
1

SERDAR ARITAN
serdar.aritan@hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr
Spor Bilimleri Fakültesi
www.sbt.hacettepe.edu.tr
Hacettepe Universitesi, Ankara, Türkiye
www.hacettepe.edu.tr

De Motu Animalium G.Borelli (1680)

HAB 619 Introduction to Scientific
Computing in Sports Science

#11

2

Linear Programming

Optimization - finding value of a parameter that maximizes or
minimizes a function with that parameter

• Talking about mathematical optimization, not optimization of
computer code!

• "function" is mathematical function, not python language def

• Can have multiple parameters

• Can have multiple functions

• Parameters can appear linearly or nonlinearly

3

Linear Programming

Linear programming

 - Most often used kind of optimization

• Tremendous number of practical applications

• "Programming" means determining feasible programs (plans,
schedules, allocations) that are optimal with respect to a certain
criterion and that obey certain constraints

• A feasible program is a solution to a linear programming problem and
that satisfies certain constraints

• In linear programming

• Constraints are linear inequalities

• Criterion is a linear expression

• Expression called the objective function

• In practice, objective function is often the cost of or profit from some
activity

4

Linear Programming

Diet Problem

 You are given a group of foods, their nutritional values and costs.
You know how much nutrition a person needs. What combination
of foods can you serve that meets the nutritional needs of a
person but costs the least?

5

Linear Programming

Mathematical formulation

The variables x1, x2, ... xn satisfy the inequalities

and x1 ≥0, x2 ≥0, ... xn ≥0 . Find the set of values of x1, x2, ... xn that
minimizes (maximizes)

Note that apq and fi are known

6

Linear Programming

Mathematical matrix formulation

Find the value of x that minimizes (maximizes)
fTx given that x ≥ 0 and Ax ≤ b, where

7

Linear Programming

General procedure

• Restate problem in terms of equations and inequalities

• Rewrite in matrix and vector notation

• Call function linprog from scipy.optimize to solve

8

Linear Programming

Example – diet problem

Nowadays kids diet comes from the four basic food groups -
chocolate dessert, ice cream, soda, and cheesecake. They checks
in a store and finds one of each kind of food, namely, a brownie,
chocolate ice cream, Pepsi, and one slice of pineapple cheesecake.
Each day they needs at least 500 calories, 6 gr of chocolate, 10 gr
of sugar, and 8 gr of fat. Using the table on the next slide that gives
the cost and nutrition of each item, figure out how much he
should buy and eat of each of the four items he found in the store
so that he gets enough nutrition but spends as little as possible.

9

Linear Programming

Example – diet problem

10

Linear Programming

Example – diet problem

What are unknowns?

x1 = number of brownies to eat each day

x2 = number of scoops of chocolate ice cream to eat each day

x3 = number of bottles of Coke to drink each day

x4 = number of pineapple cheesecake slices to eat each day

 In linear programming "unknowns" are called decision variables

11

Linear Programming

Example – diet problem

Objective is to minimize cost of food. Total daily cost is

Cost = (Cost of brownies) + (Cost of ice cream) +
(Cost of Coke) + (Cost of cheesecake)

• Cost of brownies = (Cost/brownie) × (brownies/day)
= 2.5 x1

• Cost of ice cream = x2

• Cost of Coke = 1.5x3

• Cost of cheesecake = 4x4

12

Linear Programming

Example – diet problem

Therefore, need to minimize

min()

13

Linear Programming

Example – diet problem

Constraint 1 - calorie intake at least 500

• Calories from brownies = (calories/brownie)(brownies/day)
 = 400x1

• Calories from ice cream = 200x2

• Calories from Coke = 150x3

• Calories from cheesecake = 500x4

So constraint 1 is

14

Linear Programming

Example – diet problem

Constraint 2 - chocolate intake at least 6 gr

• Chocolate from brownies = (Chocolate/brownie)(brownies/day)
= 3x1

• Chocolate from ice cream = 2x2

• Chocolate from Coke = 0x3 = 0

• Chocolate from cheesecake = 0x4 = 0

So constraint 2 is

15

Linear Programming

Example – diet problem

Constraint 3 - sugar intake at least 10 gr

• Sugar from brownies = (sugar/brownie)(brownies/day)
 = 2x1

• Sugar from ice cream = 2x2

• Sugar from Coke = 4x3

• Sugar from cheesecake = 4x4

So constraint 3 is

16

Linear Programming

Example – diet problem

Constraint 4 - fat intake at least 8 gr

• Fat from brownies = (fat/brownie)(brownies/day)
 = 2x1

• Fat from ice cream = 4x2

• Fat from Coke = 1x3

• Fat from cheesecake = 5x4

So constraint 4 is

17

Linear Programming

Example – diet problem

Finally, we assume that the amounts eaten are non-negative, i.e.,
we ignore throwing up. This means that we have

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and x4 ≥ 0

18

Linear Programming

Example – diet problem

Putting it all together, we have to minimize

subject to the constraints

And

19

Linear Programming

Example – diet problem

In matrix notation, want to

where

20

Linear Programming

scipy.optimize.linprog solves linear programming
problem

where x, b, beq, lb, and ub are vectors and A and Aeq are matrices.

• Can use one or more of the constraints

• "lb" means "lower bound", "ub" means "upper bound"

 Often have lb = 0 and ub = ∞, i.e., no upper bound

21

Linear Programming

scipy.optimize programming solver is linprog()

scipy.optimize.linprog(f, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,

method='interior-point', callback=None, options=None, x0=None)

Linear programming: minimize a linear objective function

subject to linear equality and inequality constraints.

f 1-D array

 The coefficients of the linear objective function to be minimized.

A_ub 2-D array, optional

 The inequality constraint matrix. Each row of A_ub specifies the

coefficients of a linear inequality constraint on x.

b_ub 1-D array, optional

 The inequality constraint vector. Each element represents an upper

bound on the corresponding value of

22

Linear Programming

Us:

NumPy:

Note two differences:

23

Linear Programming

linprog() solves linear programming problem

ISSUE 1 - We have Ax ≥ b but need Ax ≤ b

One way to handle is to note that

if Ax ≥ b then -Ax ≤ -b, so can have numpy.negative use
constraint

 (-A)x ≤ (-b)

ISSUE 2 - We have 0 ≤ x but linprog() wants lb ≤ x ≤ ub .
Handle by omitting ub in call of linprog(). If omitted,
linprog() assumes no upper bound.

24

Linear Programming

import numpy as np

from scipy.optimize import linprog

objective function

f = np.array([2.5, 1.0, 1.5, 4.0])

constraint matrix

A = np.array([[400, 200, 150, 500],

 [3.0, 2.0, 0.0, 0.0],

 [2.0, 2.0, 4.0, 4.0],

 [2.0, 4.0, 1.0, 5.0]])

inequality constraint vector

b = np.array([500.0, 6.0, 10.0, 8.0])

x1_bounds = (0, None)

x2_bounds = (0, None)

x3_bounds = (0, None)

x4_bounds = (0, None)

result = linprog(f, A_ub=np.negative(A), b_ub=np.negative(b), \

 bounds=[x1_bounds, x2_bounds, x3_bounds, x4_bounds])

>>> print(result)

 con: array([], dtype=float64)

 fun: 4.5000000466017935

 message: 'Optimization terminated successfully.'

 nit: 7

 slack: array([2.50000005e+02, 4.03549727e-09, 4.82628302e-08,

4.99999998e+00])

 status: 0

 success: True

>>> x = np.array(result.x)

>>> print(x)

[1.42673815e-08 2.99999998e+00 1.00000001e+00 3.35245816e-09]

25

Linear Programming

26

Linear Programming

Optimal solution is x = [0 3 1 0] . In words, kids
should eat 3 scoops of ice cream and drink 1 Coke each day.

A constraint is binding if both sides of the constraint
inequality are equal when the optimal solution is substituted.

For x = [0 3 1 0] the set

Becomes ,

so the chocolate and sugar constraints are binding. The other
two are nonbinding

27

Linear Programming

How many calories, and how much chocolate, sugar and fat
will he get each day?
>> print(np.negative(A) @ x)

[-750.0000052 -6. -10.00000005 -12.99999998]

750.0 calories

 6.0 chocolate

 10.0 sugar

 13.0 fat

How much money will this cost?
>>> print(f @ x)

4.5000000466017935 # dollars

28

Linear Programming

Special Kinds of Solutions

Usually a linear programming problem has a unique (single)
optimal solution. However, there can also be:

• No feasible solutions

• An unbounded solution. There are solutions that make the
objective function arbitrarily large (max problem) or
arbitrarily small (min problem)

• An infinite number of optimal solutions. The technique of
goal programming is often used to choose among
alternative optimal solutions.

29

Linear Programming

A scipy.optimize.OptimizeResult consisting of the fields:

x 1-D array

 The values of the decision variables that minimizes the objective function while

satisfying the constraints.

fun float

 The optimal value of the objective function c @ x.

slack 1-D array

 The (nominally positive) values of the slack variables, b_ub - A_ub @ x.

con 1-D array

 The (nominally zero) residuals of the equality constraints, b_eq - A_eq @ x.

successbool

 True when the algorithm succeeds in finding an optimal solution.

statusint

 An integer representing the exit status of the algorithm.

 0 : Optimization terminated successfully.

 1 : Iteration limit reached.

 2 : Problem appears to be infeasible.

 3 : Problem appears to be unbounded.

 4 : Numerical difficulties encountered.

nitint

 The total number of iterations performed in all phases.

messagestr

 A string descriptor of the exit status of the algorithm.

