
1

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Blender - Python API

#7

2

Blender/Python API
Blender’s Physics

Blender’s physics system allows you to simulate a number of different

real world physical phenomena. You can use these systems to create a

variety of static and dynamic effects such as:

 Hair, grass, and flocks

 Rain

 Smoke and dust

 Water

 Cloth

 Jello

 etc.

3

Blender/Python API
Blender’s Physics

Blender includes advanced physics simulation in the form of the Bullet

Physics Engine (Bullet Physics). Most of your work will involve setting the

right properties on the objects in your scene, then you can sit back and

let the engine take over. The physics simulation can be used for Games,

but also for Animation.

When Objects and characters in a Scene move and interact they

generally obey the rules of Physics which exist in the real world.

Characters jump up and fall down obeying the law of gravity. They collide

with each other and with obstacles in the Scene. These actions may or

not be exaggerated or strictly adhere to the laws of physics.

4

Blender/Python API
Bullet Physics Library

Blender includes advanced physics simulation in the form of the Bullet

Physics Engine which simulates collision detection, soft and rigid body

dynamics. It has been used in video games as well as for visual effects in

movies. Erwin Coumans, its main author, worked for Sony Computer

Entertainment US R&D from 2003 until 2010, for AMD until 2014, then

Google and he now works for NVIDIA.

Academy Of Motion Picture Arts And Sciences'

Scientific And Technical Awards Ceremony

(L-R) Nafees Bin Zafar, Stephen Marshall and Erwin

Coumans attend the Academy Of Motion Picture Arts

And Sciences' Scientific And Technical Awards

Ceremony at the Beverly Wilshire Four Seasons Hotel

on February 7, 2015 in Beverly Hills, California.

5

Blender/Python API
Bullet Physics Library

6

Blender/Python API
Bullet Physics Library

7

Blender/Python API
Blender’s Physics

https://pybullet.org/wordpress/

https://github.com/bulletphysics/bullet3/releases

Tagged a github release of Bullet Physics and PyBullet, both version

3.05. The release was used for our motion imitation research, and also

includes various improvements for the finite-element-method (FEM)
deformable simulation. http://pybullet.org

8

Blender/Python API
Rigid Body Physics Pipeline

 Data structures and computation stages in the Bullet physics pipeline. This

pipeline is executed from left to right, starting by applying gravity, and ending

by position integration, updating the world transform.

9

Blender/Python API
pybullet

pybullet is an easy to use Python module for physics simulation for

robotics, games, visual effects and machine learning. With pybullet

you can load articulated bodies from Unified Robot Description Format

(URDF), Simulation Description Format (SDF), Multi-Joint dynamics with
Contact (MuJoCo - MJCF) and other file formats. pybullet provides

forward dynamics simulation, inverse dynamics computation, forward

and inverse kinematics, collision detection and ray intersection queries.
The Bullet Physics SDK includes pybullet robotic examples such as a

simulated Minitaur quadruped, humanoids running using TensorFlow

inference and KUKA arms grasping objects.

https://youtu.be/tfqCHDoFHRQ

https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ
https://youtu.be/tfqCHDoFHRQ

10

Blender/Python API
Blender’s Physics

The rigid body simulation can be used to simulate the motion of solid

objects. It affects the position and orientation of objects and does not

deform them. Unlike the other simulations in Blender, the rigid body

simulation works closer with the animation system. This means that rigid

bodies can be used like regular objects and be part of parent-child

relationships, animation constraints and drivers.

There are two types of rigid body: active and passive. Active bodies are

dynamically simulated, while passive bodies remain static. Both types

can be driven by the animation system when using the Animated option.

11

Blender/Python API
Blender’s Physics

Shift+A -> Add Mesh
Plane
Uv Sphere

Move Uv Sphere
G -> Z -> 5
Scale Uv Sphere
S -> 0.5

12

Blender/Python API
Blender’s Physics

13

Blender/Python API
Blender’s Physics

ACTIVE: Object is directly controlled by simulation results.
PASSIVE: Object is directly controlled by animation system.

14

Blender/Python API
Blender’s Physics

CONVEX_HULL

This is the fastest

kind of arbitrary

shape. It is defined

by a cloud of vertices

but the shape formed

is the smallest

convex shape that

encloses the vertices

MESH

This is similar to the

above but is specified

using a conventional

mesh composed of

vertices and indices. A

ConvexHull is more

efficient.

15

Blender/Python API
Collision Shapes

SPHERE

A very fast and

simple shape

BOX

A cuboid shape,

the length in

each dimension

can be chosen

arbitrarily.

16

Blender/Python API
Collision Shapes

17

Blender/Python API
Blender’s Physics

18

Blender/Python API
Blender’s Physics

19

Blender/Python API
Blender’s Physics

20

Blender/Python API
Blender’s Physics

21

Blender/Python API
Numerical Integration

22

Euler : Euler's method is first order method. It is a straight-forward method that
estimates the next point based on the rate of change at the current point. It is a single
step method. If no dampening is used, particles get more and more energy over time.
“For example, bouncing particles will bounce higher and higher each time”. Use this
integrator for short simulations or simulations with a lot of dampening where speedy
calculations are more important than accuracy.

Midpoint : Also known as “2nd order Runge-Kutta”. Slower than Euler but much more
stable.

RK4 : Short for “4th order Runge-Kutta”. Similar to Midpoint but slower and in most
cases more accurate. It is energy conservative even if the acceleration is not constant.

Blender/Python API
Numerical Integration

23

Euler method: Also known as “Forward Euler”. Simplest integrator. Very fast but also
with less exact results. If no damping is used, particles get more and more energy over
time. Notably, Forward Euler's method is unconditionally unstable for un-damped
oscillating systems (such as a spring-mass system or wave equations) in space
discretization.

Blender/Python API
Numerical Integration

Euler method: Adding physical damping to the model (e.g. Rayleigh damping). In this
case the damping will only be applied to the structure and the question is how much
damping to introduce when physically it is negligible.

Adding numerical damping. This reduces the numerical oscillations, but also reduces
the physical response which should be solved for, and the question is how much
numerical damping to introduce in order to obtain acceptable results.

24

Blender/Python API
Numerical Integration

25

Blender/Python API
Numerical Integration

Blender/Python API
Numerical Integration

26

27

Carl David Tolme Runge – Martin Wilhelm Kutta

Blender/Python API
Numerical Integration

28

Blender/Python API
Numerical Integration

29

Blender/Python API
Numerical Integration

import bpy

bpy.ops.mesh.primitive_plane_add(size=5, location=(0, 0, 0))

bpy.ops.rigidbody.object_add()

bpy.context.object.rigid_body.type = 'PASSIVE'

bpy.context.object.rigid_body.collision_shape = 'MESH‘

bpy.context.object.rigid_body.mesh_source = 'BASE'

for i in range(5, 11):

 bpy.ops.mesh.primitive_uv_sphere_add(radius=0.5, location=(0, 0, i))

 bpy.ops.rigidbody.object_add()

 bpy.context.object.rigid_body.type = 'ACTIVE'

 bpy.context.object.rigid_body.collision_shape = 'SPHERE'

30

Blender/Python API
5 Spheres and 1 Plane

31

Blender/Python API
5 Spheres and 1 Plane

bpy.context.object.rigid_body.collision_shape = 'SPHERE'

32

Blender/Python API
5 Spheres and 1 Plane

bpy.context.object.rigid_body.collision_shape = 'MESH'

bpy.context.object.rigid_body.mesh_source = 'BASE'

33

Blender/Python API
5 Bricks and 1 Plane

Homework

Simulation Stability

The simplest way of improving simulation

stability is to increase the steps per second.

However, care has to be taken since making

too many steps can cause problems and

make the simulation even less stable (if you

need more than 1000 steps, you should look

at other ways to improve stability).

Increasing the number of solver iterations

helps making constraints stronger and also

improves object stacking stability.

34

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

Steps per Second

Number of simulation steps made per second (higher values are more

accurate but slower). This only influences the accuracy and not the

speed of the simulation.

Solver Iterations

 Amount of constraint solver iterations made per simulation step

(higher values are more accurate but slower). Increasing this makes

constraints and object stacking more stable.

35

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

36

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

 Simulation Stability

It is best to avoid small objects, as they are currently unstable. Ideally,

objects should be at least 20 cm in diameter. If it is still necessary,

setting the collision margin to 0, while generally not recommended,

can help making small object behave more naturally.

When objects are small and/or move very fast, they can pass through

each other. Besides what is mentioned above it’s also good to avoid

using mesh shapes in this case. Mesh shapes consist of individual

triangles and therefore do not really have any thickness, so objects

can pass through more easily. You can give them some thickness by

increasing the collision margin.

37

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

 bpy.context.scene.rigidbody_world.steps_per_second = 60

bpy.context.scene.rigidbody_world.solver_iterations = 10

38

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

 bpy.context.scene.rigidbody_world.steps_per_second = 120

bpy.context.scene.rigidbody_world.solver_iterations = 24

39

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

 bpy.context.scene.rigidbody_world.steps_per_second = 240

bpy.context.scene.rigidbody_world.solver_iterations = 36

40

Blender/Python API
Rigid Body World

 Scene ‣ Rigid Body World

 bpy.context.scene.rigidbody_world.steps_per_second = 360

bpy.context.scene.rigidbody_world.solver_iterations = 64

import bpy

from math import radians

Create and name Text object

bpy.ops.object.text_add(location=(0, 0, 0))

obj = bpy.context.object

obj.name = 'Letter'

obj.data.name = 'LetterData'

Data attributes

obj.data.body = 'S'

obj.data.font = bpy.data.fonts[0]

obj.data.offset_x = 0

obj.data.offset_y = 0

obj.data.shear = 0

obj.data.space_character = 0

obj.data.size = 3

obj.data.space_word = 0

obj.data.extrude = 0.1

Rotate 90 degrees

bpy.ops.transform.rotate(value=radians(90), orient_axis='X')

Convert to a mesh

bpy.ops.object.convert(target='MESH')

41

Blender/Python API
Rigid Letters

You can convert a text object,

either to a curve, or directly to

a mesh, using Convert To in

Object Mode.

bpy.ops.object.origin_set(type='ORIGIN_CENTER_OF_VOLUME', center='MEDIAN')

Rigidbody

bpy.ops.rigidbody.object_add()

bpy.context.object.rigid_body.type = 'ACTIVE'

bpy.context.object.rigid_body.collision_shape = 'MESH‘

plane

bpy.ops.mesh.primitive_plane_add(size=10, location=(0, 0, 0))

bpy.ops.rigidbody.object_add()

bpy.context.object.rigid_body.type = 'PASSIVE'

bpy.context.object.rigid_body.collision_shape = 'MESH'

42

Blender/Python API
Rigid Letters

43

Blender/Python API
Rigid Letters

44

Blender/Python API
Rigid Letters

45

Blender/Python API
Defining a rigid letter function

Homework

 def rigidLetter(letter='', letterSize=1.0 , loc=(0, 0, 0)):

bpy.context.object.rigid_body.collision_shape = 'MESH'

46

Blender/Python API
Defining a rigid letter function

Homework

bpy.context.object.rigid_body.collision_sAhape = ‘CONVEX_HULL'

47

Blender/Python API
Mid-Term Exam I

48

Blender/Python API
Mid-Term Exam I

E-posta Sınav teslim tarihi : 13 Kasım 2024 Çarşamba saat 23:59

Sınav yeri : 14 Kasım 2024 Perşembe saat 18:30 Animasyon Lab
13 Kasım Çarşamba günü e-posta ile gönderdiğiniz programlar çalıştırılacak.

Blender Python’da yazılan programınızın gönderileceği e-

posta adresi : serdar.aritan@hacettepe.edu.tr

 serdar.aritan@gmail.com

Konu: BCO 602 Animasyon İçin Betik Diller <Öğrenci No>

İçerik: Blender da yazılmış programınız ZIP dosyası olarak (sıkıştırılmış)

49

Blender/Python API
Mid-Term Exam I

50

Blender/Python API
Mid-Term Exam I

