
1 

SERDAR ARITAN 
serdar.aritan@hacettepe.edu.tr 

Biyomekanik  Araştırma Grubu 
www.biomech.hacettepe.edu.tr 
Spor Bilimleri Fakültesi 
www.sbt.hacettepe.edu.tr 
Hacettepe Universitesi, Ankara, Türkiye 
www.hacettepe.edu.tr 

De Motu Animalium G.Borelli (1680) 

HAB 619 Introduction to Scientific 
Computing in Sports Science 

#6 



Any program may encounter errors during its execution. For the 
purposes of illustrating exceptions, we’ll look at the case of a 
word processor that writes files to disk and that therefore may 
run out of disk space before all of its data is written. There are 
various ways of coming to grips with this problem. 
 
SOLUTION 1: DON’T HANDLE THE PROBLEM 
The simplest way of handling this disk-space problem is to 
assume that there will always be adequate disk space for 
whatever files we write, and we needn’t worry about it. 
Unfortunately, this seems to be the most commonly used option. 
It’s usually tolerable for small programs dealing with small 
amounts of data, but it’s completely unsatisfactory for more 
mission-critical programs. 

General philosophy of errors and exception handling 

2 



3 

General philosophy of errors and exception handling 

SOLUTION 2: ALL FUNCTIONS RETURN SUCCESS/FAILURE 
STATUS 
The next level of sophistication in error handling is to realize that 
errors will occur and to define a methodology using standard 
language mechanisms for detecting and handling them. There 
are various ways of doing this, but a typical one is to have each 
function or procedure return a status value that indicates if that 
function or procedure call executed successfully. Normal results 
can be passed back in a call-by-reference parameter. 
 



SOLUTION 3: THE EXCEPTION MECHANISM 
It’s obvious that most of the error-checking code in the previous 
type of program is largely repetitive: it checks for errors on each 
attempted file write and passes an error status message back up 
to the calling procedure if an error is detected. The disk space 
error is handled in only one place, the top-level save_to_file. 
function save_to_file(filename) 

 try to execute the following block 

  save_text_to_file(filename) 

  save_formats_to_file(filename) 

  save_prefs_to_file(filename) 

. . . . 
 except that, if the disk runs out of space while 
 executing the above block, do this 
 ...handle the error... 

4 

General philosophy of errors and exception handling 



5 

General philosophy of errors and exception handling 

The act of generating an exception is called raising or throwing 
an exception. The act of responding to an exception is called 
catching an exception, and the code that handles an exception is 
called exception-handling code, or just an exception handler. 
Depending on exactly what event causes an exception, a 
program may need to take different actions. For example, an 
exception raised when disk space is exhausted needs to be 
handled quite differently from an exception that is raised if we 
run out of memory, and both are completely different from an 
exception that arises when a divide-by-zero error occurs. 
 



General philosophy of errors and exception handling 

Like everything else in Python, an exception is an object. It’s 
generated automatically by Python functions with a raise 
statement. After it’s generated, the raise statement, which raises 
an exception, causes execution of the Python program to 
proceed in a manner different than would normally occur. 
Instead of proceeding with the next statement after the raise, or 
whatever generated the exception, the current call chain is 
searched for a handler that can handle the generated exception. 
If such a handler is found, it’s invoked and may access the 
exception object for more information. If no suitable exception 
handler is found, the program aborts with an error message. 
 

6 



General philosophy of errors and exception handling 

Types of Python exceptions: It’s possible to generate different 
types of exceptions to reflect the actual cause of the  error or 
exceptional circumstance being reported. Python provides a 
number of different exception types: 
 

7 

BaseException 

  SystemExit 

  KeyboardInterrupt 

  GeneratorExit 

  Exception 

    StopIteration 

    ArithmeticError 

      FloatingPointError 

      OverflowError 

      ZeroDivisionError  

  AssertionError 

  AttributeError 

  BufferError 

EnvironmentError 

  IOError 

  OSError 

   WindowsError (Windows) 

   VMSError (VMS) 

EOFError 

ImportError 

LookupError 

  IndexError 

  KeyError 

MemoryError 

NameError 

  UnboundLocalError 

ReferenceError 

RuntimeError 

  NotImplementedError 

SyntaxError 

  IndentationError 

    TabError 

SystemError 

TypeError 

ValueError 

  UnicodeError 

    UnicodeDecodeError 

    UnicodeEncodeError 

    UnicodeTranslateError 

 



Exception Handling 

Different exception types 

8 



Exception Handling 

9 

Value Error : input only number example 



Exception Handling 

10 

ZeroDivisionError  



Exception Handling 

11 

ZeroDivisionError  



Exception Handling 

12 

IOError and ValueError  



try Statement 

13 

      The try statement has another optional clause which is 
intended to define  clean-up actions that must be executed 
under all circumstances. For example: 

A finally clause is always executed before leaving the try 
statement, whether an exception has occurred or not.  



try Statement 

14 

As you can see, the finally clause is executed in any event. In 
real world applications, the finally clause is useful for 
releasing external resources (such as files or network 
connections), regardless of whether the use of the resource was 
successful. 



try Statement 

15 



def action2(): 

    print(1 + []) # Generate TypeError 

 

 

def action1(): 

    try: 

        action2() 

    except TypeError: # Most recent matching try 

        print('inner try') 

 

try: 

    action1() 

except TypeError: # Here, only if action1 re-raises 

    print('outer try') 

Nested try/catch Statement 
 

16 



Nested try/catch Statement 
 

17 



Nested try/catch Statement 
 

18 

when an exception is raised (by you or by Python), control jumps 
back to the most recently entered try statement with a matching 
except clause, and the program resumes after that try 
statement. except clauses intercept and stop the exception—
they are where you process and recover from exceptions. 



Nested try/catch Statement 
 

19 

when an exception is raised here, control returns to the most 
recently entered try to run its finally statement, but then the 
exception keeps propagating to all finallys in all active try 
statements and eventually reaches the default top-level handler, 
where an error message is printed. finally clauses intercept (but 
do not stop) an exception—they are for actions to be performed 
“on the way out.” 



Changing directory  

20 

Hint : Changing directory is comes in very handy when working in the 
Python interpreter: 
 

>>> import os 

>>> os.getcwd() # Returns the current working directory 

'C:\\Python39' 

# usually the directory you were in when you started the 

interpreter 

 

>>> os.chdir('/path/to/directory‘)) 

 # Change the current working directory to 

'path/to/directory' 



Working With Files 

21 

Python provides a built-in function open to open a file, which 
returns a file object 
 
f = open('foo.txt', 'r') # open a file in read mode 

f = open('foo.txt', 'w') # open a file in write mode 

f = open('foo.txt', 'a') # open a file in append mode  

 

'b' appended to the mode opens the file in binary mode: 
'rb', 'wb', 'ab' should be used to open a binary file in 
read, write and append mode respectively. This mode should be 
used for all files that don’t contain text. 
open(filename, mode) 

The mode argument is optional; 'r' will be assumed if it’s 
omitted. 



Working With Files 

22 



Working With Files 

23 

Easiest way to read contents of a file is by using the read method. 
>>> open('foo.txt').read() 

'birinci satir\nikinci satir\nüçüncü satir‘ 

>>> f.close()  

 

>>> print(open('foo.txt').read()) 

>>>  

birinci satir 

ikinci satir 

üçüncü satir 

>>> 

Contents of a file can be read line-wise using readline and readlines 
methods.  
>>> open('foo.txt').readlines() 

['birinci satir\n', 'ikinci satir\n', 'üçüncü satir'] 



Working With Files 

24 

The readline method returns empty string when there is 
nothing more to read in a file. 
 
>>> f = open('foo.txt') 

>>> f.readline() 

'birinci satir\n’ 

>>> f.readline() 

'ikinci satir\n'  

>>> f.readline() 

'üçüncü satir\n’'  

>>> f.readline()  

‘ ’ 

>>> f.close()  



Working With Files 

25 

The write method is used to write data to a file opened in write or append 
mode 

 
>>> f = open('fooyaz.txt','w') 

>>> f.write('a\nb\nc') 

>>> f.close() 



Working With Files 

26 

The writelines method is convenient to use when the data is 
available as a list of lines. 
 
>>> f = open('fooyaz.txt',‘a') 

>>> f.writelines(['a\n', 'b\n', 'c\n‘]) 

>>> f.close() 



Working With Files 

27 

Lets try to compute the number of characters, words and lines in 
a file.  
 
Number of characters in a file is same as the length of its contents. 
>>>def charcount(filename): 

 return len(open(filename).read()) 

 
Number of words in a file can be found by splitting the contents of the file. 
>>>def wordcount(filename): 

 return len(open(filename).read().split()) 

 

Number of lines in a file can be found from readlines method 
>>>def linecount(filename): 

 return len(open(filename).readlines() 



Working With Files 

28 

>>> import os 

>>> os.getcwd() 

'C:\\WPy64-3920\\Notebooks' 

>>> os.chdir(‘C:\Lectures\HAB619') 

>>> charcount(‘rapor.txt') 

3206 

>>> wordcount(‘rapor.txt') 

205 

>>> linecount(‘rapor.txt') 

13 

>>>  


