
1

SERDAR ARITAN
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr
Spor Bilimleri Fakültesi
www.sbt.hacettepe.edu.tr
Hacettepe Universitesi, Ankara, Türkiye
www.hacettepe.edu.tr

De Motu Animalium G.Borelli (1680)

HAB 619 Introduction to Scientific
Computing in Sports Science

#4

2

Functions and Classes

• Functions

• Classes

3

Functions in Python are first-class objects. Programming language
theorists define a “first-class object” as a program entity that can be:

• Created at runtime
• Assigned to a variable or element in a data structure
• Passed as an argument to a function
• Returned as the result of a function

Functions and Classes

4

When to Use a Function

• Only one purpose: A function should be the encapsulation of a single,

identifiable operation.
• Readable: A function should be readable.
• Not too long: A function shouldn’t be too long.
• Reusable: A function should be reusable in contexts other than the

program it was written for originally.
• Complete: A function should be complete, in that it works in all

potential situations. If you write a function to perform one thing, you
should make sure that all the cases where itmight be used are taken
into account.

• Able to be refactored: Refactoring is the process of taking existing code
and modifying it such that its structure is somehow improved but the
functionality of the code remains the same.

Functions and Classes

5

def name(arg1, arg2,... argN):
 statements
As with all compound Python statements, def consists of a header line
followed by a block of statements, usually indented (or a simple
statement after the colon).
def Executes at Runtime
The Python def is a true executable statement: when it runs, it creates a
new function object and assigns it to a name. Because it’s a statement, a
def can appear anywhere a statement can—even nested in other
statements
if test:

 def func(): # Define func this way

 ...

else:

 def func(): # Or else this way

 ...

 ...

func() # Call the version selected and built

Functions and Classes

6

Just like a value can be associated with a name, a piece of logic can also be
associated with a name by defining a function.

>>> def square(x):

 return x * x

>>> square(5)

25

The body of the function is indented. Indentation is the Python’s way of
grouping statements.

The functions can be used in any expressions.

>>> square(2) + square(3)

 13

>>> square(square(3))

 81

Functions and Classes

>>> def square(x):

 return x * x

7

We can even create more functions using the existing ones.

>>> def sum_of_squares(x, y):

 return square(x) + square(y)

>>> sum_of_squares(2, 3)

13

Functions are just like other values, they can assigned, passed as
arguments to other functions etc.

>>> f = square

>>> f(4)

16

>>> def fxy(f, x, y):

 return f(x) + f(y)

>>> fxy(square, 2, 3)

13

Functions and Classes

8

>>>def cube(x):

 return x * x * x

>>> fxy(cube, 2, 3)

35

Python supports simple anonymous functions through the lambda form.

>>>forthpower = lambda x: x ** 4

>>> fxy(forthpower, 2, 3)

97

>>> fxy(lambda x: x ** 5, 2, 3)

275

The lambda operator becomes handy when writing small functions to be
passed as arguments etc.

Functions and Classes

lambda

9

Functions and Classes

Lambda functions are anonymous functions that are not defined in the
namespace. Roughly speaking, they are functions without names, intended
for single use.

lambda <arguments> : <return expression>

A lambda function can have one or multiple arguments, separated by
commas.

>>> print((lambda x: x + 3)(3))

6

>>> print((lambda x, y: x + y)(3, 4))

7

10

Generally, defs are not evaluated until they are reached and run, and the
code inside defs is not evaluated until the functions are later called.
Because function definition happens at runtime, there’s nothing special
about the function name. What’s important is the object to which it
refers:

othername = func # Assign function object

othername() # Call func again

Here, the function was assigned to a different name and called through
the new name. Like everything else in Python, functions are just objects;
they are recorded explicitly in memory at program execution time.

def func(): ... # Create function object

func() # Call object

func.attr = value # Attach attributes

Functions and Classes

11

What will be the output of the following programs?
x = 1

def f():

 x = 2

 return x

 print(x) ??

 print(f()) ??

 <CRTL>F6

x = 1

def f():

 y = x

 x = 2

 return x + y

 print (x) ??

 print (f()) ??

Functions and Classes

12

Functions can be called with keyword arguments.

>>> def difference(x, y):

 return x – y

>>> difference(5, 2)

3

>>> difference(x=5, y=2)

3

>>> difference(5, y=2)

3

>>> difference(y=2, x=5)

3

Functions and Classes

13

And some arguments can have default values.

>>> def increment(x, amount=1):

 return x + amount

>>> increment(10)

1

>>> increment(10, 5)

15

>>> increment(10, amount=2)

12

Functions and Classes

14

How to unpack more than one variable when functions return multiple
values.

def get_stats(numbers):

 minimum = min(numbers)

 maximum = max(numbers)

 return minimum, maximum

lengths = [63, 73, 72, 60, 67, 66, 71, 61, 72, 70]

Two return values

minimum, maximum = get_stats(lengths)

print(f'Min: {minimum}, Max: {maximum}')

Functions and Classes

15

Keyword Arguments

def describe_pet(animal_type, pet_name):

 """Display information about a pet."""

 print(f"\nI have a {animal_type}.")

 print(f"My {animal_type}'s name is {pet_name}.")

describe_pet('dog', ‘Bruno')

describe_pet(‘Bruno', 'dog')

I have a dog.

My dog's name is Bruno.

I have a bruno.

My bruno's name is Dog.

Functions and Classes

16

Keyword Arguments

When you use keyword arguments, be sure to use the exact names of the
parameters in the function’s definition.

describe_pet(animal_type=‘dog', pet_name=‘Bruno')

describe_pet(pet_name=‘Bruno', animal_type=‘dog')

I have a dog.

My dog's name is Bruno.

I have a dog.

My dog's name is Bruno.

Functions and Classes

17

Default Values

def describe_pet(pet_name, animal_type=‘dog’):

 """Display information about a pet."""

 print(f"\nI have a {animal_type}.")

 print(f"My {animal_type}'s name is {pet_name}.")

describe_pet(pet_name = ‘Bruno')

I have a dog.

My dog's name is Bruno.

I have a bruno.

My bruno's name is Dog.

Functions and Classes

18

Making an Argument Optional

def get_formatted_name(first_name, middle_name, last_name):

 """Return a full name, neatly formatted."""

 full_name = f"{first_name} {middle_name} {last_name}"

 return full_name.title()

musician = get_formatted_name('john', 'lee', 'hooker')

print(musician)

John Lee Hooker

Functions and Classes

19

Making an Argument Optional

def get_formatted_name(first_name, last_name, middle_name=‘ ‘):

 """Return a full name, neatly formatted.""“

 if middle_name:

 full_name = f"{first_name} {middle_name} {last_name}“

 else:

 full_name = f"{first_name} {last_name}“

 return full_name.title()

musician = get_formatted_name('jimi', ‘hendrix')

print(musician)

Jimi Hendrix

musician = get_formatted_name('john', 'lee', 'hooker')

print(musician)

John Lee Hooker

Functions and Classes

20

Functions and Classes

def drawBox():

 print("**********")

 print("* *")

 print("* *")

 print("**********")

The drawBox function works correctly. It draws the particular box that
it was intended to draw, but it is not flexible, and as a result, it is not as
useful as it could be.

21

Functions and Classes

def drawBox(width, height):

 # A box that is smaller than 2x2 cannot be

 # drawn by this function

 if width < 2 or height < 2:

 print("Error: The width or height is too small.")

 quit()

 # Draw the top of the box

 print("*" * width)

 # Draw the sides of the box

 for i in range(height - 2):

 print("*“ + “ " * (width - 2) + "*")

 # Draw the bottom of the box

 print("*" * width)

drawBox(15, 4)

22

Functions and Classes

def drawBox(width, height, outline="*", fill=" "):

drawBox(14, 5, "@", ".")

@@@@@@@@@@@@@@

@............@

@............@

@............@

@@@@@@@@@@@@@@

Write a function drawBox that takes four arguments and draw a box.

Define a function max_of_three() that takes three numbers as
arguments and returns the largest of them.

Write a function max_in_list() that takes a list of numbers and
returns the largest one.

Write a function called FtoC (ftoc.py) to convert Fahrenheit temperatures
into Celsius. Make sure the program has a title comment. Test from the
command window with:

 FtoC(96)

Write a function (roll2dice.py) to roll 2 dice, returning two individual
variables: d1 and d2. For example:

 d1, d2 = roll2dice

23

Functions and Classes

24

• Functions

• Classes

Functions and Classes

Simple programming tasks are easily implemented as simple functions,
but as the magnitude and complexity of your tasks increase, functions
become more complex and difficult to manage. As functions become
too large, you might break them into smaller functions and pass data from
one to the other. However, as the number of functions becomes large,
designing and managing the data passed to functions becomes difficult
and error prone. At this point, you should consider moving your
programming tasks to object-oriented designs.

In the simplest sense, objects are data structures that encapsulate
some internal state, which you access via its methods. When you invoke
a method, it is the object that determines exactly what code to execute. In
fact, two objects of the same class might execute different code paths for
the same method invocation because their internal state is different. The
internal workings of the object need not be of concern to your program —
you simply use the interface the object provides.

25

Functions and Classes

26

Functions and Classes

27

Functions and Classes

In the example of a rectangle class, a superclass namely Shape can be
defined, where the superclass provides a more broadly defined class for a
shape, and rectangle a more narrowly defined class for a specific type of
shape. We can extend our example, by including the creation of Triangle
and Circle classes, which are also subclasses of the superclass Shape.

28

Functions and Classes

29

Functions and Classes

Operator Overloading
Every use of a Matlab operator, such as + - .* * ./ .\ / \ .^ ^ < > <= >= == ~
~= & | && || : ' .' [] [;] (). is actually short hand for a call to a named
function like plus(), minus(), times(), power(), lt(),
eq(), not().

We can define custom behavior for any of these operators by witting
class methods by the same name. Since class methods are dynamically
dispatched, our own versions of these functions will execute when we
use the corresponding operators with our objects. We could write our
own plus() method in the date class, for example, to add dates
together and then call the function with d1 + d2. Or, we could write
our own lt() function, (for less than) to compare dates, calling it with
d1 < d2. Such calls get converted automatically to plus(d1,d2)
and lt(d1,d2), and our own implementations of these functions are
then invoked.

30 30

A class in Python is effectively a data type. All the data types built into
Python are classes, and Python gives you powerful tools to manipulate
every aspect of a class’s behavior. You define a class with the class
statement:

class MyClass:

 body

body is a list of Python statements, typically variable assignments and
function definitions. No assignments or function definitions are required.
The body can be just a single pass statement.

By convention, class identifiers are in CapCase — that is, the first letter of

each component word is capitalized, to make them stand out.

Functions and Classes

31 31

Class instances can be used as structures or records. Unlike MATLAB, the
fields of an instance don’t need to be declared ahead of time but can be
created on the fly. The following short example defines a class called
Circle, creates a Circle instance, assigns to the radius field of the circle,
and then uses that field to calculate the circumference of the circle:

>>> class Circle:

... pass

...

>>> my_circle = Circle()

>>> my_circle.radius = 5

>>>

print('CemberinAlanı:',3.14*my_class.radius**2))

78.5

Functions and Classes

32 32

Like many other languages, the fields of an instance / structure are
accessed and assigned to by using dot notation. You can initialize fields of

an instance automatically by including an __init__ initialization method

in the class body. This function is run every time an instance of the class is
created, with that new instance as its first argument. The __init__ method
is similar to a constructor, but it doesn’t really construct anything—it
initializes fields of the class. This example creates circles with a radius of 1
by default:
class Circle:

 def __init__(self):

 self.radius = 1

my_circle = Circle()

print(2 * 3.14 * my_circle.radius)

my_circle.radius = 5

print(2 * 3.14 * my_circle.radius)

Functions and Classes

33 33

Instance variables are the most basic feature of OOP. Take a look at the
Circle class again:

class Circle:

 def __init__(self):

 self.radius = 1

radius is an instance variable of Circle instances. That is, each instance of
the Circle class has its own copy of radius, and the value stored in that
copy may be different from the values stored in the radius variable in
other instances. In Python, you can create instance variables as necessary
by assigning to a field of a class instance:

instance.variable = value

Functions and Classes

34 34

A METHOD is a function associated with a particular class. You’ve
already seen the special __init__ method, which is called on a new
instance when that instance is first created. In the following example, we
define another method, area, for the Circle class, which can be used to
calculate and return the area for any Circle instance. Like most user-
defined methods, area is called with a method invocation syntax that
resembles instance variable access:

class Circle:

 def __init__(self):

 self.radius = 1

 def area(self):

 return self.radius **2 * 3.14159

Functions and Classes

35

class Circle:

 def __init__(self):

 self.radius = 1

 def area(self):

 return self.radius **2 * 3.14159

Method invocation syntax consists of an instance, followed by a period,
followed by the method to be invoked on the instance.

>>> my_circle = Circle()

>>> print(2 * 3.14 * my_circle.radius)

>>> my_circle.radius = 5

>>> print(2 * 3.14 * my_circle.radius)

>>> print(my_circle.area())

Write a Method that calculates the circumference of the circle

Functions and Classes

36

Methods can be invoked with arguments, if the method definitions accept
those arguments. This version of Circle adds an argument to the __init__
method, so that we can create circles of a given radius without needing to
set the radius after a circle is created:

class Circle:

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius ** 2 * 3.14159

Note the two uses of radius here. self.radius is the instance variable called
radius. radius by itself is the local function variable called radius. The two
aren’t the same! In practice, we’d probably call the local function variable
something like r or rad, to avoid any possibility of confusion.

local function variable

Functions and Classes

37

All the standard Python function features—default argument values, extra
arguments, keyword arguments, and so forth—can be used with methods.
For example, we could have defined the first line of __init__ to be

def __init__(self, radius=1):

Then, calls to circle would work with or without an extra argument;
Circle() would return a circle of radius 1, and Circle(3)
would return a circle of radius 3.

Functions and Classes

A class variable is a variable associated with a class, not an instance of a
class, and is accessed by all instances of the class, in order to keep track of
some class-level information, such as how many instances of the class
have been created at any point in time. A class variable is created by an
assignment in the class body, not in the __init__ function; after it has
been created, it can be seen by all instances of the class.

class Circle:

 pi = 3.14159

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return self.radius **2 * Circle.pi

38

Functions and Classes

39

Static methods even though no instance of that class has been created,
although you can call them using a class instance. To create a static
method, use the @staticmethod decorator.
"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 all_circles = []

 pi = 3.14159

 def __init__(self, r=1):

 """Create a Circle with the given radius"""

 self.radius = r

 self.__class__.all_circles.append(self)

 def area(self):

 """determine the area of the Circle"""

 return self.__class__.pi * self.radius * self.radius

 @staticmethod

 def total_area():

 total = 0

 for c in Circle.all_circles:

 total = total + c.area()

 return total

Functions and Classes

40

>>> os.getcwd()

'C:\\Python33'

>>> os.chdir('F:\Lectures\Python')

>>> os.getcwd()

'F:\\Lectures\\Python'

>>> import circle

>>> c1 = circle.Circle(1)

>>> c2 = circle.Circle(2)

>>> c1.area()

3.14159

>>> c2.area()

12.56636

>>> c1.area() + c2.area()

15.70795

>>> circle.Circle.total_area()

15.70795

Functions and Classes

41

Class methods are similar to static methods in that they can be invoked
before an object of the class has been instantiated or by using an instance
of the class. But class methods are implicitly passed the class they belong
to as their first parameter, so you can code them more simply.
"""circle module: contains the Circle class."""

class Circle:

 """Circle class"""

 all_circles = []

 pi = 3.14159

 def __init__(self, r=1):

 """Create a Circle with the given radius"""

 self.radius = r

 self.__class__.all_circles.append(self)

 def area(self):

 """determine the area of the Circle"""

 return self.__class__.pi * self.radius * self.radius

 @classmethod

 def total_area(cls):

 total = 0

 for c in cls.all_circles:

 total = total + c.area()

 return total

The class parameter is
traditionally cls

Functions and Classes

42

>>> import circle_cm

>>> c1 = circle_cm.Circle(1)

>>> c2 = circle_cm.Circle(2)

>>> circle_cm.Circle.total_area()

15.70795

>>> c2.radius = 3

>>> circle_cm.Circle.total_area()

31.4159

>>> c1.total_area()

31.4159

>>> c2.total_area()

31.4159

By using a class method instead of a static method, we don’t have to
hardcode the class name into total_area. That means any subclasses of
Circle can still call total_area and refer to their own members, not
those in Circle.

Functions and Classes

43

Inheritance in Python is easier and more flexible than inheritance in
compiled languages such as Java and C++ because the dynamic nature of
Python doesn’t force as many restrictions on the language.

class Square:

 def __init__(self, side=1, x=0, y=0):

 self.side = side

 self.x = x

 self.y = y

class Circle:

 def __init__(self, radius=1, x=0, y=0):

 self.radius = radius

 self.x = x

 self.y = y

Functions and Classes

44

Instead of defining the x and y variables in each shape class, abstract them
out into a general Shape class, and have each class defining an actual
shape inherit from that general class.

class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 class Square(Shape):

 def __init__(self, side=1, x=0, y=0):

 super().__init__(x, y)

 self.side = side

 class Circle(Shape):

 def __init__(self, r=1, x=0, y=0):

 super().__init__(x, y)

 self.radius = r

Says Square inherits from Shape

Must call __init__ method of Shape

Functions and Classes

45

There are (generally) two requirements in using an inherited class in
Python. The first requirement is defining the inheritance hierarchy, which
you do by giving the classes inherited from, in parentheses, immediately
after the name of the class being defined with the class keyword. In the
previous code, Circle and Square both inherit from Shape. The
second and more subtle element is the necessity to explicitly call the
__init__ method of inherited classes. Python doesn’t automatically
do this for you, but you can use the super function to have Python figure
out which inherited class to use. This is accomplished in the example
code by the super().__init__(x,y) lines.

Instead of using super, we could call Shape’s __init__ by explicitly
naming the inherited class using Shape.__init__(self, x, y),
which would also call the Shape initialization function with the instance
being initialized.

Functions and Classes

46

Inheritance comes into effect when you attempt to use a method that
isn’t defined in the base classes but is defined in the superclass. To see
this, let’s define another method in the Shape class called move, which
will move a shape by a given displacement.

class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, delta_x, delta_y):

 self.x = self.x + delta_x

 self.y = self.y + delta_y

Functions and Classes

47

>>> ========================= RESTART =========================

>>> class Shape:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, delta_x, delta_y):

 self.x = self.x + delta_x

 self.y = self.y + delta_y

>>> class Circle(Shape):

 def __init__(self, r=1, x=0, y=0):

 super().__init__(x, y)

 self.radius = r

>>> c = Circle(1)

>>> c.move(3, 4)

>>> c.x

3

>>> c.y

4

Functions and Classes

