
1

SERDAR ARITAN
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr
Spor Bilimleri Fakültesi
www.sbt.hacettepe.edu.tr
Hacettepe Universitesi, Ankara, Türkiye
www.hacettepe.edu.tr

De Motu Animalium G.Borelli (1680)

HAB 619 Introduction to Scientific
Computing in Sports Science

#9

2

Interpolation

3

Polynomial Interpolation

Polynomial interpolant displaying oscillations

4

Extrapolation may not follow the trend of data

Polynomial Interpolation

5

Interpolation

6

Polynomial Fitting and Interpolation

Extrapolation may not follow the trend of data

numpy.interp(x, xp, fp, left=None, right=None, period=None)

One-dimensional linear interpolation.

>>> import numpy as np

>>> xp = [1, 2, 3]

>>> fp = [3, 2, 0]

>>> np.interp(2.5, xp, fp)

1.0

>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)

array([3. , 3. , 2.5 , 0.56, 0.])

7

Polynomial Fitting and Interpolation

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 10)

y = np.sin(x)

xvals = np.linspace(0, 2*np.pi, 50)

yinterp = np.interp(xvals, x, y)

fig = plt.figure()

plt.plot(x, y, 'o')

plt.plot(xvals, yinterp, '-x')

plt.show()

8

Polynomial Fitting and Interpolation

import numpy as np

import numpy.polynomial.polynomial as poly

import matplotlib.pyplot as plt

x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])

y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])

coefs = poly.polyfit(x, y, 2)

yfit = poly.polyval(x, coefs)

fig = plt.figure()

plt.plot(x, y, 'o')

plt.plot(x, yfit, '-x')

plt.show()

9

Polynomial Fitting and Interpolation

import numpy as np

import numpy.polynomial.polynomial as poly

import matplotlib.pyplot as plt

x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])

y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])

coefs = poly.polyfit(x, y, 3)

yfit = poly.polyval(x, coefs)

fig = plt.figure()

plt.plot(x, y, 'o')

plt.plot(x, yfit, '-x')

plt.show()

10

Polynomial Fitting and Interpolation

import numpy as np

import numpy.polynomial.polynomial as poly

import matplotlib.pyplot as plt

x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])

y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])

coefs = poly.polyfit(x, y, 4)

yfit = poly.polyval(x, coefs)

fig = plt.figure()

plt.plot(x, y, 'o')

plt.plot(x, yfit, '-x')

plt.show()

11

Interpolation

Hız kah laktat
0
8 134 2.10
9 150 2.20
10 160 2.60
11 170 3.20
12 175 3.80
13 178 4.50
14 185 5.40
15 188 7.30
16 192 10.00

y = np.interp(x, xData, yData)

c = polyfit(xData, yData, m)
y = polyval(x, c)

7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5

Hız kah laktat VO2 (ml/kg/dk)
0
8 133 1.18 22.90
9 132 1.46 25.17
10 144 1.68 26.68
11 151 1.76 31.22
12 152 2.10 31.29
13 160 2.61 34.97
14 169 2.92 37.77
15 174 4.58 39.49
16 178 6.00 41.75

12

Interpolation 7.5
8
8.5
9
9.5
10
10.5
11
11.5
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5

y = np.interp(x, xData, yData)

c = polyfit(xData, yData, m)
y = polyval(x, c)

Mid-term Exam

Number Bulls & Cows
History

This traditional pencil and paper game probably dates back to the
1900s.

Bulls and Cows is a popular game for programming on a
computer. The earliest recorded program, called MOO, written in
1970 by J. M. Grochow at MIT in the PL/I computer language for
the Multics by a similar program written by Frank King in 1968
and running on the Cambridge University mainframe.

In 1970 a version of the game was designed using colored pegs,
and marketed by Invicta Plastics as "Mastermind".

Bulls & Cows

13

Mid-term Exam
Bulls & Cows

One player, the Chooser, thinks of a four-digit number and the other player, the Guesser, tries
to guess it. At each turn the Guesser tries a four digit number, and the Chooser says how
close it is to the answer by giving:

 The number of Bulls - digits correct in the right position.
 The number of Cows - digits correct but in the wrong position.

The Guesser tries to guess the answer in the fewest number of turns. If either number has
repeated digits the rule is that each digit can only count towards the score once, and Bulls are
counted before Cows.
For example, if the Chooser has thought of the number 2745 the replies for some guesses are
as follows:

 Guess: 1389 - Reply: 0 Bulls, 0 Cows.
 Guess: 1234 - Reply: 0 Bulls, 2 Cows.
 Guess: 1759 - Reply: 1 Bull, 1 Cow.
 Guess: 1785 - Reply: 2 Bulls, 0 Cows.
 Guess: 2745 - Reply: 4 Bulls!

14

15

Mid-term Exam

Mastermind or Master Mind is a code-breaking game for two
players. The modern game with pegs was invented in 1970 by
Mordecai Meirowitz, an Israeli postmaster and
telecommunications expert. It may have been inspired by moo, a
program developed by J. M. Grochow at MIT in the late 1960s. In
the game, one player is the codemaker and the other is the
codebreaker.

Write a Mastermind Game#1

The codemaker secretly selects a code consisting of an ordered sequence of four colors
(c1, c2, c3, c4), each chosen from a set of six possible colors, with repetitions

allowed. The codebreaker then tries to guess the code by repeatedly proposing a sequence
of colors . After each guess, the codemaker tells the codebreaker two numbers (b, w) :
the number of correct colors in the correct positions (b) and the number of colors that are
part of the code but not in the correct positions (w). For example, if the code is
(1,2,3,3) and the codebreaker's guess is (3,2,4,3), then the codemaker's response
would be (2,1), since the codebreaker has guessed the 2 and the second 3 correctly and
in the correct positions, while having guessed the first three correctly but in the wrong
position.

16

The codebreaker continues guessing until he guesses the code correctly or until he reaches
a maximum allowable number of guesses without having correctly identified the secret
code. Interestingly, can be computed as

Where ci is the number of times the color i is in the code and gi is the number of times it is
in the guess.

Knuth (1976-77) showed that the codebreaker can always succeed in five or fewer moves
(i.e., knows the code after four guesses). His technique uses a greedy strategy that
minimizes the number of remaining possibilities at each step, and requires 4.478 guesses
on average, assuming equally likely code choice. Irving (1978-79) subsequently found a
strategy with slightly smaller average length. Koyama and Lai (1993) described a strategy
that minimizes the average number of guesses, requiring on average 4.340 guesses,
although may require up to six in the worst case. A slight modification also described by
Koyama and Lai (1993) increases the average to 4.341, but reduces the maximum number
of guesses required to five.

𝑤 = 𝑚𝑖𝑛 𝑐𝑖 , 𝑔𝑖

6

𝑖=1

− 𝑏

Mid-term Exam

17

The "static" problem of finding the minimum number of guesses the codebreaker can make
all at once at the beginning of the game without waiting for the answers, and then upon
receiving the answers, completely determine the code in the next "guess" (Chvatal 1983), can
be solved with six initial guesses (Greenwell 1999-2000). One particular combination that
allows the codebreaker to know the code after six guesses (and so require a seventh to reveal
his knowledge of the solution) is (1, 2, 2, 1), (2, 3, 5, 4), (3, 3, 1, 1), (4, 5, 2, 4), (5, 6, 5, 6), (6, 6,
4, 3). It is not known if this number can be reduced to five (exhaustive checking would
require computations), although it is believed not.

Swaszek (1999-2000) gives an analysis of practical strategies that do not require complicated
record-keeping or use of a computer. Making a random guess from the set of remaining
candidate code sequences gives a surprisingly short average game length of 4.638, while
interpreting each guess as a number and using the next higher number consistent with the
known information gives a game of average length 4.758.

Chvatal, V. "Mastermind." Combinatorica 3, 325-329, 1983.
Greenwell, D. L. "Mastermind." J. Recr. Math. 30, 191-192, 1999-2000.
Irving, R. W. "Towards an Optimum Mastermind Strategy." J. Recr. Math. 11, 81-87, 1978-79.
Knuth, D. E. "The Computer as a Master Mind." J. Recr. Math. 9, 1-6, 1976-77.
Koyama, K. and Lai, T. W. "An Optimal Mastermind Strategy." J. Recr. Math. 25, 251-256, 1993.
Swaszek, P. F. "The Mastermind Novice." J. Recr. Math. 30, 193-198, 1999-2000.

Mid-term Exam

18

Mid-term Exam
Which one you are? [default] codebreaker or [1] codemaker : <ENTER>

1) Code Breaker will guess the CODE assumed by Code Maker ',...

2) The Hint provided by Code Maker should provide the ',...

 information of Blacks & Whites',...

3) BLACK represents Correct Color in Correct Position.',...

4) WHITE represents Correct Color in Wrong Position.',...

NOTE: The COLOR that is represented as BLACK cannot be used to represent

as WHITE.',...

All the colors in a guess should be distinct.'...

Always the clue of BLACK appended with WHITE should be given not the vice-

versa.

>> Guess my combination ? cbrg <ENTER>

>> your 1. guess is (c)yan (b)lue (r)ed (g)reen

>> you have got 1 (b)lack and 2 (w)hite

……

……

>> your 4. guess is (c)yan (r)ed (b)lue (y)ellow

>> you have got 4 (b)lack, you broke the code!!

>> Which one you are? [default] codebreaker or [1] codemaker : 1 <ENTER>

>> Please pick a combination and take a note press <ENTER> to start

>> my 1. guess is (c)yan (b)lue (r)ed (g)reen

>> please enter how many black and white I have got : 0, 1

>> my 2. guess is (c)yan (m)agenta (y)ellow (g)reen

19

Donald Ervin Knuth born January 10, 1938) is an American computer scientist,
mathematician, and Professor Emeritus at Stanford University. He is the author
of the multi-volume work The Art of Computer Programming. Knuth has been
called the "father" of the analysis of algorithms. He contributed to the
development of the rigorous analysis of the computational complexity of
algorithms and systematized formal mathematical techniques for it.

Mastermind, 1970’lerin başında

Mordecai Meirowitz tarafından

geliştirilmiş, karşılıklı iki kişiyle oynanan

bir masa oyunudur. Oyunculardan ilki

kod yapıcı (codemaker) olarak

adlandırılır ve görevi 6 elemanlı bir renk

kümesinden 4 adet renk seçip, diğer

oyuncudan çözmesini bekleyeceği gizli

bir renk kombinasyonu oluşturmaktır.

İkinci oyuncu ise kod kırıcı

(codebreaker) olarak adlandırılır ve

amacı ilk oyuncunun oluşturduğu renk

kombinasyonunu en fazla 13 aşamada

bulmaktır.

Ara-Sınav

20

1

1. İlk oyuncu 6’lık bir kümeden diğer

oyuncunun görmeyeceği şekilde 4 farklı

renkte boncuk(color peg) seçip gizli

bölmeye dizer.

2. Daha sonra kod kırıcı, rastgele bir tahminde

bulunur.
2

3. Tahmin neticesinde, gizli kombinasyona

göre renk olarak doğru fakat yer olarak yanlış

her boncuk için beyaz çivi, hem renk hem de

yer olarak doğru olan her boncuk için ise

turuncu çivi yerleştirilir.

3

21

Ara-Sınav

22

4

4. Turuncu ve beyaz çiviler çözüm

kümesini kısıtlayarak kodu çözmeye

çalışan oyuncuyu doğru cevaba

yönlendirir. Oyunun amaçı en fazla 13

tahminde doğru cevaba ulaşmaktır.

Ara-Sınav

Yazacağınız program 6 farklı bir renk kümesinden rastgele

4 renk seceçektir. Seçilen renk kombinasyonda bir renk en

fazla iki kez kullanılabilir. Oyuncu, bir tahminde bulunur.

Tahmin neticesinde, gizli kombinasyona göre renk olarak

doğru fakat yer olarak yanlış her renk için beyaz , hem

renk hem de yer olarak doğru olan her renk için ise siyah

bilgisi verecek. Yazdığınız program; oyuncunun girdiği renk

sayısını, renk bilgisini kontrol ederek oyuncuya bilgi

verecektir.

Ara-Sınav

23

Ara-Sınav

24

Rastgele Renkler

Oyuncunun Tahmini

Ara-Sınav

25

Yanlış Renk

Ara-Sınav

26

Fazla Renk

Ara-Sınav

27

