SBT 645 Introduction to Scientific Computing in Sports Science

#8

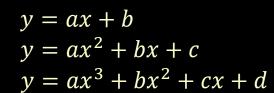
SERDAR ARITAN

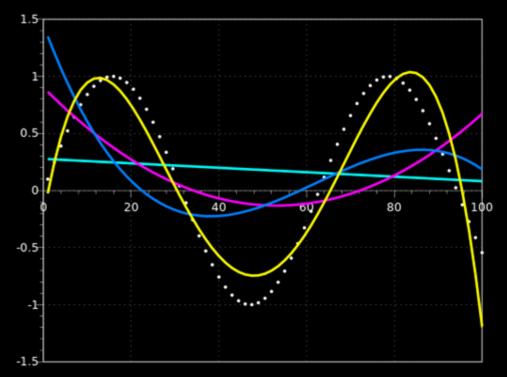
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu www.biomech.hacettepe.edu.tr Spor Bilimleri Fakültesi www.sbt.hacettepe.edu.tr Hacettepe Universitesi, Ankara, Türkiye www.hacettepe.edu.tr

Most commonly, one fits a function of the form y=f(x).

First degree polynomial equation Second degree polynomial equation Third degree polynomial equation





Polynomial curves fitting points generated with a sine function.

Cyan line is a first degree polynomial, purple line is second degree, blue line is third degree and yellow is fourth degree.

An nth order polynomial in variable x is written as

$$p(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_n x + a_{n+1}$$

It is natural to associate a row vector A_p with p, namely

$$A_p = \begin{bmatrix} a_1 & a_2 & \cdots & a_n & a_{n+1} \end{bmatrix}$$

A few examples: Row vector representations of

$$p(x) = 6x^3 + 5x^2 - 3x + 7$$
 $q(x) = 9x^2 - 2x + 4$

are

>>> p = P.Polynomial([6, 5, -3, 7])
>>> q = P.Polynomial([9, -2, 4])
at [0 0 0 9 -2 4] also represents
$$q$$
...

- Polynomial addition
- Polynomial subtraction
- Polynomial multiplication
- Polynomial evaluation (use polyval)
- Plotting the graph of a polynomial
- Roots of a polynomial (use roots)

The inputs to the functions will be row vectors, representing polynomials.

Adding two polynomials requires adding their coefficients. The sum of

$$a_1 x^n + a_2 x^{n-1} + \dots + a_n x + a_{n+1}$$

$$b_1 x^n + b_2 x^{n-1} + \dots + b_n x + b_{n+1}$$

is simply

$$(a_1 + b_1)x^n + (a_2 + b_2)x^{n-1} + \dots + (a_n + b_n)x + (a_{n+1} + b_{n+1})$$

In terms of the row-vector representation of the polynomials, we simply add them, element-by-element.

But the row vectors may be different lengths, and we need to "align" them.

The row vector representations of

$$a(x) = 6x^3 + 5x^2 - 3x + 7$$
$$b(x) = 9x^2 + 2x - 4$$

Are

```
import numpy as np

P = np.polynomial
a = P.Polynomial([6, 5, -3, 7])
b = P.Polynomial([0, 9, 2, -4])

print(np.polyadd(a, b)
[Polynomial([6., 14., -1., 3.], domain=[-1., 1.], window=[-1., 1.])]
```


Multiplying

$$a(x) = 6x^3 + 5x^2 - 3x + 7$$

$$b(x) = 3x^2 + 2x - 4$$

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4)$$

$$\mathsf{C}$$

Multiplying

$$a(x) = 6x^3 + 5x^2 - 3x + 7$$

$$a(x) = 6x^3 + 5x^2 - 3x + 7$$

$$b(x) = 3x^2 + 2x - 4$$

$$A = [6 \ 5 \ -3 \ 7]$$

$$B = [3 \ 2 \ -4]$$

Express the product as

$$(6x^3 + 5x^2 - 3x + 7)(3x^2 + 2x - 4) =$$

$$(6x^3 + 5x^2 - 3x + 7)*3x^2$$

$$+(6x^3+5x^2-3x+7)*2x$$

$$+(6x^3+5x^2-3x+7)*(-4)$$

$$C = [$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add } A*B(1) \text{ to } C(1:4)$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4)$$

$$C = [0 0 0 0 0 0 0]$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add A*B(1) to C(1:4)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4)$$

$$C = [18 \ 15 \ -9 \ 21 \ 0 \ 0]$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add A*B(1) to C(1:4)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x \quad \text{add A*B(2) to C(2:5)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4)$$

$$C = [18 \ 15 \ -9 \ 21 \ 0 \ 0]$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add A*B(1) to C(1:4)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x \quad \text{add A*B(2) to C(2:5)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4)$$

$$C = [18 27 1 15 14 0]$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add } A*B(1) \text{ to } C(1:4)$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x \quad \text{add } A*B(2) \text{ to } C(2:5)$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4) \quad \text{add } A*B(3) \text{ to } C(3:6)$$

$$C = [18 27 1 15 14 0]$$

Multiplying

Express the product as

$$(6x^{3} + 5x^{2} - 3x + 7)(3x^{2} + 2x - 4) =$$

$$(6x^{3} + 5x^{2} - 3x + 7)*3x^{2} \quad \text{add A*B(1) to C(1:4)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*2x \quad \text{add A*B(2) to C(2:5)}$$

$$+ (6x^{3} + 5x^{2} - 3x + 7)*(-4) \quad \text{add A*B(3) to C(3:6)}$$

$$C = [18 27 -23 -5 26 -28]$$

```
import numpy as np

NumPy P = np.polynomial

a = P.Polynomial([6, 5, -3, 7])
b = P.Polynomial([0, 3, 2, -4])

print(np.polymul(a, b))

[Polynomial([0, 18, 27, -23, -5, 26, -28], domain=[-1, 1], window=[-1, 1])]
```


Use the numpy function polyval

```
import numpy as np
P = np.polynomial
x = 2.6
y = P.polynomial.polyval(x, [6, 5, -3, 7])
```

polyval works for vectors too

```
import numpy as np

P = np.polynomial

x = np.linspace(-3,3,200)

y = P.polynomial.polyval(x, [6, 5, -3, 7])
```


An nth order polynomial (with nonzero leading coefficient)

$$p(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_n x + a_{n+1}$$

It is a fundamental theorem of algebra that the equation

$$p(x) = 0$$

has **n** solutions, called the <u>roots of p</u>. Label these roots r_1 , r_2 , ..., r_n . Another way to say this is that **p** can be factored into the for

$$p(x) = a_1(x-r_1)(x-r_2)\cdots(x-r_n)$$

Even if the coefficients of **p** are real numbers, the roots may be complex.

The command **roots** computes the roots of a polynomial, and returns them as a column vector.

Compute the roots of

$$p(x) = x^{2} + x - 2$$

$$q(x) = x^{2} + 3x + 5$$

$$v(x) = 2x^{4} - x^{3} + 4x^{2} + x - 3$$

import numpy as np

P = np.polynomial

```
print(P.polynomial.polyroots([1, 1, -2]))
print(P.polynomial.polyroots([1, 3, 5]))
print(P.polynomial.polyroots([2, -1, 4, 1, -3]))
```


Consider *n* equations in *m* unknowns.

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1m}x_m = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2m}x_m = b_2$$

$$\vdots$$

$$A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nm}x_m = b_n$$

Think of the A_{ij} as known coefficients, and the b_i as known numbers. The goal is to solve for all of the unknowns x_i

Example of Linear Equations

Intersection of two lines

Simple truss structures

- Consist of beams
- Frictionless "pin" joints

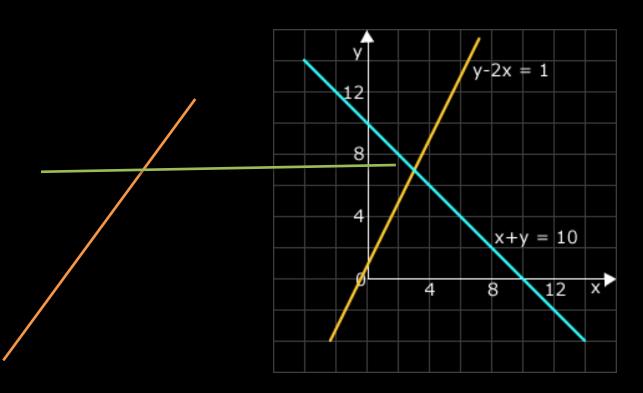
Heat Transfer through conductive material

Electrical current flow through resistive network

Getting proper balance of nutrients from selection of foods

Example of Linear Equations

Intersection of two lines



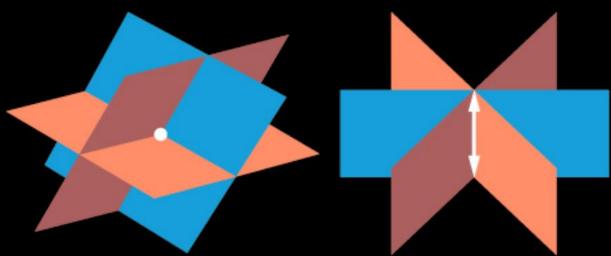
$$y - 2x = 1$$

$$y + x = 10$$

Example of Linear Equations

Intersection of three planes

Ax + By + Cz = D $\mathbf{E}y + Fz = G$ Hz = K



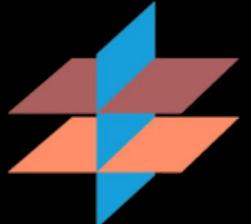
Three planes intersect at a single point, representing three-by-three system with a single solution.

Three planes intersect in a line, representing a three-by-three system with infinite solutions

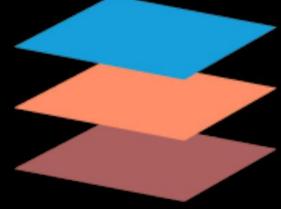
Example of Linear Equations

Intersection of three planes

The three planes intersect with each other, but not at a common point.

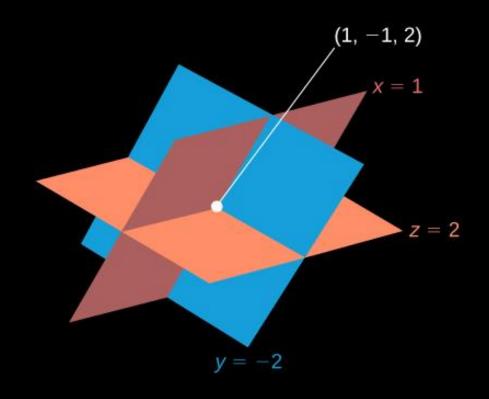


Two of the planes are parallel and intersect with the third plane, but not with each other.



All three planes are parallel, so there is no point of intersection.

Example of Linear Equations Intersection of three planes



$$x - 2y + 3z = 9$$

 $-x + 3y - z = -6$
 $2x - 5y + 5z = 17$

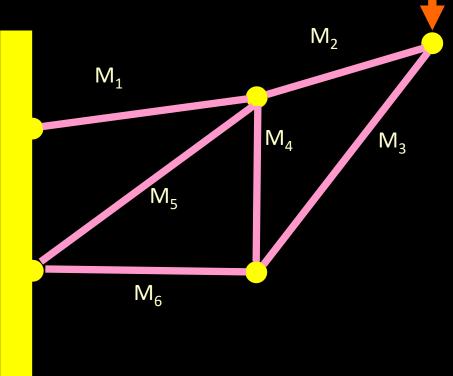
```
import numpy as np
my matrix = np.array([[1, -2, 3],
                      [-1, 3, -1]
                      [2, -5, 5]])
my vector = np.array([9, -6, 17])
solution = np.linalg.solve(my matrix, my vector)
print('Solution is x , y , z = ' , solution )
# Alternative method
solution1 = np.matmul(np.linalg.inv(my matrix), my vector)
print('Solution is x1 , x2 , x3 by inv [ A ]* y = ', solution1)
Solution is x, y, z = [1. -1. 2.]
Solution is x1, x2, x3 by inv [A]* y = [1. -1. 2.]
```

```
import numpy as np
A = np.array([[2, -3, 1],
                                             \begin{cases} 2x - 3y + z = -1 \\ x - y + 2z = -3 \\ 3x + y - z = 9 \end{cases}
               [1, -1, 2],
               [3 , 1 ,-1]])
b = np.array([-1, -3, 9])
solution 1 = np.linalg.solve(A, b)
print('Solution1 is x , y , z = ' , solution1 )
# Alternative method
solution2 = np.dot(np.linalg.inv(A), b)
print('Solution2 is x1 , x2 , x3 by inv [ A ]* y = ', solution2)
print('Determinant of A ', np.linalg.det(A))
Solution 1 is x, y, z = [2.1. -2.]
Solution 2 is x1, x2, x3 by inv [A]* y = [2.1. -2.]
Determinant of A -19.000000000000004
```

Solving Linear Equations With No Solution

```
import numpy as np
                                      x - y + 4z = -5
A = np.array([[1, -1, 4],
             [0 , 0 , 1] ,
             [-1, 1, -4]]
                                   -x + y - 4z = 20
b = np.array([-5, 0, 20])
solution1 = np.linalq.solve(A, b)
print('Determinant of A ', np.linalg.det(A))
print('Solution1 is x , y , z = ' , solution1 )
# Alternative method
solution2 = np.dot(np.linalg.inv(A), b)
print('Solution2 is x1 , x2 , x3 by inv [ A ]* y = ', solution2)
Determinant of A 0.0
LinAlgError: Singular matrix
```


Truss members are beams held together with pin joints (no welding – drill a hole in each beam, push pin through).



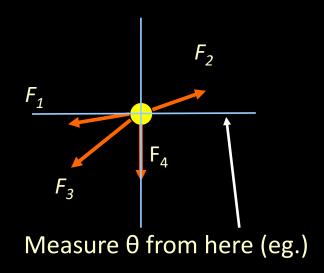
Pins transfer force between beams. If the truss is in equilibrium, all forces acting on a pin must sum to zero.

Simple truss analysis: Basic Concepts

Beams only have a force acting at each end, no moments. These are called 2-force members. If the truss is in eqilibrium, total force on beam must be 0, and there cannot be a torque on the beam.

Force balance on a pin

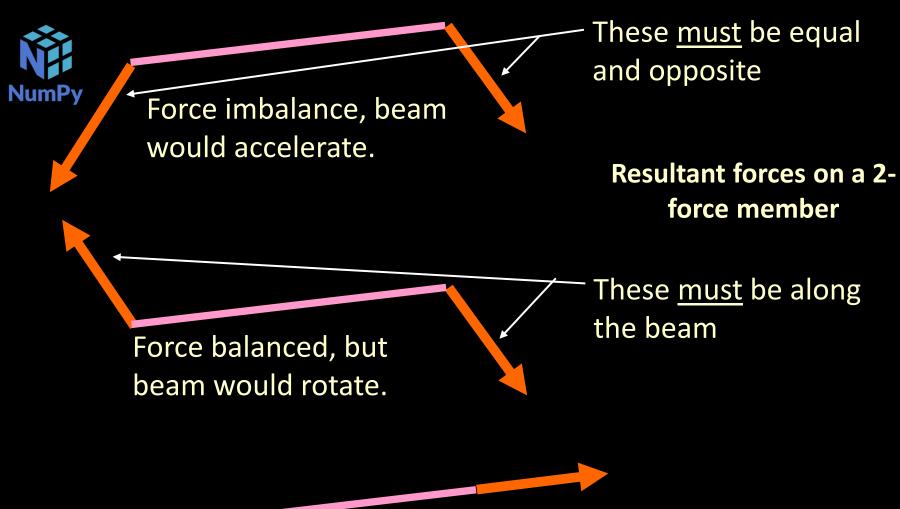
Draw a free-body diagram of a given pin. The forces acting on it are the forces from the members (Newton's 3rd law)



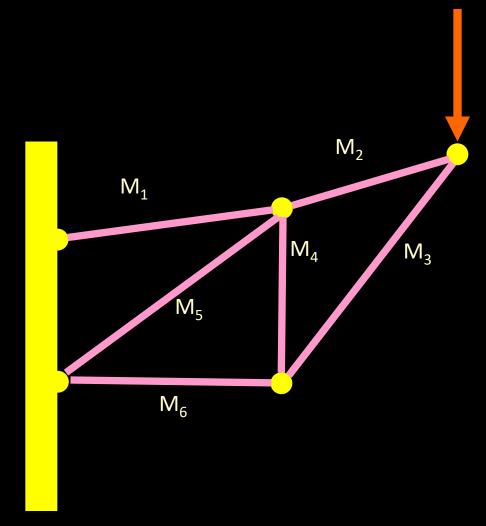
Sum forces on pin in horizontal and vertical directions. For equilibrium, forces must sum to zero.

$$F_{1} \cos \theta_{1} + F_{2} \cos \theta_{2} + F_{3} \cos \theta_{3} + F_{4} \cos \theta_{4} = 0$$

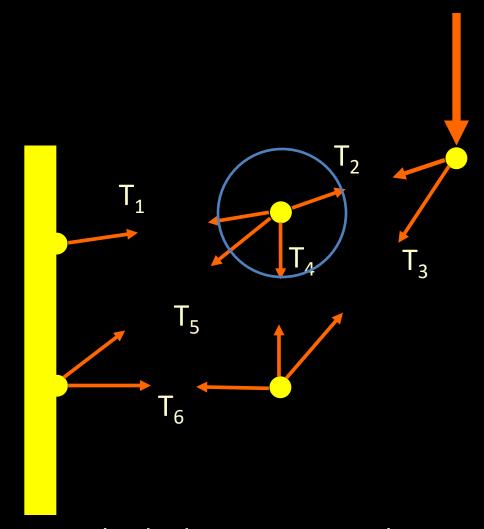
$$F_{1} \sin \theta_{1} + F_{2} \sin \theta_{2} + F_{3} \sin \theta_{3} + F_{4} \sin \theta_{4} = 0$$



2-force member under load, in equilibrium

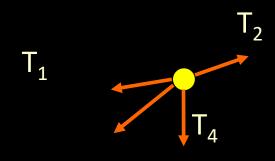


Let T_i be the force in member M_i .



Free-body diagrams on each pin

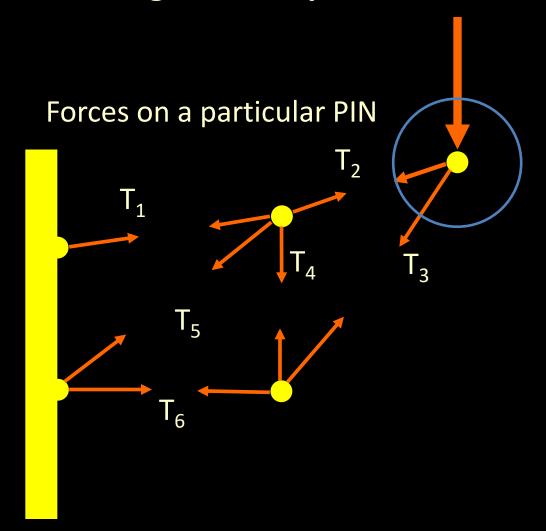
Force balance on a pin

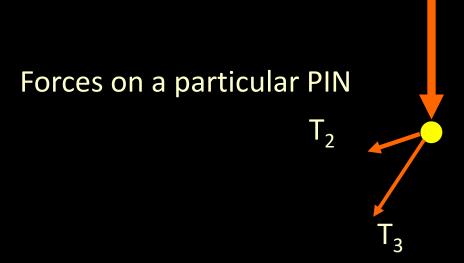


Sum forces on pin in horizontal and vertical directions

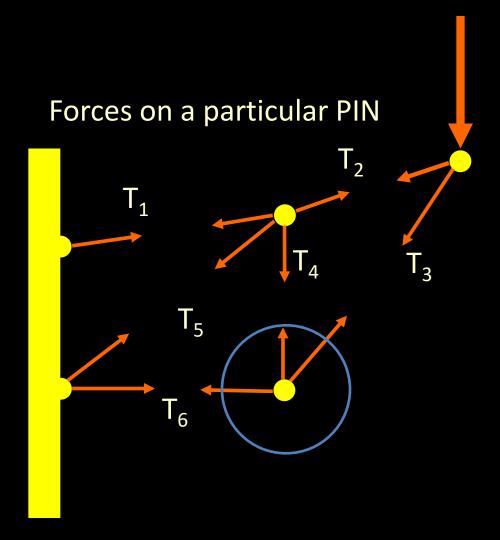
$$T_1 \cos \theta_1 + T_2 \cos \theta_2 + T_4 \cos \theta_4 + T_5 \cos \theta_5 = 0$$

$$T_1 \sin \theta_1 + T_2 \sin \theta_2 + T_4 \sin \theta_4 + T_5 \sin \theta_5 = 0$$





$$T_2 \cos \phi_2 + T_3 \cos \phi_3 = 0$$
$$-P + T_2 \sin \phi_2 + T_3 \sin \phi_3 = 0$$

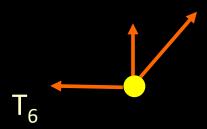


$$T_3 \cos \psi_3 + T_4 \cos \psi_4 + T_6 \cos \psi_6 = 0$$

$$T_3 \sin \psi_3 + T_4 \sin \psi_4 + T_6 \sin \psi_6 = 0$$

Forces on a particular PIN

 T_4 T_3



$$T_{3}\cos\psi_{3} + T_{4}\cos\psi_{4} + T_{6}\cos\psi_{6} = 0$$

$$T_{3}\sin\psi_{3} + T_{4}\sin\psi_{4} + T_{6}\sin\psi_{6} = 0$$

$$T_{2}\cos\phi_{2} + T_{3}\cos\phi_{3} = 0$$

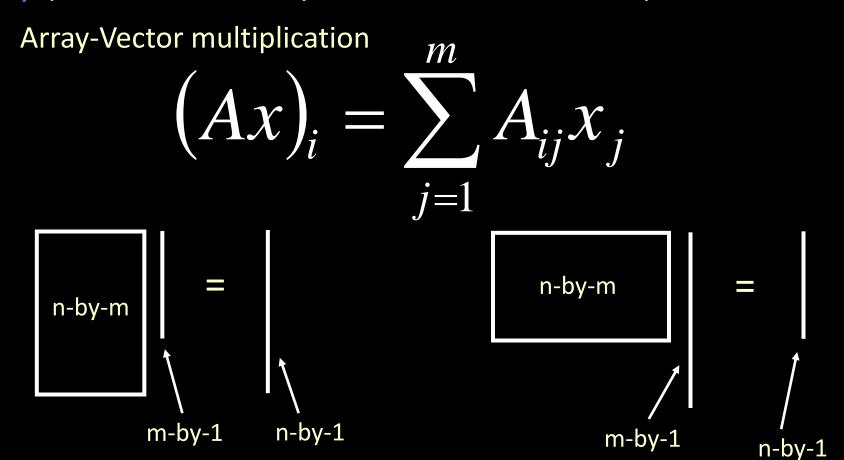
$$-P + T_{2}\sin\phi_{2} + T_{3}\sin\phi_{3} = 0$$

$$T_1 \cos \theta_1 + T_2 \cos \theta_2 + T_4 \cos \theta_4 + T_5 \cos \theta_5 = 0$$

$$T_1 \sin \theta_1 + T_2 \sin \theta_2 + T_4 \sin \theta_4 + T_5 \sin \theta_5 = 0$$

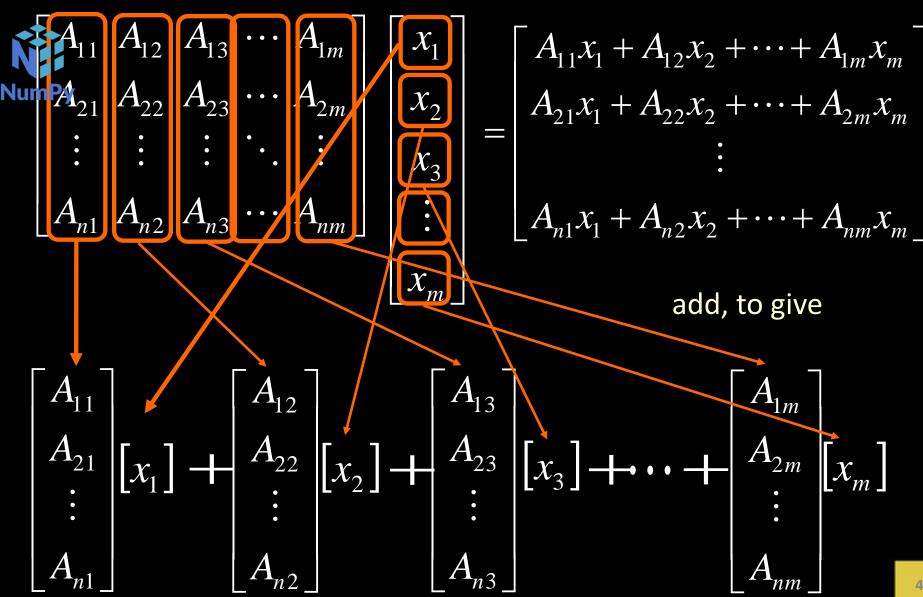
If geometry is fixed, and external load is known, then this is 6 equations, 6 unknowns. We need some "good notation" for linear equations....

If A is an n-by-m array, and x is an m-by-1 vector, then the NumPy "product Ax" is a n-by-1 vector, whose i'th component is



If A is an n-by-m array, and x is an m-by-1 vector, then the NumPy "product Ax" is a n-by-1 vector, whose i'th component is

$$Ax = \begin{bmatrix} (Ax)_{1} \\ (Ax)_{2} \\ \vdots \\ (Ax)_{n} \end{bmatrix} = \begin{bmatrix} A_{11}x_{1} + A_{12}x_{2} + \dots + A_{1m}x_{m} \\ A_{21}x_{1} + A_{22}x_{2} + \dots + A_{2m}x_{m} \\ \vdots \\ A_{n1}x_{1} + A_{n2}x_{2} + \dots + A_{nm}x_{m} \end{bmatrix}$$
$$(Ax)_{i} = \sum_{j=1}^{m} A_{ij}x_{j}$$



Consider *n* equations in *m* unknowns.

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1m}x_m = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2m}x_m = b_2$$

•

$$A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nm}x_m = b_n$$

Collect

- The A_{ij} into an n-by-m array called A
- The b_i into a n-by-1 vector called b_i , and
- The x_i into an m-by-1 vector called x

Then the equations above can be written concisely as

matrix/vector multiply
$$Ax = b$$
vector equality

For the equation Ax=b, there are 3 distinct cases

Square, equal number of unknowns and equations

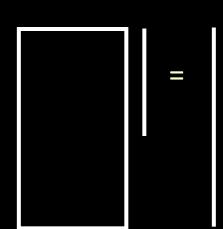


Overdetermined: fewer unknowns than

equations

Underdetermined:

more unknowns than equations



Types of solutions

One solution (eg., 2 lines intersect at one point)

=

=

Infinite solutions

(eg., 2 planes intersect at many points)

No solutions (eg., 3 lines don't intersect at a point)

$$T_{3}\cos\psi_{3} + T_{4}\cos\psi_{4} + T_{6}\cos\psi_{6} = 0$$

$$T_{3}\sin\psi_{3} + T_{4}\sin\psi_{4} + T_{6}\sin\psi_{6} = 0$$

$$T_{2}\cos\phi_{2} + T_{3}\cos\phi_{3} = 0$$

$$-P + T_{2}\sin\phi_{2} + T_{3}\sin\phi_{3} = 0$$

$$T_1 \cos \theta_1 + T_2 \cos \theta_2 + T_4 \cos \theta_4 + T_5 \cos \theta_5 = 0$$

$$T_1 \sin \theta_1 + T_2 \sin \theta_2 + T_4 \sin \theta_4 + T_5 \sin \theta_5 = 0$$

If geometry is fixed, and external load is known, then this is 6 equations, 6 unknowns.

$$T_3 \cos \psi_3 + T_4 \cos \psi_4 + T_6 \cos \psi_6 = 0$$

$$T_3 \sin \psi_3 + T_4 \sin \psi_4 + T_6 \sin \psi_6 = 0$$

$$T_2\cos\phi_2 + T_3\cos\phi_3 = 0$$

$$-P + T_2 \sin \phi_2 + T_3 \sin \phi_3 = 0$$

$$T_{1}\cos\theta_{1} + T_{2}\cos\theta_{2} + T_{4}\cos\theta_{4} + T_{5}\cos\theta_{5} = 0$$

$$T_{1}\sin\theta_{1} + T_{2}\sin\theta_{2} + T_{4}\sin\theta_{4} + T_{5}\sin\theta_{5} = 0$$

In matrix/vector form

