PYTHON
PROGRAMMING

Lists, Dictionaries and Tuples
#7

Serdar ARITAN

Biomechanics Research Group,
Faculty of Sports Sciences, and
Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN 20135

PROGRAMMING

Like a string, a list is a sequence of values. In a string, the values
are characters; in a list, they can be any type. The values in a list
are called elements or sometimes items.

Basic properties:

Lists are contained in square brackets |]

Lists can contain numbers, strings, nested sublists, or nothing

Examples:
L1 = [0,1,2,3]
L2 = ['zero', 'one']
L3 = [0,1,[2,3]," 'three',[‘four’, ‘one’]]

L4 []

Serdar ARITAN 2015

PROGRAMMING

List indexing works just like string indexing
Lists are mutable: individual elements can be reassigned in place.

Moreover, they can grow and shrink in place

Example:

>>> L1 = [0, 1, 2, 3]
>>> L1[0] = 4

>>> L1[0]

4

Serdar ARITAN 20135

PROGRAMMING

Lists Are Mutable : Unlike strings, lists are mutable. When the
bracket operator appears on the left side of an assignment, it
identifies the element of the list that will be assigned.

list

>>> cheeses = ['Cheddar', 'Edam', 'Gouda'] cheeses —=| 0 —= 'Cheddar
>>> numbers = [17, 123] 1 —= "Edam’
>>> empty = [] 2 —= "Gouda’
>>> print (cheeses, numbers, empty) list
['Cheddar', 'Edam', 'Gouda']l [17, 123] [] numbers—=| 0—= 17
>>> numbers[l] = 5 1.-- 33
>>> print (numbers) N
[17, 3] st

empty —=

Serdar ARITAN 20135

PROGRAMMING

hangi_ay = int(input("Hangi Ay (1-12)? "))

aylar = ['Ocak', 'Subat',6 'Mart', 'Nisan', 'Mayis', 'Haziran',\
'Temmuz', 'Agustos', 'Eylul’, 'Ekim', 'Kasim', 'Aralik']

if 1 <= hangi_ay <= 12:
print("Sectiginiz Ay ", aylar[hangi_ay - 1])

Serdar ARITAN 2013

PROGRAMMING

>> L = [1, 2, 3]
>>> for element :n L:
print (element)

1

2
3
>>> L.append (I am a string.")
>>> for element in L:
print (element)
1
2
3
I am a string.

Serdar ARITAN 20135

PROGRAMMING

Some basic operations on lists:
Indexing: L1[i], L2[i][]j] Slicing: L3[i:]]
Concatenation:
>>> L1l = [0,1,2]; L2 = [3,4,5]
>>> L1+L2
[0,1,2,3,4,5]
Repetition:
>>> L1*3
[0,1,2,0,1,2,0,1,2]
Appending:
>>> Ll.append(3)
[0,1,2,3]
Sorting:
>>> L3 = [2, 1, 4, 3]
>>> L3.sort()
[1,2,3,4]

Serdar ARITAN 2015

PYTHON
PROGRAMMING

Reversal:

Append,

Serdar ARITAN 2013

>>> 1.4 = [4,3,2,1]
>>> L4 .reverse()
>>> L4

[1,2,3,4]

Pop and Insert:
>>> L4 .append(5)
>>> L4 .pop()
>>> L4.insert (0, 42)
>>> L4 .pop(0)

Lists

[0,1,2,3,4,5]
[0,1,2,3,4]

[42,0,1,2,3,4]
[0,1,2,3,4]

PYTHON
PROGRAMMING

remove and del

names = ["Tommy", "Bill", "Janet",
"Bill", "Stacy"]

Remove this value

names.remove ("Bil1l")

print (names)

Delete all except first two elements
Jdel names|[2:]

print (names)

Delete all except last element
Jdel names|[:1]

print (names)

Serdar ARITAN 2015

ONO

list = ["dot", “4.5"]
Insert at index 1.
list.insert (1, "net")

prlnt(llst)
aot’ 7 net’ /;,5/]
list =

llst.append(l)
list.append(2)
list.append(6)
list.append(3)
print(list)
[1, 2, 6, 3]

PROGRAMMING

names = ['a', 'a', 'b', 'e¢', 'a']
Count the letter a.

value = names.count('a')
print(value)

Input list.
values = ["uno", "dos", "tres", "cuatro"]

Locate string.
n = values.index("dos")
print(n, values[n])

Locate another string.
n = values.index("tres")

print(n, values[n])

Serdar ARITAN 2015

PYTHON Lists, Sets
PROGRAMMING

def remove duplicates(values):
output = []
seen = set()

for value in values:
If value has not been encountered yet, add it
1f value not in seen:

output. append (value)
seen.add (value)
return output

froun 11s last.
values = [5, 5, 1 1, 2, 3, 4 4, 5]
result = remove duplicates (values)

print (result)

T ’ . - ‘,‘ .
F NXemove ad ‘J' icates rrom thi

Serdar ARITAN 20135

PYTHON Lists, Sets
PROGRAMMING

Our input list.
values = [5, 5, 1, 1, 2, 3, 4, 4, 5]

Convert to a set and back into a list.
setvalue = set(values)

result = list(setvalue)

print (result)

>>2> print(set("_rfL'_/ name 1s Serdar and Serdar is my
name" .split()))
{'name', 'my', 'is', 'Serdar', 'and'}

Serdar ARITAN 2013

PYTHON
PROGRAMMING

>>> seen = set()
>>> seen

set ()

>>> seen.add(5)
>>> seen

{5}

>>> type (seen)

<class 'set'>

>>>
>>>
{31}
>>>
>>>
{4,
>>>
>>>
[4,

seen.add (5)
seen

seen.add (4)

seen

5}

seenlL = list(seen)
seenlL

5]

Serdar ARITAN 20135

Lists, Sets

Set(): Sets are lists with no duplicate entries

PYTHON Lists Objects and Values
PROGRAMMING

If we execute these assignment statements:
a = 'banana'
b = 'banana'

We know that a and b both refer to a string, but we don’t know
whether they refer to the same string. There are two possible states.
To check whether two variables refer to the same object, you can use

the is operator. a —= 'banana’ a—

>>> . b ‘banana’
a 1s b —= 'banana’ b —=

True

But when you create two lists, you get two objects:
>>> a = [1, 2, 3]

>> b = [1, 2, 3] a—[1,2,3]
>>> a is b b—=1[1,23]
False

Serdar ARITAN 2015

PYTHON Lists Objects and Values
PROGRAMMING

If a refers to an object and you assign b = a, then both variables refer

to the same object:
>>> a = [1, 2, 3] a~—_
>> Db = a h_—= L1,23]
>>> b is a

The association of a variable with an object is called a reference. In
this example, there are two references to the same object. An object
with more than one reference has more than one name, so we say
that the object is aliased. If the aliased object is mutable, changes
made with one alias affect the other:

>>> b[0] = 17 Although this behavior can be useful, it is error-
>>> print (a) | | it | f t id aliasi
17, 2, 3] prone. In general, it is safer to avoid aliasing
when you are working with mutable objects.
Serdar ARITAN 2015

PYTHON Lists Objects and Values
PROGRAMMING

When you pass a list to a function, the function gets a reference to
the list. If the function modifies a list parameter, the caller sees the
change.

For example, delete _head removes the first element from a list:

def delete head(t):

del t[O0]
Here’s how it is used:
>>> letters = ['a', 'b', 'ec']

>>> delete head(letters)
>>> print (letters)
['b', 'e'] The parameter t and the variable

letters are aliases for the same
object

Serdar ARITAN 20135

PYTHON Lists Objects and Values
PROGRAMMING

def no_side effects(cities):
print(cities)
cities = cities + ["Istanbul", "Ankara"]
print(cities)

locations = ["London", "New York", "Paris"]

no_side_effects(locations) # passing a list to a function

Serdar ARITAN 2015

PYTHON Lists Objects and Values
PROGRAMMING

def side_effects(cities):
print (cities)
cities += ["Istanbul", "Ankara"]
print (cities)
locations = ["London", "New York", "Paris"]

side effects(locations) # passing a list to a function

Serdar ARITAN 20135

PYTHON
PROGRAMMING

Lists Objects and Values

def side_effects(cities):

print (cities)

cities += ["Istanbul", "Ankara"]

print (cities)

locations = ["London",

"New York", "Paris"]

side effects(locations[:])# shallow copy of the list

Serdar ARITAN 20135

PYTHON Classworks
PROGRAMMING

ord(c)
Given a string representing one Unicode character, return an integer
representing the Unicode code point of that character. For example,
ord('a') returns the integer 97 and oxrd('€') (Euro sign) returns
8364. This is the inverse of chr ().

chr (1)
Return the string representing a character whose Unicode code point is
the integer i. For example, chr (97) returns the string 'a', while
chr (957) returns the string 'v'. This is the inverse of oxrd (). The
valid range for the argument is from O through 1,114,111 (Ox10FFFF in
base 16). ValueError will be raised if i is outside that range.

Serdar ARITAN 20135

PYTHON Classworks
PROGRAMMING

Create a List of number between 0 .. 255
>>> L = random.sample (range (65, 127), 30)

Convert the integer values of the List into the character
Sort the letters

Create a new List with unique letters

Count how many times each letter appears!!

hWON =

Serdar ARITAN 20135

PYTHON Dictionaries
PROGRAMMING

A dictionary is like a list, but more general. In a list, the indices have
to be integers; in a dictionary they can be (almost) any type. You can
think of a dictionary as a mapping between a set of indices (which
are called keys) and a set of values. Each key maps to a value. The
association of a key and a value is called a key-value pair or
sometimes an item.

The squiggly-brackets, {}, represent an empty dictionary

Serdar ARITAN 2015

PYTHON
PROGRAMMING

Dictionary vs List

Values in lists are accessed by means of integers called indices,
which indicate where in the list a given value is found.

Dictionaries access values by means of integers, strings, or other
Python objects called keys, which indicate where in the dictionary a
given value is found.

Both lists and dictionaries can store objects of any type.

>>> x = []

>>y = {}

Serdar ARITAN 20135

PYTHON
PROGRAMMING

As an example, we’ll build a dictionary that maps from English to
Spanish words, so the keys and the values are all strings. The
function dict creates a new dictionary with no items. Because dict

Is the name of a built-in function, you should avoid using it as a
variable name.

>>> eng2sp = dict()

>>> print (eng2sp)

{}

>>> eng2sp(['one'] = 'uno'

Dictionaries

This line creates an item that maps from the key ’one’ to the value

uno.

Serdar ARITAN 20135

PYTHON
PROGRAMMING

>>> print (eng2sp)
{'one': 'uno'}

Dictionaries

This output format is also an input format. For example, you can
create a new dictionary with three items:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print (eng2sp)
{'two': 'dos', 'three': 'tres', 'one': 'uno'}

The order of the key-value pairs is not the same. In fact, if you type
the same example on your computer, you might get a different result.
In general, the order of items in a dictionary is unpredictable.

Serdar ARITAN 2015

PYTHON Dictionaries
PROGRAMMING

But that’s not a problem because the elements of a dictionary are
never indexed with integer indices. Instead, you use the keys to
look up the corresponding values:

>>> print(eng2sp['two'])
dos

If the key isn’t in the dictionary, you get an exception:

>>> print (eng2sp|['four'])
Traceback (most recent call last):
File "<pyshell#24>", line 1, in <module>
print (eng2sp['four'])
KeyError: 'four’

Serdar ARITAN 2015

PYTHON Dictionaries
PROGRAMMING

The len function works on dictionaries: it returns the number of
key-value pairs:

>>> len (eng2sp)
3

The in operator works on dictionaries; it tells you whether
something appears as a key in the dictionary.

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp

False

Serdar ARITAN 20135

PYTHON
PROGRAMMING

Dictionaries

To see whether something appears as a value in a dictionary, you
can use the method values, which returns the values as a list, and
then use the in operator:

>>> vals = eng2sp.values()
>>> 'uno' vals
True

The in operator uses different algorithms for lists and dictionaries.

Serdar ARITAN 20135

PYTHON Dictionaries
PROGRAMMING

You can obtain all the keys in the dictionary with the keys
method.

>>> list(eng2sp.keys())

['two', 'three', 'oOne']

It’'s also possible to obtain all the values stored in a dictionary,
using values:

>>> list (eng2sp.values())

['dos', 'tres', 'uno']

You can use the items method to return all keys and their
associated values as a sequence of tuples:

>>> list(eng2sp.items())

[('two', 'dos'), ('three', 'tres'), ('one', 'uno')]

Serdar ARITAN 20135

PYTHON Dictionaries
PROGRAMMING

If you want to safely get a key’s value in case of the key is not
already in dict, you can use the setdefault method:

>>> eng2sp.setdefault (, ")

'No Translation'

>>> print (eng2sp| 1)

No Translation

defaultdict is useful for settings defaults before filling the dict

and setdefault is useful for setting defaults while or after filling the
dict.

new = {}
(key, value) data:
group = new.setdefault(key, []) # key might exist already
group.append(value)

Serdar ARITAN 20135

PYTHON Dictionaries
PROGRAMMING

You can obtain a copy of a dictionary using the copy method:

>>> x = {0: 'zero', 1l: 'one'}

>>> y = x.copy()

>>> y

{0: 'zero', 1l: 'one'}

This makes a shallow copy of the dictionary. This will likely be all
you need in most situations. The update method updates a first
dictionary with all the key/value pairs of a second dictionary. For
keys that are common to both, the values from the second
dictionary override those of the first:

>>> z = {l: 'One', 2: 'Two'}

>>> x = {0: 'zero', 1: 'one'}

>>> x.update (z)

>>> X

{0: 'zero', 1: 'One', 2: 'Two'}

Serdar ARITAN 20135

PYTHON Dictionaries and Lists
PROGRAMMING

You want to count how many times each letter appears. There are several ways
you could do it:

1. You could create 26 variables, one for each letter of the alphabet. Then you
could traverse the string and, for each character, increment the corresponding
counter, probably using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each
character to a number (using the built-in function ord), use the number as an
index into the list, and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the
corresponding values. The first time you see a character, you would add an
item to the dictionary. After that you would increment the value of an existing
item.

Serdar ARITAN 20135

PYTHON Dictionaries and Lists

PROGRAMMING
An implementation is a way of performing a computation; some

implementations are better than others.

def histogram(s):

d = dict()
for ¢ in s:
if ¢ not in d:
d[c] =1
d[c] += 1
return d

>>> h = histogram('brontosaurus')

>>> print(h)
{‘'t':'1, 'u': 2, 'r': 2, 's': 2, 'o':

Serdar ARITAN 2015

PYTHON
PROGRAMMING

def print hist(h):
for ¢ in h:
print(c, hlc])

>>> print_hist (h)
t1

p OB O MK EC
HFEFENDMNNMNNDN

Serdar ARITAN 2013

Dictionaries and Lists

PYTHON Dictionaries and Lists
PROGRAMMING

Given a dictionary d and a key k, it is easy to find the corresponding
value v = d[k]. This operation is called a lookup.

But what if you have v and you want to find k? You have two
problems: first, there might be more than one key that maps to the
value v. Depending on the application, you might be able to pick one,
or you might have to make a list that contains all of them. Second,
there is no simple syntax to do a reverse lookup; you have to search.

reverse lookup(d, v):
k d:
d[k] == v:
k
ValueError

Serdar ARITAN 20135

PYTHON Dictionaries and Lists
PROGRAMMING

>>> print (reverse lookup(h, 2))
r
>>> print(reverse lookup(h, 3))
Traceback (most recent call last):
File "<pyshell#46>", line 1, in <module>
print (reverse lookup(h, 3))
File "D:/Lectures/BCO 601 Python
Programming/dictExamplel.py", line 18, in reverse_ lookup
raise ValueError
ValueError
>>>

Serdar ARITAN 2015

PYTHON Dictionaries and Lists
PROGRAMMING

>>> d = {‘deniz': ‘mavi', ‘aga¢': ‘yesil', ‘ates':‘kirmizi'}

>>> for k in d:
print (k)

deniz
agag¢
ates

>>> for k in d:
print(k, '-->', d[k])

agag¢ --> yesil
deniz --> mavi
ates --> kirmiza

Serdar ARITAN 2013

PYTHON Dictionaries and Lists
PROGRAMMING

>>> for k, v in d.items():
print(k, '-->', wv)

agag¢ --> yesil
deniz --> mavi
ates --> kirmizai

>>> names = [‘deniz', ‘adac',K ‘ates']
>>> colors = [‘mavi', ‘yesil' 1

>>> d = dict(zip(names, colors))
>>> print(d)

{‘ates': ‘kaitmizi', ‘agag¢': ‘yesil', ‘deniz': ‘mavi'}

Serdar ARITAN 2013

PROGRAMMING

A tuple is a sequence of values. The values can be any type, and
they are indexed by integers, so in that respect tuples are a lot like
lists. The important difference is that tuples are immutable.
Syntactically, a tuple is a comma-separated list of values:

5> t = |a|’ ‘b', 'C‘, 'd‘, ‘e

>>> type(t)

<class 'tuple'>

Although it is not necessary, it is common to enclose tuples in

parentheses:

>>>t= (|a|' ‘b" 'C‘, ‘d|’ lel)

Serdar ARITAN 2013

PROGRAMMING

To create a tuple with a single element, you have to include a final
comma:

>t = e
>>> type (tl1)

<type 'tuple'>

A value in parentheses is not a tuple:
>>> t2 = ('a')

>>> type (t2)

<type 'str'>

Serdar ARITAN 2013

PROGRAMMING

Another way to create a tuple is the built-in function tuple. With no
argument, it creates an empty tuple:

>>> t = tuple()

>>> print(t)

()

>>> t = tuple('lupins')

>>> print(t)

(|ll’ lul’ |p|’ lil’ lnI’ lsl)

Serdar ARITAN 2015

PROGRAMMING

Because tuple is the name of a built-in function, you should avoid
using it as a variable name. Most list operators also work on tuples.
The bracket operator indexes an element:

>>>t= (!al’ lbl’ |c|’ 'd‘l lel)

>>> print (t[0])

1 al

And the slice operator selects a range of elements.

>>> print(t[1:3])

(|b| , 1 cl)

But if you try to modify one of the elements of the tuple, you get an
error:

>>> t[0] = 'A"

TypeError: object doesn't support item assignment

Serdar ARITAN 20135

PROGRAMMING

You can’t modify the elements of a tuple, but you can replace one

tuple with another:

>>> t = ('A',) + t[1:]

>>> print(t)

('Al’ lb|, lc|’ 'd', lel)

It is often useful to swap the values of two variables. With
conventional assignments, you have to use a temporary variable.
>>> temp = a

>>> a =b

>>> b = temp

This solution is cumbersome; tuple assignment is more elegant:
>>> a, b=Db, a

The left side is a tuple of variables; the right side is a tuple of
expressions. Each value is assigned to its respective variable.

Serdar ARITAN 20135

PYTHON Tuples

PROGRAMMING

>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@"')

The return value from split is a list with two elements; the first
element is assigned to uname, the second to domain.

>>> print (uname)
monty

>>> print (domain)
python.org

Serdar ARITAN 2015

PROGRAMMING

A function can only return one value, but if the value is a tuple, the
effect is the same as returning multiple values. For example, if you
want to divide two integers and compute the quotient and
remainder, it is inefficient to compute x//ly and then x%y. The built-
in function divmod takes two arguments and returns a tuple of two
values, the quotient and remainder. You can store the result as a
tuple:

>>> t = divmod (7, 3)
>>> print(t)
(2, 1)

Serdar ARITAN 20135

PROGRAMMING

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod (7, 3)
>>> print (quot, rem)
21

Here is an example of a function that returns a tuple:

def min max(t):
return min(t), max(t)

Serdar ARITAN 2013

PYTHON List Example
PROGRAMMING

menu_item = 0
namelist = []
le menu_item != 9:

print("-—=m—mmmmemmmn e ————— ")

print("1l. Liste Ciktisi")

print("2. Listeye Isim Ekle")

print("3. Listeden Isim Sil")

print("4. Isim Guncelle")

print("9. Cikis")

menu_item = int(input("Islem Seciniz "))

print (menu_item)
1L menu_jitem ==
current = 0
if len(namelist) > 0:
ile current < len(namelist):
print(current, ".", namelist[current])
current = current + 1

print ("Bos Liste")
Lif menu_item ==
name = input(“L,:,f;zrr,;: icin Isim Giriniz ")

namelist.append (name)

Serdar ARITAN 2013

PYTHON
PROGRAMMING

menu_item ==
del name = input(
del name in namelist:
namelist.remove (del_ name)

print(del name,)
menu_item == 4:
old name = input(
old name in namelist:

List Example

item number = namelist.index (old name)

new_name = input (
namelist[item number] = new_name

print(old_name,)

print ("Hoscakalin")

Oops...... There a is slight problem!!

Serdar ARITAN 2013

)

PROGRAMMING

1if menu_item == 3:
del name = input("Hangi Ismi Silmek I rsiniz
1f del _name in namelist:

item number = namelist.index(del_name)
del name in namelist:
item number = namelist.index(del_name)
. namelist[item number]

print (del_name, "bulunamadi)

Serdar ARITAN 2015

PYTHON List Example

