
1

Department of Computer Graphics

Hacettepe University, Ankara, Turkey

Serdar ARITAN

Blender - Python API

#11

2

Blender/Python API
Fluid Animation

3

Blender/Python API
Blender’s Physics

Fluid animation can take a lot of time - the better you understand how it

works, the easier it will be to estimate how the results will look. The

algorithm used for Blender’s fluid simulation is the Lattice Boltzmann

Method (LBM); other fluid algorithms include Navier-Stokes (NS) solvers

and Smoothed Particle Hydrodynamics (SPH) methods. LBM lies

somewhere between these two. For Blender’s LBM solver, the following

things will make the simulation harder to compute:

 Large domains.

 Long duration.

 Low viscosities.

 High velocities.

4

Blender/Python API
Fluid Animation

 Workflow

At least a Domain object and one Flow object are required to create a

fluid simulation

In general, you follow these steps:

• Create a Domain object that defines the bounds of the simulation volume.

• Set up Flow objects which will emit fluid.

• Set up Effector objects to make the fluid interact with objects in the scene.

• Assign a material to the domain object.

• Save the blend-file.

• Bake the Cache for the simulation.

5

Blender/Python API
Fluid Animation

• Create a Domain object that defines the

bounds of the simulation volume.

• Set up Flow objects which will emit

fluid.

• Set up Effector objects to make the

fluid interact with objects in the scene.

6

Blender’s fluid simulation is the Lattice Boltzmann Method (LBM)

Blender/Python API
Fluid Animation

7

Blender/Python API
Fluid Animation

The Lattice Boltzmann Method (LBM) is a numerical method based in

kinetic equations formulated on a mesoscopic scale, which simulates

fluid dynamics on a macroscopic scale.

The LBM was introduced by McNamara and Zanetti (1988), where the

authors show the advantage of extending the Boolean dynamic of

cellular automaton to work directly with floating point numbers

representing probabilities of particle presence.

8

Blender/Python API
Fluid Animation

The lattice Boltzmann model known as D2Q9 has eight nonzero motion

directions and the possibility of having a resting particle.

9

Blender/Python API
Fluid Animation

 D2Q9 Model algorithm.

Dx = 50, Dy = 50, lattice[50][50]. f [9] //each node has 9 fi’s

// INITIALIZATION STEP

density = 1.0

velocity[50][50] = 0.0

for each x in [0, Dx − 1] do

 for each y in [0, Dy − 1] do

 for each i in [0, 8] do

 lattice[x][y]. f [i] = f eq(density, velocity[x][y], i)

 end for

 end for

end for

// SOLVER

repeat

// SAVE VELOCITY FIELD FOR STOP CONDITION

 for each x in [0, Dx − 1] do

 for each y in [0, Dy − 1] do

 old[x][y] = velocity[x][y]

 end for

 end for

// INNER LATTICE DYNAMICS

 for each x in [1, Dx − 2] do

 for each y in [1, Dy − 2] do

 Scattering of node [x][y] for its neighbors

 Collision at node [x][y]

 end for

 end for

 Treats boundary conditions

 // STOP CONDITION

 max = 0

 for each x in [1, Dx − 2] do

 for each y in [1, Dy − 2] do

 norm = |velocity[x][y] − old[x][y]|

 if (norm > max) then max = norm end if

 end for

 end for

until (max >= delta)
10

Blender/Python API
Fluid Animation

11

Blender/Python API
Fluid Animation

The Domain Object

The bounding box of the object serves as the boundary of the

simulation. All fluid objects must be in the domain. Fluid objects outside

the domain will not bake. No tiny droplets can move outside this domain;

it’s as if the fluid is contained within the 3D space by invisible force fields.

There can be only a single fluid simulation domain object in the scene.

The shape of the object does not matter because it will always be

treated like a box (The lengths of the bounding box sides can be

different). So, usually there will not be any reason to use another shape

than a box. If you need obstacles or other boundaries than a box to

interfere with the fluid flow, you need to insert additional obstacle objects

inside the domain boundary.)

12

Blender/Python API
Fluid Animation

13

Blender/Python API
Fluid Animation

Inflow: This object will put fluid into

the simulation, like a water tap.

Initial Velocity

 Speed of the fluid that is created

inside of the object.

Outflow : Any fluid that enters the region of this object will be

deleted (think of a drain or a black hole).

This can be useful in combination with an inflow to prevent the

whole domain from filling up. When enabled, this is like a

tornado (waterspout) or “wet vac” vacuum cleaner, and the part

where the fluid disappears will follow the object as it moves

around.

14

Blender/Python API
Fluid Animation

15

Blender/Python API
Fluid Animation

16

Blender/Python API
Fluid Animation

17

Blender/Python API
Fluid Animation

18

Blender/Python API
Fluid Animation

Baking always starts at Frame #1

 The fluid simulator disregards the Start setting in the Animation panel, it

will always bake from frame 1. If you wish the simulation to start later than

frame 1, you must key the fluid objects in your domain to be inactive until the

frame you desire to start the simulation.

Baking always ends at the End Frame set in the Animation panel

 If the frame rate is set to 25 frames per second, and ending time is 4.0

seconds, then you should (if your start time is 0) set your animation to end at

frame 4.0 × 25 = 100

19

Blender/Python API
Fluid Animation

Render resolution
The granularity at which the actual fluid simulation is performed. This is probably the most

important setting for the simulation as it determines the amount of details in the fluid, the

memory and disk usage as well as computational time.

Resolution 70 Resolution 200

20

Blender/Python API
Fluid Animation

 Viscosity

 The “thickness” of the fluid and actually the force needed to move an object of a

certain surface area through it at a certain speed.

 For manual entry, please note that the normal real-world viscosity (the so-called

dynamic viscosity) is measured in Pascal-seconds (Pa.s), or in Poise units (P, equal to 0.1

Pa.s, pronounced pwaz, from the Frenchman Jean-Louis Poiseuille, who discovered the

laws on “the laminar flow of viscous fluids”), and commonly centiPoise units (cP, equal to

0.001 Pa.s, sentipwaz). Blender, on the other hand, uses the kinematic viscosity (which is

dynamic viscosity in Pa.s, divided by the density in kg.m-3, unit m2.s-1).

21

Blender/Python API
Fluid Animation

 The table below gives some examples of fluids together with their

dynamic and kinematic viscosities.

22

Blender/Python API
Fluid Container

Fluid Container Design START

bpy.ops.mesh.primitive_cube_add(size=1, location=(0, 0, 0))

bpy.context.active_object.name = 'FluidContainer'

Switching to EDIT mode to read mesh data

bpy.ops.object.mode_set(mode = 'EDIT')

Deselect all verts, edges, faces

bpy.ops.mesh.select_all(action="DESELECT")

Collision Cube is a container for the physics

collisionCube = bpy.context.active_object

meColl = collisionCube.data

Register bmesh object and select various parts

bm = bmesh.from_edit_mesh(meColl)

bm.faces.ensure_lookup_table()

bm.select_mode = {'FACE'}

23

Blender/Python API
Fluid Container

Select the top face of the cube: get the Z coordinates

for f in bm.faces:

 print(f.calc_center_bounds()[2])

 #Z = (collisionCube.matrix_world * face.center)[2]

 if f.calc_center_bounds()[2] > 0.0:

 f.select = True

bm.select_flush_mode()

bpy.ops.mesh.delete(type='FACE')

bpy.ops.object.mode_set(mode = 'OBJECT')

bpy.ops.transform.resize(value=(5, 5, 0.5))

bpy.ops.object.modifier_add(type='SOLIDIFY')

bpy.context.object.modifiers["Solidify"].thickness = 0.03

bpy.ops.object.modifier_apply(modifier="Solidify")

Fluid Container Design STOP

24

Blender/Python API
Fluid Container

25

Blender/Python API
Effector Collision

Use Effector

 Enables or disables the effector object effect on the fluid, this property is

useful for animations to selectively enable and disable when the effector

affects the fluid.

Is Planar

 Defines the effector as either a single dimension object i.e. a plane or the

mesh is non-manifold. This ensures that the fluid simulator will give the most

accurate results for these types of meshes. A manifold mesh can also be

declared as planar. The fluid solver will then ignore the volume inside the

mesh and just emit fluid from the mesh sides.

√

Apply Obstacle Modifier to the Fluid Container

bpy.ops.object.modifier_add(type='FLUID')

bpy.context.object.modifiers["Fluid"].fluid_type = 'EFFECTOR'

bpy.context.object.modifiers["Fluid"].effector_settings.effector_type =

'COLLISION'

bpy.context.object.modifiers["Fluid"].effector_settings.surface_distance = 0.001

bpy.context.object.modifiers["Fluid"].effector_settings.use_plane_init = True

26

Blender/Python API
Effector Collision

Effector Type

 Collision

 Objects of this type will collide with fluid.

27

Blender/Python API
Fluid Source

This object will put fluid into the simulation,

like a water tap.

Initial Velocity

 Speed of the fluid that is created inside of

the object.

Any fluid that enters the region of this

object will be deleted (think of a

drain or a black hole).

This can be useful in combination

with an inflow to prevent the whole

domain from filling up. When

enabled, this is like a tornado

(waterspout) or “wet vac” vacuum

cleaner, and the part where the fluid

disappears will follow the object as it

moves around.

28

Blender/Python API
Fluid Source

29

Blender/Python API
Fluid Source

Design Fluid Source

bpy.ops.mesh.primitive_uv_sphere_add(radius=0.5, location=(0, 0, 3))

bpy.ops.object.modifier_add(type='FLUID')

bpy.context.object.modifiers["Fluid"].fluid_type = 'FLOW'

bpy.context.object.modifiers["Fluid"].flow_settings.flow_type = 'LIQUID'

bpy.context.object.modifiers["Fluid"].flow_settings.flow_behavior = 'INFLOW'

bpy.context.object.modifiers["Fluid"].flow_settings.use_initial_velocity = True

bpy.context.object.modifiers["Fluid"].flow_settings.velocity_coord[2] = 0.1

30

Blender/Python API
Fluid Simulation Domain

The bounding box of the object serves

as the boundary of the simulation. All

fluid objects must be in the domain.

Fluid objects outside the domain will not

bake. No tiny droplets can move

outside this domain; it’s as if the fluid is

contained within the 3D space by

invisible force fields. There can be

only a single fluid simulation domain

object in the scene.

31

Blender/Python API
Fluid Simulation Domain

32

Blender/Python API
Fluid Simulation Domain

FLIP is an adaptation to fluids of

the implicit moment method for

simulating plasmas, in which

particles carry everything

necessary to describe the fluid.

Using the particle data,

Lagrangian moment equations

are solved on a grid. The

solutions are then used to

advance the particle variables

from time step to time step.

33

Blender/Python API
Fluid Simulation Domain

FLIP

Produces a very splashy simulation with lots of particles dispersed

in the air.

APIC

Produces a very energetic but also more stable simulation. Vortices

within the liquid will be preserved better than with FLIP.

34

Blender/Python API
Fluid Simulation Domain

FLIP APIC

35

Blender/Python API
Fluid Simulation Domain

Set the Fluid Simulation Domain

bpy.ops.mesh.primitive_cube_add(size=1, location=(0, 0, 2))

bpy.context.active_object.name = 'FluidDomain'

bpy.ops.transform.resize(value=(6, 6, 8))

bpy.context.object.display_type = 'WIRE'

bpy.ops.object.modifier_add(type='FLUID')

bpy.context.object.modifiers["Fluid"].fluid_type = 'DOMAIN'

bpy.context.object.modifiers["Fluid"].domain_settings.domain_type = 'LIQUID'

bpy.context.object.modifiers["Fluid"].domain_settings.resolution_max = 64 #128

bpy.context.object.modifiers["Fluid"].domain_settings.use_diffusion = True

bpy.context.object.modifiers["Fluid"].domain_settings.use_mesh = True

bpy.context.object.modifiers["Fluid"].domain_settings.mesh_scale = 3

36

Blender/Python API
Fluid Simulation

37

Blender/Python API
Fluid Simulation

38

Blender/Python API
Fluid Simulation

39

Blender/Python API
Fluid Simulation

40

Blender/Python API
Fluid Simulation Domain

41

Blender/Python API
Fluid Simulation Domain

42

Blender/Python API
Fluid Simulation Domain

43

Blender/Python API
Fluid Animation

44

Blender/Python API
Cloth Simulation

With Cloth Physics applied, an Object exhibits the characteristics of

different types of fabric.

With Cloth Physics, controls display in the Properties Editor. Consider a

Plane Object in the 3D Viewport Editor in Object Mode, Subdivided ten

times (in Edit Mode). With the Plane selected in Object Mode, click Cloth

in the Physics buttons.

If you click on the Modifier button in the Properties Editor you will see

that a Cloth Modifier has been added to the Plane referring you to the

controls in the Physics buttons.

45

Blender/Python API
Cloth Simulation

46

Blender/Python API
Cloth Simulation

 import bpy

bpy.context.scene.frame_end = 100

mass = [0.1, 0.5, 0.9]

for i, sph in enumerate(range(-3, 4, 3)):

 bpy.ops.mesh.primitive_uv_sphere_add(segments=128, radius=0.5, location=(sph, 0, 1))

 bpy.ops.object.shade_smooth()

 bpy.context.active_object.name = 'Sphere_' + str(i)

 bpy.ops.object.shade_smooth()

 bpy.ops.object.modifier_add(type='COLLISION')

47

Blender/Python API
Cloth Simulation

 bpy.ops.mesh.primitive_plane_add(size=2.8, location=(sph, 0, 3))

 bpy.context.active_object.name = 'myCloth_' + str(i)

 # Switching to EDIT mode to subdivide mesh

 bpy.ops.object.mode_set(mode = 'EDIT')

 bpy.ops.mesh.subdivide(number_cuts=50)

 bpy.ops.object.mode_set(mode = 'OBJECT')

 bpy.ops.object.shade_smooth()

 bpy.ops.object.modifier_add(type='CLOTH')

 bpy.context.object.modifiers["Cloth"].settings.quality = 10

 bpy.context.object.modifiers["Cloth"].settings.mass = 0.4

 bpy.context.object.modifiers["Cloth"].point_cache.frame_end = 100

 bpy.context.object.modifiers["Cloth"].settings.mass = mass[i]

 bpy.context.object.modifiers["Cloth"].collision_settings.collision_quality = 5

 bpy.data.objects['myCloth_'+ str(i)].modifiers['Cloth'].collision_settings.use_self_collision = True

48

Blender/Python API
Cloth Simulation

49

Blender/Python API
Cloth Simulation

 # Bake All Physics

#bpy.ops.ptcache.bake_all(bake=True)

for i in range(3):

 ob = bpy.context.scene.objects['myCloth_'+ str(i)]

 bpy.ops.object.select_all(action='DESELECT') # Deselect all objects

 bpy.context.view_layer.objects.active = ob # Make the cloth the active object

 ob.select_set(True) # Select the cloth

 #bpy.data.objects['myCloth_'+ str(i)].select_set(True)

 bpy.ops.object.modifier_add(type='SUBSURF')

 bpy.context.object.modifiers["Subdivision"].render_levels = 3

 bpy.context.object.modifiers["Subdivision"].levels = 3

 bpy.ops.object.modifier_add(type='SOLIDIFY')

 bpy.context.object.modifiers["Solidify"].thickness = 0.03

50

Blender/Python API
Cloth Simulation

 Mass
0.1 0.5 0.9

51

Blender/Python API
Cloth Simulation

 Mass
0.1 0.5 0.9

Air Viscosity 3

52

Blender/Python API
Cloth Simulation

 Tension
5 15 25

Stiffness

53

Blender/Python API
Cloth Simulation

 Compression
5 15 25

Stiffness

54

Blender/Python API
Cloth Simulation

 Shear
1 5 15

Stiffness

55

Blender/Python API
Cloth Simulation

 Bending
0.1 0.5 0.9

Stiffness

56

Blender/Python API
Cloth Simulation

√

57

Blender/Python API
Cloth Simulation

 bpy.ops.image.import_as_mesh_planes(relative=False, filepath="C:\\... \\Logo_1000.tif",\

 files=[{"name":"Logo_1000.tif","name":"Logo_1000.tif"}],\

 directory="C:\\... \\")

58

Blender/Python API
Cloth Simulation

 bpy.context.object.modifiers["Cloth"].settings.use_pressure = True

bpy.data.objects['myCloth'].modifiers["Cloth"].settings.uniform_pressure_force = 0.1

bpy.data.objects['myCloth'].modifiers["Cloth"].settings.use_pressure_volume = True

bpy.data.objects['myCloth'].modifiers["Cloth"].settings.target_volume = 2

59

Blender/Python API
Cloth Simulation

bpy.context.object.modifiers["Cloth"].settings.use_internal_springs = True

60

Blender/Python API
Cloth Simulation

 settings.use_internal_springs = True settings.use_internal_springs = False

