2, i**3, i**4)

 1 1 1 1

 2 4 8 16

 3 9 27 81

 4 16 64 256

 5 25 125 625

 6 36 216 1296

>>> for x in range(0, 5):

 print('hello %s' % x)

hello 0

hello 1

hello 2

hello 3

hello 4

The For Loop

range

Blender/Python API

35

import bpy

for x in range(10):

 for y in range(10):

 bpy.ops.mesh.primitive_cube_add(location=(x, y, 0))

Blender/Python API
Classwork

10 Minutes Break to Write a Script

36

bpy.ops.mesh.primitive_cube_add

bpy.ops.transform.resize

bpy.ops.transform.translate

Blender/Python API
Classwork

10 Minutes Break to Write a Script

37

import bpy

bpy.ops.mesh.primitive_cube_add(size=2, location=(0, 0, 0))

bpy.ops.mesh.primitive_uv_sphere_add(radius=1, location=(1, 0, 0))

bpy.data.objects['Cube'].select_set(True)

bpy.data.objects['Sphere'].select_set(True)

bpy.ops.object.join()

The bpy Module

38

The bpy Module

39

The bpy Module

40

Outputs bpy.data.objects datablocks

bpy.context.selected_objects

the bpy.context
submodule is great
for fetching lists of
objects based on
their state within
Blender

the bpy.context
submodule is used
to access objects
and areas of
Blender by various
status criteria.

The bpy Module

41

Return the names of selected objects

[k.name for k in bpy.context.selected_objects]

[Sphere', Plane', Suzanne‘, 'Torus', 'Cone', 'Cube']

One of the language’s
most distinctive features
is the list comprehension,
which you can use to
create powerful
functionality within a
single line of code.

>>> for k in bpy.context.selected_objects:

... k.name

...

‘Sphere'

'Plane‘

‘Suzanne’

'Torus'

'Cone‘

'Cube'

Every list comprehension in Python includes three elements:

• expression is the member itself, a call to a method, or any other valid

expression that returns a value. In the example above, the expression i * i is the
square of the member value.

• member is the object or value in the list or iterable. In the example above, the
member value is i.

• iterable is a list, set, sequence, generator, or any other object that can return its
elements one at a time. In the example above, the iterable is range(10).

Using List Comprehensions

42

new_list = [expression for member in iterable]

squares = [i * i for i in range(10)]

Using List Comprehensions

43

Using Conditional Logic

new_list = [expression for member in iterable (if conditional)]

>>> sentence = 'Blender is the best'

>>> vowels = [i for i in sentence if i in 'aeiou']

>>> vowels

['e', 'e', 'i', 'e', 'e']

new_list = [expression (if conditional) for member in iterable]

>>> marks = [1.25, -9.45, 10.22, 3.78, -5.92, 1.16]

>>> positive_marks = [i if i > 0 else 0 for i in marks]

>>> positive_marks

[1.25, 0, 10.22, 3.78, 0, 1.16]

The bpy Module

44

Return the names of selected objects

>>> [k.name for k in bpy.context.selected_objects]

['Cube', 'Plane', 'Cone', 'Torus', 'Sphere', 'Suzanne']

Return the locations of selected objects

(location of origin assuming no pending transformations)

>>>[k.location for k in bpy.context.selected_objects]

[Vector((0.0, 6.6893310546875, 0.0)), Vector((0.0, 0.0,

4.201729774475098)), Vector((0.0, -3.2858810424804688,

2.869234085083008)), Vector((2.727579355239868, 0.0,

2.3433666229248047)), Vector((0.0, 6.11886739730835,

5.0066142082214355)), Vector((-0.4047573506832123, -

5.412367820739746, 4.79141902923584))]

new_list = [expression for member in iterable]

Return the name and locations of selected objects

>>>[(k.name, k.location) for k in bpy.context.selected_objects]

[('Cube', Vector((0.0, 6.6893310546875, 0.0))), ('Plane', Vector((0.0,

0.0, 4.201729774475098))), ('Cone', Vector((0.0, -3.2858810424804688,

2.869234085083008))), ('Torus', Vector((2.727579355239868, 0.0,

2.3433666229248047))), ('Sphere', Vector((0.0, 6.11886739730835,

5.0066142082214355))), ('Suzanne', Vector((-0.4047573506832123, -

5.412367820739746, 4.79141902923584)))]

45

46

Lists

 Like a string, a list is a sequence of values. In a string, the values are
characters; in a list, they can be any type. The values in a list are called
elements or sometimes items.
Basic properties:
Lists are contained in square brackets []
Lists can contain numbers, strings, nested sublists, or nothing

Examples:
 L1 = [0,1,2,3]

 L2 = ['zero', 'one']

 L3 = [0,1,[2,3],'three',[‘four’, ‘one’]]

 L4 = []

Lists Are Mutable : Unlike strings, lists are mutable. When the bracket
operator appears on the left side of an assignment, it identifies the element
of the list that will be assigned.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> numbers = [17, 123]

>>> empty = []

>>> print (cheeses, numbers, empty)

['Cheddar', 'Edam', 'Gouda'] [17, 123] []

>>> numbers[1] = 5

>>> print (numbers)

[17, 5]

Lists

47

Lists

 >>> L = [1, 2, 3]

>>> for element in L:

... print(element)

...

1

2

3

>>> L.append(“I am a string.")

>>> for element in L:

... print(element)

...

1

2

3

I am a string.

48

Some basic operations on lists:
Indexing: L1[i], L2[i][j] Slicing: L3[i:j]

Concatenation:

 >>> L1 = [0,1,2]; L2 = [3,4,5]

 >>> L1+L2

 [0,1,2,3,4,5]

Repetition:

 >>> L1*3

 [0,1,2,0,1,2,0,1,2]

Appending:

 >>> L1.append(3)

 [0,1,2,3]

Sorting:

 >>> L3 = [2, 1, 4, 3]

 >>> L3.sort()

 [1,2,3,4]

Lists

49

Lists

 Reversal:

 >>> L4 = [4,3,2,1]

 >>> L4.reverse()

 >>> L4

 [1,2,3,4]

Append, Pop and Insert:

 >>> L4.append(5) # [0,1,2,3,4,5]

 >>> L4.pop() # [0,1,2,3,4]

 >>> L4.insert(0, 42) # [42,0,1,2,3,4]

 >>> L4.pop(0) # [0,1,2,3,4]

50

Lists

 names = ['a', 'a', 'b', 'c', 'a']

Count the letter a.

value = names.count('a')

print(value)

Input list.

values = ["uno", "dos", "tres", "cuatro"]

Locate string.

n = values.index("dos")

print(n, values[n])

Locate another string.

n = values.index("tres")

print(n, values[n])

51

The bpy Module

52

Module Overview

• bpy.ops

This submodule contains operators. These are primarily functions for

manipulating objects, similarly to the way Blender artists manipulate

objects in the default interface. The submodule can also manipulate the

3D Viewport, renderings, text, and much more.

For manipulating 3D objects, the two most important classes are
bpy.ops.object and bpy.ops.mesh. The object class contains

functions for manipulating multiple selected objects at the same time as

well as many general utilities. The mesh class contains functions for

manipulating vertices, edges, and faces of objects one at a time,
typically in Edit Mode. There are currently 71 classes in the bpy.ops

submodule, all fairly well-named and well-organized.

The bpy Module

53

• bpy.context

The bpy.context submodule is used to access objects and areas of

Blender by various status criteria. The primary function of this

submodule is to give Python developers a means of accessing the

current data that a user is working with. If we create a button that

permutes all of the selected objects, we can allow the user to select the

objects of his choice, then permute all objects in
bpy.context.select_objects.

• bpy.data

This submodule is used to access Blender’s internal data. The
bpy.data.objects class contains all of the data determining an

object’s shape and position.

The bpy Module

54

• bpy.app

This submodule is not entirely documented, but the information we are

confident about thus far can be used to great effect in scripting and add-
on development. The sub-submodule bpy.app.handlers is the only

one we will concern ourselves with in this course. The handlers

submodule contains special functions for triggering custom functions in
response to events in Blender.

• bpy.types, bpy.utils, and bpy.props

These modules will be discussed in detail on add-on development.

• bpy.path

This submodule is essentially the same as the os.path submodule that

ships natively with Python.

The bpy Module

55

Selection, Activation, and Specification

The Blender interface was designed to be intuitive while also providing

complex functionality.

• Selection: One, many, or zero objects can be selected at once.

• Activation: Only a single object can be active at any given time.

• Specification: (Python only) Python scripts can access objects by

their names and write directly to their data blocks. While an

operation that manipulates selected objects is typically a differential

action like translate, rotate, or scale, writing data to specific objects is

typically a declarative action like position, orientation, or size.

The bpy Module

56

Active object in yellow, selected object in orange, and unselected

object in black. In Object Mode the last (de)selected item is

called the “Active Object” and is outlined in yellow (the others are

orange). There is at most one active object at any time.

The bpy Module

57

Programmatically Selecting Objects

import bpy

def mySelector(objName, additive= False):

 # By default, clear other selections

 if not additive:

 bpy.ops.object.select_all(action='DESELECT')

 # Set the 'select' property of the datablock to True

 bpy.data.objects[objName].select_set(True)

Select only 'Cube'

mySelector('Cube')

Select 'Sphere', keeping other selections

mySelector('Sphere', additive= True)

Translate selected objects 1 unit along the x-axis

bpy.ops.transform.translate(value=(1, 0, 0))

The bpy Module

58

Programmatically Selecting Objects

import bpy

def select_one_object(objName):

 bpy.ops.object.select_all(action='DESELECT')

 bpy.context.view_layer.objects.active = bpy.data.objects[objName]

 objName.select_set(True)

select_one_object(cylinder) # This will select the cylinder and set it as active

select_one_object(cube) # This will select the cube and set it as active

bpy.context.view_layer.objects.active = None # After that you won't have an
active object in the scene. Note it doesn't deselect the active object though.

The bpy Module

59

Programmatically Activating an Object

import bpy

def myActivator(objName):

 # Pass bpy.data.objects datablock to scene class

 bpy.context.view_layer.objects.active = bpy.data.objects[objName]

Activate the object named 'Sphere'

myActivator('Sphere')

Verify the 'Sphere' was activated

print("Active object:", bpy.context.object.name)

Selected objects were unaffected

print("Selected objects:", bpy.context.selected_objects)

how to programmatically select all objects of a certain

collection

import bpy

col = bpy.data.collections.get("Collection")

if col:

 for obj in col.objects:

 obj.select_set(True)

Selected objects

print("Selected objects:", bpy.context.selected_objects)

The bpy Module

60

Programmatically Accessing an Object by Specification

import bpy

def mySpecifier(objName):

 # Return the datablock

 return bpy.data.objects[objName]

Store a reference to the datablock

myCube = mySpecifier('Cube')

Output the location of the origin

print(myCube.location)

Works exactly the same as above

myCube = bpy.data.objects['Cube']

print(myCube.location)

The bpy Module

61

The bpy Module

62

The bpy Module

63

The bpy Module

64

Homework

65

Homework

66

Write a Blender Script

generates 100 random

spheres that do not collide

each other in the definite

volume.

Some of the functions you

may need

from random import randrange

from math import sqrt

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝐴𝑥 − 𝐵𝑥
2 + 𝐴𝑦 − 𝐵𝑦

2
+ 𝐴𝑧 − 𝐵𝑧

2 ≤ 𝐴𝑟𝑎𝑑𝑖𝑢𝑠 + 𝐵𝑟𝑎𝑑𝑖𝑢𝑠

Homework

67

Correct Example: 1000

spheres with diameter of

between 6 to 16. Be careful
not radius!

68

EEVEE

69

CYCLES

