
1

SERDAR ARITAN
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr
Spor Bilimleri Fakültesi
www.sbt.hacettepe.edu.tr
Hacettepe Universitesi, Ankara, Türkiye
www.hacettepe.edu.tr

De Motu Animalium G.Borelli (1680)

SBT 645 Introduction to Scientific
Computing in Sports Science

#8

Polynomial curves fitting
points generated with a sine
function.

Cyan line is a first degree
polynomial, purple line is
second degree, blue line is
third degree and yellow is
fourth degree.

Polynomials

2

Most commonly, one fits a function of the form y=f(x).
First degree polynomial equation
Second degree polynomial equation
Third degree polynomial equation

𝑦 = 𝑎𝑥 + 𝑏

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

3

Polynomials

1

1

21)(

  nn

nn axaxaxaxp 
It is natural to associate a row vector Ap with p, namely

A few examples: Row vector representations of

are

 >>> p = P.Polynomial([6, 5, -3, 7])

 >>> q = P.Polynomial([9, -2, 4])

But [0 0 0 9 -2 4] also represents q…

 121  nnp aaaaA 

7356)(23  xxxxp 429)(2  xxxq

“leading zeros”

An nth order polynomial in variable x is written as

4

Polynomials

– Polynomial addition

– Polynomial subtraction

– Polynomial multiplication

– Polynomial evaluation (use polyval)

– Plotting the graph of a polynomial

– Roots of a polynomial (use roots)

The inputs to the functions will be row vectors, representing
polynomials.

5

Polynomials

Adding two polynomials requires adding their coefficients.
The sum of

1

1

21 

  nn

nn axaxaxa 

1

1

21 

  nn

nn bxbxbxb 

is simply

)()()()(11

1

2211 

  nnnn

nn baxbaxbaxba 

In terms of the row-vector representation of the polynomials, we
simply add them, element-by-element.

But the row vectors may be different lengths, and we need to
“align” them.

6

Polynomials

The row vector representations of

7356)(23  xxxxa

429)(2  xxxb
Are
import numpy as np

P = np.polynomial

a = P.Polynomial([6, 5, -3, 7])

b = P.Polynomial([0, 9, 2, -4])

print(np.polyadd(a, b)

[Polynomial([6., 14., -1., 3.], domain=[-1., 1.], window=[-1., 1.])]

7

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7

 b(x) = 3x2 + 2x – 4

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2

 + (6x3 + 5x2 – 3x + 7)*2x

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [0 0 0 0 0 0]

8

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2

 + (6x3 + 5x2 – 3x + 7)*2x

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [0 0 0 0 0 0]

9

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [0 0 0 0 0 0]

10

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [18 15 -9 21 0 0]

11

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x add A*B(2) to C(2:5)

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [18 15 -9 21 0 0]

12

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x add A*B(2) to C(2:5)

 + (6x3 + 5x2 – 3x + 7)*(-4)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [18 27 1 15 14 0]

13

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x add A*B(2) to C(2:5)

 + (6x3 + 5x2 – 3x + 7)*(-4) add A*B(3) to C(3:6)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [18 27 1 15 14 0]

14

Polynomials

Multiplying

 a(x) = 6x3 + 5x2 – 3x + 7 A = [6 5 -3 7]

 b(x) = 3x2 + 2x – 4 B = [3 2 -4]

Express the product as

(6x3 + 5x2 – 3x + 7)(3x2 + 2x – 4) =

 (6x3 + 5x2 – 3x + 7)*3x2 add A*B(1) to C(1:4)

 + (6x3 + 5x2 – 3x + 7)*2x add A*B(2) to C(2:5)

 + (6x3 + 5x2 – 3x + 7)*(-4) add A*B(3) to C(3:6)

The result is 5th order, so we need a 1-by-6 array for the
result

 C = [18 27 -23 -5 26 -28]

15

Polynomials
import numpy as np

P = np.polynomial

a = P.Polynomial([6, 5, -3, 7])

b = P.Polynomial([0, 3, 2, -4])

print(np.polymul(a, b))

[Polynomial([0., 18., 27., -23., -5., 26., -28.], domain=[-1.,1.],window=[-1., 1.])]

16

Polynomials

Use the numpy function polyval
import numpy as np

P = np.polynomial

x = 2.6

y = P.polynomial.polyval(x, [6, 5, -3, 7])

polyval works for vectors too
import numpy as np

P = np.polynomial

x = np.linspace(-3,3,200)

y = P.polynomial.polyval(x, [6, 5, -3, 7])

17

Polynomials

An nth order polynomial (with nonzero leading coefficient)

1

1

21)(

  nn

nn axaxaxaxp 
It is a fundamental theorem of algebra that the equation

has n solutions, called the roots of p. Label these roots r1, r2, … ,
rn. Another way to say this is that p can be factored into the for

Even if the coefficients of p are real numbers, the roots may be
complex.

0)(xp

)())(()(211 nrxrxrxaxp  

18

Polynomials

The command roots computes the roots of a polynomial, and
returns them as a column vector.

Compute the roots of

import numpy as np

P = np.polynomial

print(P.polynomial.polyroots([1, 1, -2]))

print(P.polynomial.polyroots([1, 3, 5]))

print(P.polynomial.polyroots([2, -1, 4, 1, -3]))

53)(2  xxxq

342)(234  xxxxxv

2)(2  xxxp

19

Solving Linear Equations

nmnmnn

mm

mm

bxAxAxA

bxAxAxA

bxAxAxA















2211

22222121

11212111

Consider n equations in m unknowns.

Think of the Aij as known coefficients, and the bi as known
numbers. The goal is to solve for all of the unknowns xj

20

Solving Linear Equations

Example of Linear Equations

Intersection of two lines

Simple truss structures

– Consist of beams

– Frictionless “pin” joints

Heat Transfer through conductive material

Electrical current flow through resistive network

Getting proper balance of nutrients from selection of foods

21

Solving Linear Equations

Example of Linear Equations

Intersection of two lines

 𝑦 − 2𝑥 = 1

𝑦 + 𝑥 = 10

22

Solving Linear Equations

Example of Linear Equations

Intersection of three planes

Three planes intersect at a
single point, representing a
three-by-three system with a
single solution.

Three planes intersect in a line,
representing a three-by-three
system with infinite solutions

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐷

E𝑦 + 𝐹𝑧 = 𝐺

H𝑧 = 𝐾

23

Solving Linear Equations

Example of Linear Equations

Intersection of three planes

The three planes
intersect with
each other, but
not at a common
point.

Two of the planes
are parallel and
intersect with the
third plane, but not
with each other.

All three planes are
parallel, so there is
no point of
intersection.

𝑥 − 2𝑦 + 3𝑧 = 9

24

Solving Linear Equations

Example of Linear Equations

Intersection of three planes

−𝑥 + 3𝑦 − 𝑧 = −6

2𝑥 − 5𝑦 + 5𝑧 =17

import numpy as np

my_matrix = np.array([[1 , -2 , 3] ,

 [-1 , 3 , -1] ,

 [2 , -5 , 5]])

my_vector = np.array([9 , -6 , 17])

solution = np.linalg.solve(my_matrix, my_vector)

print('Solution is x , y , z = ' , solution)

Alternative method

solution1 = np.matmul(np.linalg.inv(my_matrix), my_vector)

print('Solution is x1 , x2 , x3 by inv [A]* y = ', solution1)

Solution is x , y , z = [1. -1. 2.]

Solution is x1 , x2 , x3 by inv [A]* y = [1. -1. 2.]

25

Solving Linear Equations

26

Solving Linear Equations

import numpy as np

A = np.array([[2 , -3 , 1] ,

 [1 , -1 , 2] ,

 [3 , 1 ,-1]])

b = np.array([-1 , -3 , 9])

solution1 = np.linalg.solve(A, b)

print('Solution1 is x , y , z = ' , solution1)

Alternative method

solution2 = np.dot(np.linalg.inv(A), b)

print('Solution2 is x1 , x2 , x3 by inv [A]* y = ', solution2)

print('Determinant of A ', np.linalg.det(A))

Solution1 is x , y , z = [2. 1. -2.]

Solution2 is x1 , x2 , x3 by inv [A]* y = [2. 1. -2.]

Determinant of A -19.000000000000004

27

Solving Linear Equations With No Solution

import numpy as np

A = np.array([[1 , -1 , 4] ,

 [0 , 0 , 1] ,

 [-1, 1 ,-4]])

b = np.array([-5 , 0 , 20])

solution1 = np.linalg.solve(A, b)

print('Determinant of A ', np.linalg.det(A))

print('Solution1 is x , y , z = ' , solution1)

Alternative method

solution2 = np.dot(np.linalg.inv(A), b)

print('Solution2 is x1 , x2 , x3 by inv [A]* y = ', solution2)

Determinant of A 0.0

LinAlgError: Singular matrix

28

Solving Linear Equations

Simple truss analysis:
Basic Concepts

M4

M5

M1

M6

M2

M3

Truss members are beams
held together with pin joints
(no welding – drill a hole in
each beam, push pin through).

Beams only have a force acting
at each end, no moments.
These are called 2-force
members. If the truss is in
eqilibrium, total force on beam
must be 0, and there cannot be
a torque on the beam.

Pins transfer force between
beams. If the truss is in
equilibrium, all forces acting
on a pin must sum to zero.

29

Solving Linear Equations

Force balance on a pin

F4

F3

F1

F2

0sinsinsinsin

0coscoscoscos

44332211

44332211









FFFF

FFFF

Sum forces on pin in horizontal and vertical directions. For
equilibrium, forces must sum to zero.

Draw a free-body diagram of a given
pin. The forces acting on it are the
forces from the members (Newton’s
3rd law) Measure θ from here (eg.)

30

Solving Linear Equations

Resultant forces on a 2-
force member

Force imbalance, beam
would accelerate.

These must be equal
and opposite

Force balanced, but
beam would rotate.

These must be along
the beam

2-force member under load, in
equilibrium

31

Solving Linear Equations

M4

M5

M1

M6

M2

M3

Let Ti be the force in member Mi.

32

Solving Linear Equations

T4

T5

T1

T6

T2

T3

Free-body diagrams on each pin

33

Solving Linear Equations

0sinsinsinsin

0coscoscoscos

55442211

55442211









TTTT

TTTT

Sum forces on pin
in horizontal and
vertical directions

T4

T5

T1

T2

Force balance on a pin

T4

T5

T1

T6

T2

T3

Forces on a particular PIN

34

Solving Linear Equations

35

Solving Linear Equations

0sinsin

0coscos

3322

3322









TTP

TT

T2

T3

Forces on a particular PIN

36

Solving Linear Equations

T4

T5

T1

T6

T2

T3

Forces on a particular PIN

37

Solving Linear Equations

0sinsinsin

0coscoscos

664433

664433









TTT

TTT

T4

T6

T3

Forces on a particular PIN

38

Solving Linear Equations

0sinsinsin

0coscoscos

664433

664433









TTT

TTT

0sinsin

0coscos

3322

3322









TTP

TT

0sinsinsinsin

0coscoscoscos

55442211

55442211









TTTT

TTTT

If geometry is fixed, and external load is known, then this is 6
equations, 6 unknowns. We need some “good notation” for
linear equations….

39

Solving Linear Equations

If A is an n-by-m array, and x is an m-by-1 vector, then the
“product Ax” is a n-by-1 vector, whose i’th component is

  



m

j

jiji xAAx
1

=
n-by-m

m-by-1 n-by-1

= n-by-m

m-by-1 n-by-1

Array-Vector multiplication

40

Solving Linear Equations

 
 

  













































mnmnn

mm

mm

n xAxAxA

xAxAxA

xAxAxA

Ax

Ax

Ax

Ax











2211

2222121

1212111

2

1

  



m

j

jiji xAAx
1

If A is an n-by-m array, and x is an m-by-1 vector, then the
“product Ax” is a n-by-1 vector, whose i’th component is

41

Solving Linear Equations



















nmnnn

m

m

AAAA

AAAA

AAAA









321

2232221

1131211























mx

x

x

x


3

2

1



















1

21

11

nA

A

A


 1x



















2

22

12

nA

A

A


 2x



















3

23

13

nA

A

A


 3x



















nm

m

m

A

A

A


2

1

 mx  



























mnmnn

mm

mm

xAxAxA

xAxAxA

xAxAxA









2211

2222121

1212111

add, to give

42

Solving Linear Equations
 Consider n equations in m unknowns.

Collect

– The Aij into an n-by-m array called A

– The bi into a n-by-1 vector called b, and

– The xj into an m-by-1 vector called x

Then the equations above can be written concisely as

nmnmnn

mm

mm

bxAxAxA

bxAxAxA

bxAxAxA















2211

22222121

11212111

bAx 
matrix/vector multiply

vector equality

43

Solving Linear Equations

=

=

=

Square, equal number of
unknowns and equations

Underdetermined:
more unknowns than
equations

Overdetermined: fewer
unknowns than
equations

For the equation Ax=b, there are 3 distinct cases

44

Solving Linear Equations

=

=

=

Types of solutions

One solution (eg., 2 lines
intersect at one point)

Infinite solutions
(eg., 2 planes
intersect at many
points)

No solutions (eg., 3 lines
don’t intersect at a point)

45

Solving Linear Equations

0sinsinsin

0coscoscos

664433

664433









TTT

TTT

0sinsin

0coscos

3322

3322









TTP

TT

0sinsinsinsin

0coscoscoscos

55442211

55442211









TTTT

TTTT

If geometry is fixed, and external load is known, then this is 6
equations, 6 unknowns.

46

Solving Linear Equations

















































































0

0

0

0

0

000

000

0000

0000

00

00

6

5

4

3

2

1

643

643

32

32

5421

5421

P

T

T

T

T

T

T

sss

ccc

ss

cc

ssss

cccc













0sinsinsin

0coscoscos

664433

664433









TTT

TTT

0sinsin

0coscos

3322

3322









TTP

TT

0sinsinsinsin

0coscoscoscos

55442211

55442211









TTTT

TTTT

In matrix/vector form

47

Solving Linear Equations

30

30

110 45

100 kg

?

?

?

?

T4

T5

T1

T6

T2

T3

?

?

48

Solving Linear Equations

