
1

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Blender - Python API

#8

2

Blender/Python API
Soft-body dynamics

Soft-body dynamics is a field of computer graphics that focuses on

visually realistic physical simulations of the motion and properties of

deformable objects (or soft bodies). Unlike in simulation of rigid bodies,

the shape of soft bodies can change, meaning that the relative distance

of two points on the object is not fixed. While the relative distances of

points are not fixed, the body is expected to retain its shape to some

degree (unlike a fluid). The scope of soft body dynamics is quite broad,

including simulation of soft organic materials such as muscle, fat, hair

and vegetation, as well as other deformable materials such as clothing

and fabric. Generally, these methods only provide visually plausible

emulations rather than accurate scientific/engineering simulations,

though there is some crossover with scientific methods, particularly in the

case of finite element simulations

3

Blender/Python API
Soft-body dynamics

Mass-Spring-Damper

4

Blender/Python API
Soft-body dynamics

Spring: an ideal elastic element

Will immediately change and return to its original shape upon loading and unloading.

Damper: a viscous fluid

Will change its original shape upon loading, depending on time (and temperature).
May slowly return to or may not return to its original shape upon unloading.
 partial or complete recovery

complete recovery

partial recovery

no recovery

5

Blender/Python API
Soft-body dynamics

An ideal mass–spring–damper system with mass m, spring constant k, and viscous
damper of damping coefficient c is subject to an oscillatory force.

𝑚

𝒌 𝒄

𝐹𝑛𝑒𝑡 = −𝑘𝑦 + −𝑐
𝑑𝑦

𝑑𝑡

𝑚𝑎 = −𝑘𝑦 − 𝑐
𝑑𝑦

𝑑𝑡

𝐹 = −𝒄𝑣 = −𝒄
𝑑𝑦

𝑑𝑡
 𝐹𝑠 = −𝒌𝑦

𝑑2𝑦

𝑑𝑡2
+
𝑐

𝑚

𝑑𝑦

𝑑𝑡
+
𝑘

𝑚
𝑦 = 0

2. Order Differential Equation

𝑎 = −
𝑘

𝑚
𝑦 −

𝑐

𝑚

𝑑𝑦

𝑑𝑡

6

Blender/Python API
Blender’s Physics

Blender’s physics system allows you to simulate a number of different

real world physical phenomena. You can use these systems to create a

variety of static and dynamic effects such as: Soft Body, Cloth and

Smoke

A Soft Body in general, is a simulation of a soft or rigid deformable

object. It is useful for everything that tends to bend, deform, in reaction to

forces like gravity or wind, or when colliding with other objects.

In Blender, this system is best for simple cloth objects and closed

meshes e.g. for skin or rubber. There is dedicated Cloth Simulation

physics that use a different solver, and is better for cloth.

7

Blender/Python API
Blender’s Physics

Soft body simulation is done by applying forces to the vertices or control

points of the object. There are exterior forces like gravity or force fields

and interior forces that hold the vertices together. This way you can

simulate the shapes that an object would take on in reality if it had

volume, was filled with something, and was acted on by real forces.

Soft Bodies can interact with other objects through Collision. They can

interact with themselves through Self-Collision.

The result of the Soft Body simulation can be converted to a static object.

You can also bake edit the simulation, i.e. edit intermediate results and

run the simulation from there.

8

Blender/Python API
Blender’s Physics

Soft Bodies are well suited for:

• Elastic objects with or without collision.

• Flags, fabric reacting to forces.

• Certain modeling tasks, like a cushion or a table cloth over an object.

• Blender has another simulation system for clothing. But you can

sometimes use Soft Bodies for certain parts of clothing, like wide

sleeves.

• Hair (as long as you minimize collision).

• Animation of swinging ropes, chains and the like.

9

Blender/Python API
Blender’s Physics

Soft Body simulation works for all objects that have vertices or control

points:

 Meshes.

 Curves.

 Surfaces.

 Lattices.

To activate the Soft Body simulation for an object: In the Properties editor,

go to the Physics tab (it is all the way on the right, and looks like a

bouncing ball). Activate the Soft Body button. A lot of options appear.

10

Blender/Python API
Blender’s Physics

Soft Body Object

Friction

The friction of the surrounding medium. Generally friction dampens a

movement.

Mass

Mass value for vertices. Larger mass slows down acceleration, except for

gravity where the motion is constant regardless of mass. Larger mass

means larger inertia, so also braking a Soft Body is more difficult.

11

Blender/Python API
Blender’s Physics

Soft Body Goal

Soft Body Goal acts like a pin on a chosen set of vertices; controlling how

much of an effect soft body has on them. Enabling this tells Blender to use

the position of a vertex in the simulation. Animating the vertices can be

done in all the usual ways before the Soft Body simulation is applied. The

goal is the desired end-position for vertices. How a soft body tries to

achieve this goal can be defined using stiffness forces and damping. A

Goal value of 1.0 means no Soft Body simulation, the vertex stays at its

original (animated) position. When setting Goal to 0.0, the object is only

influenced by physical laws.

12

Blender/Python API
Blender’s Physics

Goal Settings

Stiffness

The spring stiffness for Goal. A low value creates very weak springs (more

flexible “attachment” to the goal), a high value creates a strong spring (a

stiffer “attachment” to the goal).

Damping

The friction for Goal. Higher values dampen the effect of the goal on the

soft body.

13

Blender/Python API
Blender’s Physics

Use Edges

The edges in a Mesh Object can act as springs as well.

Springs

Pull

 The spring stiffness for edges. A low value means very weak springs, a

high value is a strong spring that resists being pulled apart. 0.5 is latex, 0.9

is like a sweater, 0.999 is a highly-starched napkin or leather.

Push

 How much the soft body resist being scrunched together, like a

compression spring. Low values for fabric, high values for inflated objects

and stiff material.

14

Blender/Python API
Blender’s Physics

 Pull: 0.5

Push: 0.5

Damp: 0.5

Bending: 0.4

Shear: 0.4

Mass: 1

15

Blender/Python API
Blender’s Physics

 Pull: 0.3

Push: 0.3

Damp: 0.3

Bending: 0.2

Shear: 0.2

Mass: 1

16

Blender/Python API
Blender’s Physics

 Pull: 0.1

Push: 0.1

Damp: 0.1

Bending: 0.1

Shear: 0.1

Mass: 1

17

Blender/Python API
Blender’s Physics

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
1.0

Pull is how much the edges are allowed to stretch

18

Blender/Python API
Blender’s Physics

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.5

Pull is how much the edges are allowed to stretch

19

Blender/Python API
Blender’s Physics

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0.0

Pull is how much the edges are allowed to stretch

20

Blender/Python API
Blender’s Physics

 Push is how much the soft body resists being cramped together

1.0

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

21

Blender/Python API
Blender’s Physics

 Push is how much the soft body resists being cramped together

0.5

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

22

Blender/Python API
Blender’s Physics

 Push is how much the soft body resists being cramped together

0.5

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Damp

 The friction for edge springs. High values dampen the edge stiffness

effect and calm down the body.

Plasticity

 Permanent deformation of the object.

Bending

 This option creates virtual connections between a vertex and the one

after the next. This includes diagonal edges. Damping applies also to

these connections.

Length

 The edges can shrink or been blown up. This value is given in percent, 0

disables this function. 100% means no change, the body keeps 100% of its

size.

 23

Blender/Python API
Blender’s Physics

24

Blender/Python API
Blender’s Physics

Without Stiff Quads enabled.

Stiff Quads is activated (for both cubes).

25

Blender/Python API
Blender’s Physics

No bending stiffness High bending stiffness (10)

Bending stiffness can also be used if you want to make a subdivided

plane more plank like.

import bpy

Add a Cube

bpy.ops.mesh.primitive_cube_add(size=1, location=(0, 0, 2))

Subdivide the Mesh for softbody calculations

bpy.ops.object.mode_set(mode = 'EDIT')

bpy.ops.mesh.subdivide(number_cuts = 4, smoothness = 0)

Modifify the cube as a SoftBody

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.modifier_add(type='SOFT_BODY')

bpy.context.object.modifiers["Softbody"].settings.friction = 2

bpy.context.object.modifiers["Softbody"].settings.use_goal = False

bpy.context.object.modifiers["Softbody"].settings.use_self_collision = True

bpy.context.object.modifiers["Softbody"].settings.use_stiff_quads = False

bpy.context.object.modifiers["Softbody"].settings.pull = 0.5

bpy.context.object.modifiers["Softbody"].settings.push = 0.5

bpy.context.object.modifiers["Softbody"].settings.damping = 0.5

bpy.context.object.modifiers["Softbody"].settings.shear = 0.4

bpy.context.object.modifiers["Softbody"].settings.bend = 0.4

bpy.ops.object.modifier_add(type='COLLISION')

26

Blender/Python API
Blender’s Physics

27

Blender/Python API
Blender’s Physics

 bpy.ops.mesh.subdivide(number_cuts = 4, smoothness = 0)

bpy.ops.mesh.subdivide(number_cuts = 8, smoothness = 0)

28

Blender/Python API
Blender’s Physics

The specific strength is a material's

(or muscle's) strength (force per unit

area at failure) divided by its density.

It is also known as the strength-to-

weight ratio or strength/weight

ratio or strength-to-mass ratio.

bpy.ops.mesh.subdivide(number_cuts = 8, smoothness = 0)

29

Blender/Python API
Blender’s Physics

Another way to describe specific strength is breaking length, also known as

self support length: the maximum length of a vertical column of the material

(assuming a fixed cross-section) that could suspend its own weight when

supported only at the top.

To create a connection between the vertices of a

Soft Body object there have to be forces that hold

the vertices together. These forces are effective

along the edges in a mesh, the connections

between the vertices. The forces act like a spring.

30

Blender/Python API
Blender’s Physics

Additional forces with Stiff Quads enabled.

bpy.context.object.modifiers["Softbody"].settings.use_stiff_quads = True

31

Blender/Python API
Blender’s Physics

bpy.ops.mesh.subdivide(number_cuts = 8, smoothness = 0)

import bpy

import bmesh

Add a Cube

bpy.ops.mesh.primitive_cube_add(radius=1, location=(0, 0, 2))

Subdivide the Mesh for softbody calculations

bpy.ops.object.mode_set(mode = 'EDIT')

bpy.ops.mesh.subdivide(number_cuts = 4, smoothness = 0)

32

Blender/Python API
Soft Body Cube

This subdivision is for physics

calculations; if you have a

powerful computer you can

increase the number of subdivision.

Do NOT smooth!

33

Blender/Python API
Soft Body Cube

 # Modifify the cube as a SoftBody

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.modifier_add(type='SOFT_BODY')

bpy.context.object.modifiers["Softbody"].settings.friction = 2

bpy.context.object.modifiers["Softbody"].settings.use_goal = False

bpy.context.object.modifiers["Softbody"].settings.use_self_collision = True

bpy.context.object.modifiers["Softbody"].settings.use_stiff_quads = True

bpy.context.object.modifiers["Softbody"].settings.pull = 0.5

bpy.context.object.modifiers["Softbody"].settings.push = 0.5

bpy.context.object.modifiers["Softbody"].settings.damping = 0.5

bpy.context.object.modifiers["Softbody"].settings.shear = 0.4

bpy.context.object.modifiers["Softbody"].settings.bend = 0.4

Subsurface the cube for better render result

bpy.ops.object.modifier_add(type='SUBSURF')

bpy.context.object.modifiers["Subsurf"].levels = 2

bpy.context.object.modifiers["Subsurf"].render_levels = 4
Increase if you have a
powerful computer

34

Blender/Python API
Soft Body Cube

Object Mode Edit Mode

35

Blender/Python API
Soft Body Cube

36

Blender/Python API
Soft Body Cube

Switching to EDIT mode to read mesh data

bpy.ops.object.mode_set(mode = 'EDIT')

Deselect all verts, edges, faces

bpy.ops.mesh.select_all(action="DESELECT")

Register bmesh object and select various parts

me = bpy.context.object.data

bm = bmesh.from_edit_mesh(me)

bm.edges.ensure_lookup_table()

bm.select_mode = {'EDGE'}

Select the corner edges

for e in bm.edges:

 if e.calc_face_angle_signed() >= 1.57: # in radians 90 degree 1.5708 rad

 e.select = True

bm.select_flush_mode()

37

Blender/Python API
Soft Body Cube

 Each edge in a Blender model has a crease

value associated with it, which is used to tell

the Subsurf modifier how sharp we want that

edge to be.

By default, all edges have a crease of 0,

which is why our cube has lost all its sharp

edges.

38

Blender/Python API
Soft Body Cube

Crease 0.8

39

Blender/Python API
Soft Body Cube

cr = bm.edges.layers.crease.verify()

selectedEdges = [e for e in bm.edges if e.select]

for e in selectedEdges: e[cr] = 0.8

bmesh.update_edit_mesh(me)

40

Blender/Python API
Soft Body Cube

Add a Plane

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.mesh.primitive_plane_add(size=5, location=(0, 0, 0))

bpy.ops.object.modifier_add(type='COLLISION')

41

Blender/Python API
Soft Body Cube

42

Blender/Python API
Soft Body Cube

43

Blender/Python API
Soft Body Cube

44

Normally 3D models consist of just the

outer shell of an object, and techniques

like voronoi fracturing "fake" internal

matter by creating extra surfaces

between pieces when needed.

In contrast, finite element solids

represent an object as a solid mass of

small elements. This lets the solver

realistically simulate bending, elasticity,

internal mass, chipping, crumbling, and

shattering. Solid objects can simulate

stiff materials (like metal or wood), or

elastic, rubbery, fluid, and floppy objects

(like muscle and fat).

Blender/Python API
Finite Element Method

45

Blender/Python API
Finite Element Method

46

Blender/Python API
Finite Element Method

47

Houdini
Finite Element Method

48

Houdini
Finite Element Method

Houdini uses meshes of tetrahedrons or

tets (four-sided pyramids) to represent

finite element solids.

In contrast to many other solvers,

Houdini’s finite element solver is

resolution independent: the way an object

moves and deforms is to a large degree

independent of the density of

tetrahedrons. In particular, the same

settings on a Solid Object have similar

results when applied to meshes of

increasingly high resolution.

49

Blender/Python API
Finite Element Method

Finite elements vs. Springs

The Finite Element solver simulates the motion of deformable solids. The

solver treats the simulated shape as a solid continuum, as opposed to a

collision of particles. This means the internal mass and the internal forces are

distributed over the entire shape, including the interiors of the tetrahedra.

The finite-element simulation is based on internal stresses and strains

that occur within the simulated body. This contrasts with other types of

solvers, such as particle-based mass-spring systems, where the mass is

concentrated in the vertices and where internal forces are generated by

springs between these vertices.

50

Blender/Python API
Finite Element Method

The solid continuum approach of the finite element solver has several

advantages over particle-based solvers:

The simulation behavior stays very consistent if the mesh resolution changes.

This makes presets predictable. A simulation with a low-res mesh (cheap) is a

good prediction of a simulation with a higher-res mesh.

The results of finite element simulation are realistic. The results of a finite

element simulation is based on solid mechanics. Finite element systems tend

to be more efficient at simulating stiff objects than position-based particle

systems.

51

Blender/Python API
Finite Element Method

52

Blender/Python API
Finite Element Method

FEniCSx is a popular open-source

computing platform for solving partial

differential equations (PDEs). FEniCSx

enables users to quickly translate scientific

models into efficient finite element code.

With the high-level Python and C++

interfaces to FEniCSx, it is easy to get

started, but FEniCSx offers also powerful

capabilities for more experienced

programmers.

53

Blender/Python API
Finite Element Method

54

Blender/Python API
Finite Element Method

Each component of the FEniCSx platform

has been fundamentally designed for

parallel processing. Executing a FEniCSx

script in parallel is as simple as calling
mpirun -np 64 python script.py

55

56

https://fenicsproject.org/

http://femwiki.wikidot.com/fenics-intro:fenics-introduction

57

Blender/Python API
Midterm Exam II: Soft Body Sphere

This is the second part of mid-term exam. Write a Blender script that

simulates soft body balls dropping a flat plane. You need to render your result

as a video.

58

Blender/Python API
Midterm Exam II: Soft Body Sphere

E-posta Sınav teslim tarihi : 20 Kasım 2024 Çarşamba saat 23:59

Sınav yeri : 21 Kasım 2024 Perşembe saat 18:30 Animasyon Lab
20 Kasım Çarşamba günü e-posta ile gönderdiğiniz programlar çalıştırılacak.

Blender Python’da yazılan programınızın gönderileceği e-

posta adresi : serdar.aritan@hacettepe.edu.tr

 serdar.aritan@gmail.com

Konu: BCO 602 Animasyon İçin Betik Diller <Öğrenci No>

İçerik: Blender da yazılmış programınız ZIP dosyası olarak (sıkıştırılmış)

Blender/Python API
Next week : Particle Physics

59

