o3> CRIPT LANGUAGES
FOR ANIMATION

Blender - Python API
#8

Serdar ARITAN

Department of Computer Graphics
Hacettepe University, Ankara, Turkey

Serdar ARITAN

—~\ SCRIPT LANGUAGES
B ron ANSIATION Blender/Python API

Soft-body dynamics

Soft-body dynamics is a field of computer graphics that focuses on
visually realistic physical simulations of the motion and properties of
deformable objects (or soft bodies). Unlike in simulation of rigid bodies,
the shape of soft bodies can change, meaning that the relative distance
of two points on the object is not fixed. While the relative distances of
points are not fixed, the body is expected to retain its shape to some
degree (unlike a fluid). The scope of soft body dynamics is quite broad,
including simulation of soft organic materials such as muscle, fat, hair
and vegetation, as well as other deformable materials such as clothing
and fabric. Generally, these methods only provide visually plausible
emulations rather than accurate scientific/engineering simulations,
though there is some crossover with scientific methods, particularly in the
case of finite element simulations

g,jCR'PT LANGUAGES Blender/Python AP
Soft-body dynamics

FOR ANIMATION

oo
-0 —@ @ Q000...00000..'00-00..00.00 9 -0-0—9

BOKe AR 2000 S22

!

MAAABAMACAANBAAANE AanA

® Mass

YW~ Spring

Mass-Spring-Damper

Serdar ARITAN

o) SCRIPT LANGUAGES Blender/Python API
FOR ANIMATION X
Soft-body dynamics

Spring: an ideal elastic element
Will immediately change and return to its original shape upon loading and unloading.

MWW~ = AANN . A~

Damper: a viscous fluid
Will change its original shape upon loading, depending on time (and temperature).
May slowly return to or may not return to its original shape upon unloading.
partial or complete recovery

complete recovery

partial recovery

Nno recovery

il
B

0] e

Serdar ARITAN

N SCRIPT LANGUAGES o) :
gg)FOR Aot Blender/Python API

Soft-body dynamics

An ideal mass—spring—damper system with mass m, spring constant k, and viscous
damper of damping coefficient ¢ is subject to an oscillatory force.

d
F™et = —ky + (—c—y)

dt
dy
ma——ky—ca
ks = k cdy
Aa=——)P——=—
m mdt
d? cd k

2. Order Differential Equation

Serdar ARITAN

ae)SCR! s Blender/Python API

FOR A TION .
\ Blender’s Physics

Blender’s physics system allows you to simulate a number of different
real world physical phenomena. You can use these systems to create a
variety of static and dynamic effects such as: Soft Body, Cloth and

Smoke

A Soft Body in general, is a simulation of a soft or rigid deformable
object. It is useful for everything that tends to bend, deform, in reaction to
forces like gravity or wind, or when colliding with other objects.

In Blender, this system is best for simple cloth objects and closed
meshes e.g. for skin or rubber. There is dedicated Cloth Simulation
physics that use a different solver, and is better for cloth.

f} R e Blender/Python API

‘OR ANIN *i\lﬂxﬁ,tv .
Blender’s Physics

Soft body simulation is done by applying forces to the vertices or control
points of the object. There are exterior forces like gravity or force fields
and interior forces that hold the vertices together. This way you can
simulate the shapes that an object would take on in reality if it had
volume, was filled with something, and was acted on by real forces.

Soft Bodies can interact with other objects through Collision. They can
interact with themselves through Self-Collision.

The result of the Soft Body simulation can be converted to a static object.
You can also bake edit the simulation, i.e. edit intermediate results and
run the simulation from there.

“\SCRIPT LANGUAGES
ggFOR At BIender/Pytho_n API
Blender’s Physics

Soft Bodies are well suited for:

« Elastic objects with or without collision.

» Flags, fabric reacting to forces.

« Certain modeling tasks, like a cushion or a table cloth over an object.

 Blender has another simulation system for clothing. But you can
sometimes use Soft Bodies for certain parts of clothing, like wide
sleeves.

« Hair (as long as you minimize collision).

« Animation of swinging ropes, chains and the like.

,‘H;""T;;‘l n

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Soft Body simulation works for all objects that have vertices or control
points:

Meshes.
Curves.
Surfaces.
Lattices.

To activate the Soft Body simulation for an object: In the Properties editor,

go to the Physics tab (it is all the way on the right, and looks like a
bouncing ball). Activate the Soft Body button. A lot of options appear.

serdar ARITAN n

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Soft Body Object

Friction
The friction of the surrounding medium. Generally friction dampens a
movement.

Mass

Mass value for vertices. Larger mass slows down acceleration, except for
gravity where the motion is constant regardless of mass. Larger mass
means larger inertia, so also braking a Soft Body is more difficult.

erdar ARITAN

ae)SCR! s Blender/Python API

FOR A TION .
\ Blender’s Physics

Soft Body Goal

Soft Body Goal acts like a pin on a chosen set of vertices; controlling how
much of an effect soft body has on them. Enabling this tells Blender to use
the position of a vertex in the simulation. Animating the vertices can be
done in all the usual ways before the Soft Body simulation is applied. The
goal is the desired end-position for vertices. How a soft body tries to
achieve this goal can be defined using stiffness forces and damping. A
Goal value of 1.0 means no Soft Body simulation, the vertex stays at its
original (animated) position. When setting Goal to 0.0, the object is only
Influenced by physical laws.

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Goal Settings

Stiffness

The spring stiffness for Goal. A low value creates very weak springs (more
flexible “attachment” to the goal), a high value creates a strong spring (a
stiffer “attachment” to the goal).

Damping

The friction for Goal. Higher values dampen the effect of the goal on the
soft body.

gjﬁgsz&]#fﬁ%ﬁ%s Blender/Python API
' Blender’s Physics

Use Edges
The edges in a Mesh Qbject can act as springs as well.

Springs
Pull «<—O v O—

The spring stiffness for edges. A low value means very weak springs, a
high value is a strong spring that resists being pulled apart. 0.5 is latex, 0.9
IS like a sweater, 0.999 is a highly-starched napkin or leather.

Push —0O v Oe—

How much the soft body resist being scrunched together, like a
compression spring. Low values for fabric, high values for inflated objects
and stiff material.

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Pull:

0.5
Push: 0.5
Damp: 0.5
Bending: 0.4
Shear: 0.4
Mass: 1

serdar ARITAN

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Pull:

0.3
Push: 0.3
Damp: 0.3
Bending: 0.2
Shear: 0.2
Mass: 1

serdar ARITAN

“\SCRIPT LANGUAGES
ggFOR P BIender/Pytho_n API
Blender’s Physics

Pull:

0.1
Push: 0.1
Damp: 0.1
Bending: 0.1
Shear: 0.1
Mass: 1

serdar ARITAN

30) SCRIPT LANGUAGES Blender/Python API
Blender’s Physics

= FOR ANIMATION

Pull is how much the edges are allowed to stretch

Serdar ARITAN

30) SCRIPT LANGUAGES Blender/Python API
Blender’s Physics

= FOR ANIMATION

Pull is how much the edges are allowed to stretch

Serdar ARITAN

30) SCRIPT LANGUAGES Blender/Python API
Blender’s Physics

= FOR ANIMATION

Pull is how much the edges are allowed to stretch

Serdar ARITAN

Z o3> CRIPT LANGUAGES BIenderlethon API
Blender’s Physics

= FOR ANIMATION

Push is how much the soft body resists being cramped together

Serdar ARITAN

Z o3> CRIPT LANGUAGES BIenderlethon API
Blender’s Physics

= FOR ANIMATION

Push is how much the soft body resists being cramped together

Serdar ARITAN

Z o3> CRIPT LANGUAGES BIenderlethon API
Blender’s Physics

= FOR ANIMATION

Push is how much the soft body resists being cramped together

Serdar ARITAN

gjﬁgsz&]#fﬁ%ﬁ%s Blender/Python API
' Blender’s Physics

Damp

The friction for edge springs. High values dampen the edge stiffness
effect and calm down the body.
Plasticity

Permanent deformation of the object.
Bending

This option creates virtual connections between a vertex and the one
after the next. This includes diagonal edges. Damping applies also to
these connections.
Length

The edges can shrink or been blown up. This value is given in percent, 0
disables this function. 100% means no change, the body keeps 100% of its

size.

30) SCRIPT LANGUAGES Blender/Python API

7 FOR ANIMATION Blender’s Physics
K *ff._;_} ¢ ﬂ X Without Stiff Quads enabled.

A] D Stiff Quads is activated (for both cubes).

-
o o N
S P Y _
N o SR AR o
i - \ \
W : |
. . K| j

Serdar ARITAN

3 o) SCRIPT LANGUAGES Blender/Python API
Blender’s Physics

FOR ANIMATION

No bending stiffness High bending stiffness (10)

Bending stiffness can also be used if you want to make a subdivided
plane more plank like.

Serdar ARITAN

g)ﬁgg'im’ﬂ%’rﬁﬁs Blender/Python API
Blender’s Physics

o bpy
Add a Cube

bpy.ops.mesh.primitive cube add(size=1l, location=(0, 0, 2))

Subdivide the Mesh for softbody calculations

bpy.ops.object.mode set(mode = 'EDIT')
bpy.ops.mesh.subdivide (number cuts = 4, smoothness = 0)

Modifify the cube as a SoftBody

bpy.ops.object.mode_ set (mode='OBJECT')

bpy.ops.object.modifier add(type='SOFT BODY')
bpy.context.object.modifiers["Softbhody"] .settings.friction = 2
bpy.context.object.modifiers["Softbody"] .settings.use goal 2
bpy.context.object.modifiers["Softbody"] .settings.use_self collision = ©
bpy.context.object.modifiers["Softbody"] .settings.use Stiff _quads = =
bpy.context.object.modifiers["Softbhody"] .settings. pull = 0.5
bpy.context.object.modifiers["Softbhody"] .settings.push = 0.5
bpy.context.object.modifiers["Softbhody"] .settings.damping
bpy.context.object.modifiers["Softbhody"] .settings.shear =
bpy.context.object.modifiers["Softbody"] .settings.bend = 0.4
bpy.ops.object.modifier add(type='COLLISION')

Serdar ARITAN

5: SCRIPT LANGUAGES Blender/Python AP!I

Blender’s Physics

FOR ANIMATION

bpy.ops.mesh.subdivide (number cuts = 4, smoothness = 0)

Serdar ARITAN

5: SCRIPT LANGUAGES Blender/Python AP!I

Blender’s Physics

FOR ANIMATION

bpy.ops.mesh.subdivide (nunoer cuts = o, smoothness = 0)

Serdar ARITAN

SCRIPT LANGUAGES
D jepiigiiupt Blenderll?ythop API
Blender’s Physics

bpy.ops.mesh.subdivide (nunoer cuts = o, smoothness = 0)

The specific strength is a material's
(or muscle's) strength (force per unit
area at failure) divided by its density.
It is also known as the strength-to-
weight ratio or strength/weight
ratio or strength-to-mass ratio.

Another way to describe specific strength is breaking length, also known as
self support length: the maximum length of a vertical column of the material
(assuming a fixed cross-section) that could suspend its own weight when
supported only at the top.

Serdar ARITAN

SCRIPT LANGUAGES BI
g) ender/Python API
FOR ANIMATION Blender’s Physics

To create a connection between the vertices of a
Soft Body object there have to be forces that hold
the vertices together. These forces are effective
along the edges in a mesh, the connections
6 between the vertices. The forces act like a spring.

Additional forces with Stiff Quads enabled.

Serdar ARITAN

NSCRIPT LANGUAGES
g. e BIender/Pythop API
Blender’s Physics

bpy.ops.mesh.subdivide (number cucs = o, smoothness = 0)

bpy.context.object.modifiers["Softbody"] .settings.use stiff quads = Tru-

Serdar ARITAN

) b bt Blender/Python API
Soft Body Cube

Lmport bpy
Lmport bmesh

Add a Cube

bpy.ops.mesh.primitive cube add(radius=1l, location=(0, 0, 2))
Subdivide the Mesh for softbody calculations
bpy.ops.object.mode set(mode = 'EDIT')
bpy.ops.mesh.subdivide (number cuts = 4, smoothness = 0)

This subdivision is for physics
calculations; if you have a
powerful computer you can
Increase the number of subdivision.
Do NOT smooth!

Serdar ARITAN

ﬁ; ?82'KLI'RAAA’\‘T%J£GES Blender/Python AP
Soft Body Cube

Modifify the cube as a SoftBody
bpy.ops.object.mode_ set (mode='OBJECT')
bpy.ops.object.modifier add(type='SOFT BODY')
bpy.context.object.modifiers["Softbody"] .settings.friction = 2
bpy.context.object.modifiers["Softbody"] .settings.use goal = "= l:o
bpy.context.object.modifiers["Softbody"] .settings.use_self collision = Truc
bpy.context.object.modifiers["Softbody"] .settings.use_stiff quads = Tru-
bpy.context.object.modifiers["Softbody"] .settings.pull = 0.5
bpy.context.object.modifiers["Softbody"] .settings.push = 0.5
bpy.context.object.modifiers["Softbody"] .settings.damping =
bpy.context.object.modifiers["Softbody"] .settings.shear = 0.
bpy.context.object.modifiers["Softbody"] .settings.bend = 0.4
Subsurface the cube for better render result
bpy.ops.object.modifier add(type='SUBSURE')
bpy.context.object.modifiers["Subsurf"].levels = 2
bpy.context.object.modifiers["Subsurf"] .render levels = 4

0.5
4

Increase if you have a
powerful computer

Serdar ARITAN

gﬁSCR'PT LANGUAGES Blender/Python AP
FOR ANIMATION
Soft Body Cube

T

ViV i A I AW A RN AT A VAN,
PN

]

e o ITATR
D Py

I

O O I (R PRI

|

[T
-t
=
b=
|1
=

I
]
N T | A
[l

i I

Y ILYi AT Y BN
}

I

I A A A Y [Y A

Iy

), T WY O I P
[
I S

| I 1% 3 1% T 1 A I A
RV ALV A B VAN A I VARV

T —
H-—
L=
=
Szl
L]
L]
,/
S Sl
|
L]
//
™
Ll

|

B A Y AL A AW A A
i 1 T T il q 10 Kl 1

[+
L]
L]
T+
=
L]
L]
L
L]
=l
|
i

. W " S T | " I S
Wf AR N N IV W W
| L W W W W)

T T T Y

[

IS

[]

Y

iR AT A
MHJTJWﬁ

Object Mode Edit Mode

Serdar ARITAN

) SCRIPT LANGUAGES Blender/Python API
32 FOR ANIMATION
Soft Body Cube

class bmesh.types.BMEdge

The BMesh edge connecting 2 verts

calc_face_angle(fallback=None)

Parameters: fallback (any) - return this when the edge doesn’t have
2 faces (instead of raising a valuetrror).

Returns: The angle between 2 connected faces in radians.

Return type: float

calc_face_angle_signed(fallback=None)

Parameters: fallback (any) - return this when the edge doesn’t have

2 faces (instead of raising a valueError).

Returns: The angle between 2 connected faces in radians
(negative for concave join).

Cenvex Cencave Return type: float
Serdar ARITAN

o ggg'igl'&‘AA'\‘ngﬁGEs Blender/Python API
Soft Body Cube

Switching to EDIT mode to read mesh data
bpy.ops.object.mode set(mode = 'EDIT')
Deselect all verts, edges, faces
bpy.ops.mesh.select _all (action="DESELECT")
Register bmesh object and select various parts
me = bpy.context.object.data
bm = bmesh.from edit_ mesh (me)
bm.edges.ensure lookup table()
bm.select mode = {'EDGE'}
Select the corner edges
for e 1n bm.edges:

—;f e.calc_face_angle _signed() >= 1.57: # in radians 90 degree 1.5708 rad

e.select = Trus

bm.select_ flush mode ()

Serdar ARITAN

ﬁ; ﬁgg'lehAA“‘T%Jr\?GES Blender/Python AP
| Soft Body Cube

Each edge in a Blender model has a crease
value associated with it, which is used to tell
the Subsurf modifier how sharp we want that
edge to be.

By default, all edges have a crease of 0,
which is why our cube has lost all its sharp
edges. To Crease or Not 4o Creases

Yes o creases on No 4v creases
Serdar ARITAN Aress F""‘+5 on jeans

5)SCR'PT e Blender/Python API
Soft Body Cube

FOR ANIMATION

@ v @@.@@v

¥ Transform

Median:
X
Y
Z

Global
Vertices Data:
Mean Bevel Weight
Edges Data:
Mean Bevel Weight
Crease 0.8 Mean Crease

¥ Properties

Serdar ARITAN

ﬁo L s Blender/Python AP
Soft Body Cube

PR @ 30000 -

¥ Transform

Median:
X Om
\ Om
Z Om

Global Local

View Tool Item

Vertices Data:
Mean Bevel Weight 0.00
Edges Data:
Mean Bevel Weight 0.00
Mean Crease 0.80

¥ Properties

cr = bm.edges.layers.crease.verify ()
selectedEdges = [e "or e . bm.edges = e.select]
or e .n selectedEdges: e[cr] = 0.8

bmesh.update edit_ mesh (me)

Serdar ARITAN

) B LIS Blender/Python AP
Soft Body Cube

Add a Plane
bpy.ops.object.mode_set (mode='OBJECT')
bpy.ops.mesh.primitive plane add(size=5, location=(0, 0, 0))
bpy.ops.object.modifier add(type='COLLISION')

Serdar ARITAN

5. SCRIPT LANGUAGES Blender/Python API
Soft Body Cube

FOR ANIMATION

Serdar ARITAN

o) SCRIPT LANGUAGES Blender/Python API
Soft Body Cube

= FOR ANIMATION

* -
: ‘:f:u Scene

Relative Filter

Indirect
Indirect

Transmission Indirect

Serdar ARITAN

o) SCRIPT LANGUAGES Blender/Python API
Soft Body Cube

7
:f;‘
(‘7"

= FOR ANIMATION

Serdar ARITAN

gg SCRIPT LANGUAGES Blender/Python API
FOR ANIMATION .
Finite Element Method

Normally 3D models consist of just the
outer shell of an object, and techniques
like wvoronoi fracturing "fake" internal
matter by creating extra _surfaces
between pieces when needed.

In contrast, finite element solids
represent an object as a solid mass of
small elements. This lets the solver
realistically simulate bending, elasticity,
internal mass, chipping, crumbling, and
shattering. Solid objects can simulate
stiff materials (like metal or wood), or
elastic, rubbery, fluid, and floppy objects
(like muscle and fat).

Serdar ARITAN

e)>CRIPT LANGUAGES Blender/Python AP
Finite Element Method

FOR ANIMATION

Serdar ARITAN

e)>CRIPT LANGUAGES Blender/Python AP
Finite Element Method

FOR ANIMATION

Serdar ARITAN

SCRIPT LANGUAGES
= FOR ANIMATION

Serdar ARITAN

Houdini
Finite Element Method

Houdini 20.0 » Nodes > Dynamicsnodes >

&) FEM Solver ** dynamics node

Since 16.0
PARAMETERS
Solve Method Choose the solve method: GSL or GNL. The method GNL (global nonlinear) is more
accurate than GSL (global single linearization) and can work at lower Substeps.
Simulation Choose the simulation type: quasi-static or dynamic.
Integration Choose the integration scheme: First Order or Second Order.
Substeps The number of substeps per frame.
Collision Passes The maximum number of collision detection & resolution passes.
Allow Collisions Turn off to disable all support for collisions.
Allow Changing Rest If turned on, the solver will consider changes in the constraints parameters: you can, for
example, animate the strength of soft constraints to zero and “disable” them this way.
Allow Dynamic System Turn off to optimize for constant topology, material coefficients and constraints.

Allow Fracturing Turn off to disable all fracturing.

o)>CRIPT LANGUAGES Houdini

== FOR ANIMATION Finite Element Method

Houdini 20.0 > Nodes »> Dynamicsnodes >

&Y FEM Solid Object ** dynamics node

Creates a simulated FEM solid from geometry.

On this page * Overview
+ Solid Object shelf tool
* Organic Mass shelf tool
* (& Parameters
+ Model
« [Deformation
« [Collisions
* Fracturing
* Drag
+ Attributes
+ Visualization
+ Creation
+ Attributes

 locals

Since 14.0

Serdar ARITAN

g; SCRIPT LANGUAGES Blender/Python API
FOR ANIMATION . .
Finite Element Method

HOUdini Y F|n|te Element Solver = dynamics node

3D ANIMATION TOOLS

Houdini uses meshes of tetrahedrons or
tets (four-sided pyramids) to represent
finite element solids.

In contrast to many other solvers,
Houdini's finite element solver is A

3 " o 3noded 6noded 4noded 8 noded
resolution independent: the way an object e sl qediaen gt
moves and deforms is to a large degree

independent of the density of @7 &
tetrahedrons. In particular, the same

. 4 noded tetrahedron 10 noded tetrahedron
settings on a Solid Object have similar
results when applied to meshes of @ @
increasingly high resolution. Suodedbrick 20 aoded brick

Serdar ARITAN

gjﬁgsz&]#fﬁ%ﬁ%s Blender/Python API
| Finite Element Method

Finite elements vs. Springs

The Finite Element solver simulates the motion of deformable solids. The
solver treats the simulated shape as a solid continuum, as opposed to a
collision of particles. This means the internal mass and the internal forces are
distributed over the entire shape, including the interiors of the tetrahedra.

The finite-element simulation is based on internal stresses and strains
that occur within the simulated body. This contrasts with other types of
solvers, such as particle-based mass-spring_systems, where the mass is
concentrated in_the vertices and where internal forces are generated by
springs between these vertices.

ggscmm LANGUAGES Blender/Python API
FOR ANIMATION . .
Finite Element Method

The solid continuum approach of the finite element solver has several
advantages over particle-based solvers:

The simulation behavior stays very consistent if the mesh resolution changes.
This makes presets predictable. A simulation with a low-res mesh (cheap) is a
good prediction of a simulation with a higher-res mesh.

The results of finite element simulation are realistic. The results of a finite
element simulation is based on solid mechanics. Finite element systems tend
to be more efficient at S|mulat|ng stiff objects than position-based particle

systems. o s b
S i: (I‘]”j

Serdar ARITAN

SOl LisioUnasn Blender/Python API
Finite Element Method

FEnICSx is a popular open-source
computing platform for solving partial
: differential equations (PDEs). FENnICSx
FEr“CSX enables users to quickly translate scientific
models into efficient finite element code.
With the high-level Python and C++
interfaces to FENICSX, it is easy to get
started, but FEnICSx offers also powerful
capabilities for more experienced
programmers.

FOCUS

OPEN CODE = BETTER SCIENCE

Serdar ARITAN

B TS Blender/Python API
Finite Element Method

Solving a PDE in FEniCS

Az anillustration of how to program a simple PDE medel with FERiCS, consider the Stokes equations in wariational

form:

The above code snippet also shows how to define a suitable finite element function space, using continuous piecewise
quadratic vector-valued functions for the velocity and continuous piecewise linear functions for the pressure {Taylor-
Hood}. The computational domain and mesh are zlso easify created with FEnICS, here defined by three spheres

immersed in2 3D channel.

fgradu:gradvdz—[pdj\rudz+fd.ivuqdz:f_f-udzk
i i 1l 1

The variztional problem is easily transcribed into Python using mathematical operators in FERICS:

‘;"ec.to-rEl:ér;lénts;”_

P

P2 = , tetrahedron, 2)
P1 = FiniteElement("P', tetrahedron, 1)
TH = P2 * P1

W = Funcrion5Space(mesh, TH)

(u, p) = TriglFunctions(W)

(v, a) = TestFunctions({W)

a = inner(grad{u), grad(v))*dx - p*div(v)¥dx + div(u)*g¥dx
L = dot(f, vi=dx

Compure solurion h=0.25

w = Function(W) P=0:3%h

solve(a == L, w, [bcl, bc@]) box = Box(Point(@, @, @), Point(l, h, h))
s@ = Sphere(Point(0.3, 0.50*h, 0.50*h), r)
sl = Sphere(Point(0.5, @.65*h, 0.65%*h), r)

0
s2 = Sphere(Point(9.7, 0.35*h, 0.35*h), r)
domain = box - s@ - s1 - s2

mesh = generate_mesh(domain, 32)

Serdar ARITAN

o3> CRIPT LANGUAGES
FOR ANIMATION

Serdar ARITAN

Blender/Python API
Finite Element Method

Each component of the FEnIiCSx platform
has been fundamentally designed for
parallel processing. Executing a FEnICSx
script in parallel is as simple as calling
mpirun -np 64 python script.py

SCRIPT LANGUAGES Solving a PDE in FEniCS
F o R AN . M AT'O N As anillustration of how to program a simple PDE model with FEniCS, consider the Stokes equations in variational

form:

/gradu:gradvdz—/pdivvdz+/djvuqdz=/.f.vd;,;.
Q Q Q Q

™
@ b I e n d e l The variational problem is easily transcribed into Python using mathematical operators in FEniCS:

Define function space

VectorElement('P', tetrahedron, 2)
FiniteElement('P', tetrahedron, 1)

W = FunctionSpace(mesh, TH)

Define variational problem

(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(\)
a = inner(grad(u), grad(v))*dx - p*div(v)*dx + div(u)*gq*dx

pl.-'thnﬂ L = dot(f, v)*dx

PDWE I ':d # Compute solution
w = Function(W)
solve(a = L, w, [bcl, bc@l)

The above code snippet also shows how to define a suitable finite element function space, using continuous piecewise
quadratic vector-valued functions for the velocity and continuous piecewise linear functions for the pressure (Taylor-
Hood). The computational domain and mesh are also easily created with FEniCS, here defined by three spheres

immersed in a 3D channel.

Serdar ARITAN

T, e .":'- &
b ¢ fosana
| g 7.
P, gsass
Hoa7678

A N 'ﬂ"'\.,‘ «
- i 0.0000 . ,

= ;
o
https:/ /fenl:sproj ez

org/

k|

http://femwiki.wikidot.com/fenics-intro:fenics-introduction

Serdar ARITAN

d9) SCNPT LANGUAGES Blender/Python API
Midterm Exam II: Soft Body Sphere

2 FOR ANIMATION

This is the second part of mid-term exam. Write a Blender script that
simulates soft body balls dropping a flat plane. You need to render your result
as a video.

Serdar ARITAN

ggﬁgﬁ'i;lkfﬂ%ﬁ%s Blender/Python API
" Midterm Exam II: Soft Body Sphere

E-posta Sinav teslim tarihi : 20 Kasim 2024 Carsamba saat 23:59

Sinav yeri : 21 Kasim 2024 Persembe saat 18:30 Animasyon Lab
20 Kasim Carsamba gunu e-posta ile gonderdiginiz programlar ¢ahistirllacak.

Blender Python’da yazilan programinizin gonderilecegi e-
posta adresi : serdar.aritan@hacettepe.edu.tr
serdar.aritan@gmail.com

Konu: BCO 602 Animasyon lgin Betik Diller <Ogrenci No>
Icerik: Blender da yazilmis programiniz ZIP dosyasi olarak (sikistinimis)

rdar ARITAN

o) CRIPT LANGUAGES BIenderIPython API
Next week : Particle Physics

= FOR ANIMATION

Serdar ARITAN

