
1

SERDAR ARITAN
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr
Spor Bilimleri Fakültesi
www.sbt.hacettepe.edu.tr
Hacettepe Universitesi, Ankara, Türkiye
www.hacettepe.edu.tr

De Motu Animalium G.Borelli (1680)

HAB 619 Introduction to Scientific
Computing in Sports Science

#3

2

SymPy : a Python library for symbolic mathematics.

http://docs.sympy.org/latest/guide.html#learning-sympy

It aims to become a full-featured computer algebra system
(CAS) while keeping the code as simple as possible in order to
be comprehensible and easily extensible. SymPy is written
entirely in Python and does not require any external libraries.

>>> from sympy import *

>>> x, y, z = symbols('x y z')

>>> init_printing(use_unicode=True)

>>> Eq(x, y)

x = y

>>> solve(Eq(x**2, 1), x)

[-1, 1]

>>> solve(Eq(x**2 - 1, 0), x)

[-1, 1]

>>> solve(x**2 - 1, x)

[-1, 1]

>>> solve([x - y + 2, x + y - 3], [x, y])

{x: 1/2, y: 5/2}

>>> roots(x**3 - 6*x**2 + 9*x, x)

{0: 1, 3: 2}

SymPy : a Python library for symbolic mathematics.

3

4

SymPy : a Python library for symbolic mathematics.

>>> from sympy import symbols

>>> from sympy.plotting import plot

>>> x = symbols('x')

>>> plot(x**2, (x, -5, 5))

5

Free Fall of an Object: An Experiment by Galileo

Galileo didn't know calculus (because
Newton and Leibniz hadn't discovered
it yet) so he couldn't derive the
equation mathematically. Since we
do know calculus (SymPy) we know
that acceleration is the variation of
velocity with time.

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈.

6

Free Fall of an Object: An Experiment by Galileo

We assume no drag/air resistance

−𝒈 =
𝒅𝒗

𝒅𝒕
=
𝒅𝟐𝒙

𝒅𝒕𝟐

𝒅𝒗 = −𝒈𝒅𝒕

𝒗 = −𝒈𝒅𝒕

𝒗 = −𝒈𝒕

𝒎𝒈.

𝑭𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝒈

7

𝒎𝒈.

 𝒗𝒅𝒕 = −𝒈𝒕𝒅𝒕

𝒙 = −
𝟏

𝟐
𝒈𝒕𝟐

Free Fall of an Object: An Experiment by Galileo

We assume no drag/air resistance

8

from sympy import *

v, x, t, g = symbols('v x t g', real = True)

m= symbols('m', constant = True)

init_printing(use_unicode = True)

v = integrate(-m*g, t)

print('Velocity : ', v)

x = integrate(v, t)

print('Position : ', x)

Velocity : -g*m*t

Position : -g*m*t**2/2

Free Fall of an Object: An Experiment by Galileo

9

Try to write these equations

12

12

xx

yy
slope






321

111

1

rrr

resist





2
1

v

c

v

b
factor 

asr

asr
center






)(

sin)(1972.38
22

33

SymPy : a Python library for symbolic mathematics.

Input Function

The input function is used in an assignment statement. To
call it, a string is passed, which is the prompt that will
appear on the screen, and whatever the user types will be
stored in the variable named on the left of the assignment
statement. To make it easier to read the prompt, put a
colon and then a space after the prompt. For example,

>>> rad = input(‘Enter the radius: ’)

Enter the radius: 5

rad =

‘5’

>>> name = input(‘What is your name : ’)

What is your name : Serdar

name =

‘Serdar’

10

Print Function

The simplest output function in Python is print, which is
used to display the result of an expression or a string
without assigning any value. For example,

>>> print(‘Hello’)

Hello

>>> print(4**3)

64

11

12

Control Statements

We can create “logical” or “conditional” expressions using
comparison and Boolean operators. Such expressions
always produce a numerical result that is either 1 for true or
0 for false expressions. The comparison operators are ‘<’
’<=’ ’==’ ‘>=’ ‘>’ and ‘!=’. The Boolean operators are ‘and’
and ‘or’ or, ‘not’ not. You can use parentheses to bracket
expressions to force an evaluation order.

>>> x = 10

>>> y = 20

>>> print(x < y) # displays True

>>> print(x <= 10) # displays True

>>> print (x == y) # displays False

>>> print ((0 < x) and (y < 30)) # displays True

>>> print((x > 10) or (y > 100)) # displays False

>>> print(not(x > 10)) # displays True

>>> 1 < 2 # Less than

True

>>> 2.0 >= 1 # Greater than or equal: mixed-type 1

converted to 1.0

True

>>> 2.0 == 2.0 # Equal value

True

>>> 2.0 != 2.0 # Not equal value

False

>>> X = 2

>>> Y = 4

>>> Z = 6

>>> X < Y < Z # Chained comparisons: range tests

True

>>> X < Y and Y < Z

True

13

14

The Boolean operators are and, or, not. Such expressions always produce a
numerical result that is either True or False expressions.

 and 0 and 0 results False not (0 and 0) results True

 1 and 0 results False not (1 and 0) results True

 0 and 1 results False not (0 and 1) results True

 1 and 1 results True not (1 and 1) results False

 or 0 or 0 results False not (0 or 0) results True

 1 or 0 results True not (1 or 0) results False

 0 or 1 results True not (0 or 1) results False

 1 or 1 results True not (1 or 1) results False

15

The conditional statements “if condition statement end” only executes the
statements if the condition evaluates to true. The condition should be logical
expression evaluating to true or false. For example:

 false

if(..condition statement..):

 true

 statements to execute

if(x < 10):

 print(x) # only displays x when x < 10

if((x > 0) and (x < 100)):

 print(‘OK’)# displays OK if x between 0 and 100

TAB

TAB

16

You can put more than one statement between the ‘if’ and the end of
indentation. You can choose between two courses of action with “if condition
statement else in:

 if((x > 0) and (x < 100)):

 print(‘OK’)

 else:

 print(‘x contains invalid number’)

You can build a chain of test with ‘elif’, as in:

 if(n <= 0):

 print(‘n is negative or zero’)

 elif (n%2):

 print(‘n is even’)

 else:

 print(‘n is odd’)

TAB

TAB

TAB

TAB

TAB

17

if/else branches
Example:
age example 1

age = int(input("How old are you? "))

if age < 13:

 print ("Your age is ", age, “you are a children.”)

else:

 print ("Your age is ", age, “you are an adult.”)

Output:
>>> How old are you? 5

your age is 5 you are a children

>>> How old are you? 55

your age is 55 you are a adult

18

Nested blocks of code

Python detects block boundaries automatically, by line indentation—that is, the

empty space to the left of your code.

x = 1

if x:

 y =2

 if y:

 print('block2')

 print('block1')

print('block0')

This code contains three blocks: the first is
not indented at all, the second is indented
four spaces, and the third is indented eight
spaces.

19

if/elif/else branches
Example:
age example 2

age = int(input("How old are you? "))

if age < 13:

 print ("Your age is ", age, “you are a

children.”)

elif age >13 and age < 20:

 print ("Your age is ", age, “you are a
teenager.”)

else:

 print ("Your age is ", age, “you are an

adult.”)

 What is wrong with this code?

20

Please write a program that calculates Body Mass Index
and gives the result accordingly.

BMI=
𝑚𝑎𝑠𝑠 𝑘𝑔

ℎ𝑒𝑖𝑔ℎ𝑡 𝑚 2

21

While statements have the following basic structure:
>>> while condition:

 action

>>>

As long as the condition is true, the while statement will execute the action
Example:
>>> x = 1

>>> while x < 4: # as long as x < 4...

 print(x**2) # print the square of x

 x = x+1 # increment x by +1

1 # only the squares of 1, 2, and 3 are printed, because
4 # once x = 4, the condition is false
9
>>>

22

Pitfall to avoid:

While statements are intended to be used with changing conditions. If
the condition in a while statement does not change, the program will be
stuck in an infinite loop until the user hits ctrl-C.

Example:

>>> x = 1

>>> while x == 1:

 print ('Hello world‘)

Since x does not change, Python will continue to print “Hello world” until
interrupted

23

for loop: Repeats a set of statements over a group of values.

Syntax:

for variableName in groupOfValues:

 statements

We indent the statements to be repeated with tabs or spaces.

variableName gives a name to each value, so you can refer to it in the statements.

groupOfValues can be a range of integers, specified with the range function.

Example:

for x in range(1, 6):

 print (x, "squared is", x **2)

Output:
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25

24

The range function specifies a range of integers:

range(start, stop) the integers between start (inclusive) and
stop (exclusive)

It can also accept a third value specifying the change between
values.range(start, stop, step) - the integers between start (inclusive)
and stop (exclusive) by step

Example:
 for x in range(5, 0, -1):

 print(x)

 print ("Blastoff!“)

 Output:
 5
 4
 3
 2
 1
 Blastoff!

25

Example:
>>> for i in range(1,7):

 print(i, i**2, i**3, i**4)

 1 1 1 1

 2 4 8 16

 3 9 27 81

 4 16 64 256

 5 25 125 625

 6 36 216 1296

>>> L = [0,1,2,3] # or, equivalently, range(4)

>>> for i in range(len(L)):

• L[i] = L[i]**2

>>> L

[0,1,4,9]

>>>

26

Some loops incrementally compute a value that is initialized outside the
loop. This is sometimes called a cumulative sum.

 sum = 0

 for i in range(1, 11):

 sum = sum + (i **2)

 print ("sum of first 10 squares is", sum)

 Output:
 sum of first 10 squares is 385

Exercise: Write a Python program that computes the factorial of an
integer.

Please write a simple averaging program

Sample output:
Lütfen 10 adet sayı giriniz
1.sayıyı giriniz : 1
2.sayıyı giriniz : 2
3.sayıyı giriniz : 3
4.sayıyı giriniz : 4
5.sayıyı giriniz : 5
6.sayıyı giriniz : 6
7.sayıyı giriniz : 7
8.sayıyı giriniz : 8
9.sayıyı giriniz : 9
10.sayıyı giriniz : 10
10 sayının toplamı 55 ve ortalaması : 5.5

27

Write program that asks two integer values n and m from the user,
then produces a box that is n wide and m deep, such as the following:

 Enter a width: 5
 Enter a height: 4

 * *
 * *

28

29

Guessing Numbers : The problem is to guess what number a

computer has in mind. You will write a program that randomly
generates an integer between 0 and 100, inclusive. For each user
input, the program reports whether it is too low or too high, so the
user can choose the next input intelligently. Here is a sample run:

Guess a magic number between 0 and 100
Enter your guess: 50
Your guess is too high
Enter your guess: 25
Your guess is too low
Enter your guess: 42
Your guess is too high
Enter your guess: 39
Yes, the number is 39

30

Write a Python script that calculates the average value of given
numbers. Please write the same code with - (minus) number
enterence
This is Output of the script

 enter your number: 12
 enter your number: -1
 average is 12.0

 enter your number: 12
 enter your number: 9
 enter your number: 18
 enter your number: -1
 average is 13.0

