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Polynomial curves fitting 
points generated with a sine 
function. 
 
Cyan line is a first degree 
polynomial, purple line is 
second degree, blue line is 
third degree and yellow is 
fourth degree. 

Polynomials 
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Most commonly, one fits a function of the form y=f(x). 
First degree polynomial equation 
Second degree polynomial equation 
Third degree polynomial equation 

𝑦 = 𝑎𝑥 + 𝑏 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 
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Polynomials 

1

1
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It is natural to associate a row vector Ap with p, namely 

 

 

A few examples: Row vector representations of 

 

are 

 >>> p = P.Polynomial([6, 5, -3, 7]) 

 >>> q = P.Polynomial([9, -2, 4]) 

But [ 0  0  0  9  -2  4 ] also represents q… 

 121  nnp aaaaA 

7356)( 23  xxxxp 429)( 2  xxxq

“leading zeros” 

An nth order polynomial in variable x is written as 
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Polynomials 

– Polynomial addition 

– Polynomial subtraction 

– Polynomial multiplication 

– Polynomial evaluation (use polyval) 

– Plotting the graph of a polynomial 

– Roots of a polynomial (use roots) 

 

The inputs to the functions will be row vectors, representing 
polynomials. 
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Polynomials 

Adding two polynomials requires adding their coefficients.  
The sum of 

1
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is simply 
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In terms of the row-vector representation of the polynomials, we 
simply add them, element-by-element. 

But the row vectors may be different lengths, and we need to 
“align”  them. 



6 

Polynomials 

The row vector representations of 

7356)( 23  xxxxa

429)( 2  xxxb
Are 
import numpy as np 

 

P = np.polynomial 

a = P.Polynomial([6, 5, -3, 7]) 

b = P.Polynomial([0, 9, 2, -4]) 

 

print(np.polyadd(a, b) 

[Polynomial([ 6., 14., -1., 3.], domain=[-1.,  1.], window=[-1.,  1.])] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7              

 b(x) = 3x2 + 2x – 4                      

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2      

    + (6x3 + 5x2 – 3x + 7)*2x     

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  0   0   0   0   0   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2      

    + (6x3 + 5x2 – 3x + 7)*2x     

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  0   0   0   0   0   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x     

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  0   0   0   0   0   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x     

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  18  15  -9  21   0   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x        add  A*B(2) to C(2:5) 

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  18  15  -9  21   0   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x        add  A*B(2) to C(2:5) 

    + (6x3 + 5x2 – 3x + 7)*(-4)  

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  18  27   1  15  14   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x        add  A*B(2) to C(2:5) 

    + (6x3 + 5x2 – 3x + 7)*(-4)      add  A*B(3) to C(3:6) 

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  18  27   1  15  14   0 ] 
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Polynomials 

Multiplying 

 a(x) = 6x3 + 5x2 – 3x + 7             A = [6 5 -3 7]  

 b(x) = 3x2 + 2x – 4                       B = [3 2 -4] 

Express the product as 

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =  

       (6x3 + 5x2 – 3x + 7)*3x2       add  A*B(1) to C(1:4) 

    + (6x3 + 5x2 – 3x + 7)*2x        add  A*B(2) to C(2:5) 

    + (6x3 + 5x2 – 3x + 7)*(-4)      add  A*B(3) to C(3:6) 

The result is 5th order, so we need a 1-by-6 array for the 
result 

 C = [  18  27  -23  -5  26  -28 ] 
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Polynomials 
import numpy as np 

 

P = np.polynomial 

 

a = P.Polynomial([6, 5, -3, 7]) 

b = P.Polynomial([0, 3, 2, -4]) 

 

print(np.polymul(a, b)) 

 
[Polynomial([ 0., 18., 27., -23., -5., 26., -28.], domain=[-1.,1.],window=[-1., 1.])] 
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Polynomials 

Use the numpy function polyval 
import numpy as np 

 

P = np.polynomial 

x = 2.6 

y = P.polynomial.polyval(x, [6, 5, -3, 7]) 

 

polyval works for vectors too 
import numpy as np 

 

P = np.polynomial 

x = np.linspace(-3,3,200) 

y = P.polynomial.polyval(x, [6, 5, -3, 7]) 
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Polynomials 

An nth order polynomial (with nonzero leading coefficient) 

1

1

21)( 

  nn
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It is a fundamental theorem of algebra that the equation 

 

has n solutions, called the roots of p.  Label these roots r1, r2, … , 
rn.  Another way to say this is that p can be factored into the for 

 

 

Even if the coefficients of p are real numbers, the roots may be 
complex. 

0)( xp
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Polynomials 

The command roots computes the roots of a polynomial, and 
returns them as a column vector. 

Compute the roots of  
 

 

 

 

 

 

 
import numpy as np 

 

P = np.polynomial 

 

print(P.polynomial.polyroots([1, 1, -2])) 

print(P.polynomial.polyroots([1, 3, 5])) 

print(P.polynomial.polyroots([2, -1, 4, 1, -3])) 

53)( 2  xxxq

342)( 234  xxxxxv

2)( 2  xxxp
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Solving Linear Equations 
 

nmnmnn

mm

mm

bxAxAxA

bxAxAxA

bxAxAxA















2211

22222121

11212111

Consider n equations in m unknowns. 

 

 

 

 

 
 

 

Think of the Aij as known coefficients, and the bi as known 
numbers.  The goal is to solve for all of the unknowns xj 
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Solving Linear Equations 
 

Example of Linear Equations 

Intersection of two lines 

Simple truss structures 

– Consist of beams 

– Frictionless “pin” joints 

Heat Transfer through conductive material 

Electrical current flow through resistive network 

Getting proper balance of nutrients from selection of foods  

 



21 

Solving Linear Equations 
 

Example of Linear Equations 

Intersection of two lines 

 𝑦 − 2𝑥 = 1 

𝑦 + 𝑥 = 10 
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Solving Linear Equations 
 

Example of Linear Equations 

Intersection of three planes 

 

Three planes intersect at a 
single point, representing a 
three-by-three system with a 
single solution. 

Three planes intersect in a line, 
representing a three-by-three 
system with infinite solutions 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐷 

E𝑦 + 𝐹𝑧 = 𝐺 

H𝑧 = 𝐾 
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Solving Linear Equations 
 

Example of Linear Equations 

Intersection of three planes 

 

The three planes 
intersect with 
each other, but 
not at a common 
point. 

Two of the planes 
are parallel and 
intersect with the 
third plane, but not 
with each other. 

All three planes are 
parallel, so there is 
no point of 
intersection. 



𝑥 − 2𝑦 + 3𝑧 = 9 
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Solving Linear Equations 
 

Example of Linear Equations 

Intersection of three planes 

 

−𝑥 + 3𝑦 −   𝑧 = −6 

2𝑥 − 5𝑦 + 5𝑧 =17 



import numpy as np 

 

my_matrix = np.array([[1 , -2 , 3] , 

                       [-1 , 3 , -1] , 

                       [2 , -5 , 5]]) 

 

my_vector = np.array([9 , -6 , 17]) 

 

solution = np.linalg.solve(my_matrix, my_vector) 

print('Solution is x , y , z = ' , solution ) 

 

# Alternative method 

solution1 = np.matmul(np.linalg.inv(my_matrix ), my_vector) 

print('Solution is x1 , x2 , x3 by inv [ A ]* y = ', solution1) 

 

Solution is x , y , z =  [ 1. -1.  2.] 

Solution is x1 , x2 , x3 by inv [ A ]* y =  [ 1. -1.  2.] 
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Solving Linear Equations 
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Solving Linear Equations 
 

import numpy as np 

 

A = np.array([[2 , -3 , 1] , 

              [1 , -1 , 2] , 

              [3 ,  1 ,-1]]) 

 

b = np.array([-1 , -3 , 9]) 

 

solution1 = np.linalg.solve(A, b) 

print('Solution1 is x , y , z = ' , solution1 ) 

# Alternative method 

solution2 = np.dot(np.linalg.inv(A ), b) 

print('Solution2 is x1 , x2 , x3 by inv [ A ]* y = ', solution2) 

print('Determinant of A ', np.linalg.det(A)) 

Solution1 is x , y , z =  [ 2. 1.  -2.] 

Solution2 is x1 , x2 , x3 by inv [ A ]* y =  [ 2. 1.  -2.] 

Determinant of A  -19.000000000000004 
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Solving Linear Equations With No Solution 
 

import numpy as np 

 

A = np.array([[1 , -1 , 4] , 

              [0 ,  0 , 1] , 

              [-1,  1 ,-4]]) 

 

b = np.array([-5 , 0 , 20]) 

 

solution1 = np.linalg.solve(A, b) 

print('Determinant of A ', np.linalg.det(A)) 

 

print('Solution1 is x , y , z = ' , solution1 ) 

# Alternative method 

solution2 = np.dot(np.linalg.inv(A ), b) 

print('Solution2 is x1 , x2 , x3 by inv [ A ]* y = ', solution2) 

Determinant of A  0.0 

LinAlgError: Singular matrix 
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Solving Linear Equations 
 

Simple truss analysis: 
Basic Concepts  

M4 

M5 

M1 

M6 

M2 

M3 

Truss members are beams 
held together with pin joints 
(no welding – drill a hole in 
each beam, push pin through). 

Beams only have a force acting 
at each end, no moments.  
These are called 2-force 
members. If the truss is in 
eqilibrium, total force on beam 
must be 0, and there cannot be 
a torque on the beam. 

Pins transfer force between 
beams.  If the truss is in 
equilibrium, all forces acting 
on a pin must sum to zero. 
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Solving Linear Equations 
 

Force balance on a pin 

F4 

F3 

F1 

F2 

0sinsinsinsin

0coscoscoscos

44332211
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



FFFF

FFFF

Sum forces on pin in horizontal and vertical directions.  For 
equilibrium, forces must sum to zero. 

Draw a free-body diagram of a given 
pin.  The forces acting on it are the 
forces from the members (Newton’s 
3rd law) Measure θ from here (eg.) 
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Solving Linear Equations 
 

Resultant forces on a 2-
force member 

Force imbalance, beam 
would accelerate. 

These must be equal 
and opposite 

Force balanced, but 
beam would rotate. 

These must be along 
the beam 

2-force member under load, in 
equilibrium 
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Solving Linear Equations 
 

M4 

M5 

M1 

M6 

M2 

M3 

Let Ti be the force in member Mi. 
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Solving Linear Equations 
 

T4 

T5 

T1 

T6 

T2 

T3 

Free-body diagrams on each pin 



33 

Solving Linear Equations 
 

0sinsinsinsin

0coscoscoscos

55442211
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Sum forces on pin 
in horizontal and 
vertical directions 

T4 

T5 

T1 

T2 

Force balance on a pin 



T4 

T5 

T1 

T6 

T2 

T3 

Forces on a particular PIN 
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Solving Linear Equations 
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Solving Linear Equations 
 

0sinsin

0coscos
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T2 

T3 

Forces on a particular PIN 
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Solving Linear Equations 
 

T4 

T5 

T1 

T6 

T2 

T3 

Forces on a particular PIN 
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Solving Linear Equations 
 

0sinsinsin

0coscoscos
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T4 

T6 

T3 

Forces on a particular PIN 
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Solving Linear Equations 
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If geometry is fixed, and external load is known, then this is 6 
equations, 6 unknowns. We need some “good notation” for  
linear equations…. 
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Solving Linear Equations 
 

If A is an n-by-m array, and x is an m-by-1 vector, then the 
“product Ax” is a n-by-1 vector, whose i’th component is 

  



m

j

jiji xAAx
1

= 
n-by-m 

m-by-1 n-by-1 

= n-by-m 

m-by-1 n-by-1 

Array-Vector multiplication 
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Solving Linear Equations 
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If A is an n-by-m array, and x is an m-by-1 vector, then the 
“product Ax” is a n-by-1 vector, whose i’th component is 
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Solving Linear Equations 
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add, to give 
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Solving Linear Equations 
 Consider n equations in m unknowns. 

 

 

 

 

 

Collect 

– The Aij into an n-by-m array called A 

– The bi into a n-by-1 vector called b, and 

– The xj into an m-by-1 vector called x 

Then the equations above can be written concisely as 
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bAx 
matrix/vector multiply 

vector equality 
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Solving Linear Equations 
 

= 

= 

= 

Square, equal number of 
unknowns and equations 

Underdetermined: 
more unknowns than 
equations 

Overdetermined: fewer 
unknowns than 
equations 

For the equation Ax=b, there are 3 distinct cases 
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Solving Linear Equations 
 

= 

= 

= 

Types of solutions 

One solution (eg., 2 lines 
intersect at one point) 

Infinite solutions 
(eg., 2 planes 
intersect at many 
points) 

No solutions (eg., 3 lines 
don’t intersect at a point) 
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Solving Linear Equations 
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If geometry is fixed, and external load is known, then this is 6 
equations, 6 unknowns.  
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Solving Linear Equations 
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












0

0

0

0

0

000

000

0000

0000

00

00

6

5

4

3

2

1

643

643

32

32

5421

5421

P

T

T

T

T

T

T

sss

ccc

ss

cc

ssss

cccc













0sinsinsin

0coscoscos

664433

664433









TTT

TTT

0sinsin

0coscos

3322

3322









TTP

TT

0sinsinsinsin

0coscoscoscos

55442211

55442211









TTTT

TTTT

In matrix/vector form 
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Solving Linear Equations 
 

30 
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110 45 
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T2 

T3 

? 
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