
1

#3

Serdar Arıtan

serdar.aritan@hacettepe.edu.tr

Hacettepe Üniversitesi
www.hacettepe.edu.tr

Biyomekanik Araştırma Grubu
www.biomech.hacettepe.edu.tr

mailto:serdar.aritan@hacettepe.edu.tr
http://www.hacettepe.edu.tr

2

Oscillography

3

Oscilloscope: -cathode ray tube (CRT) with controls for displaying analog waveforms (continuously varying
voltages)

Oscillography

4

Oscillography

The timebase sets the time that the beam is scanned from left to right on
the screen and it's calibrated in horizontal divisions (the black grid on the
front of the screen).

Each channel on the oscilloscope is really just a high quality
amplifier with low noise, high bandwidth and selectable gain
which connects to the vertical deflector in the oscilloscope.

The trigger detects when to start moving the beam to the right across
the display. Setting this to Auto makes the beam trigger continuously.

5

Oscillography

6

Oscillography

Vertical section
• controls for amplitude of input(s),

• coupling (AC or DC), ground,

• single-ended or differential,

• invert signal and some allow multiple inputs (2 or 4)

Horizontal section
• time base or X-Y mode,

• horizontal start position,

• sweep speed,

• For multiple waveforms select alternate or chopped sweep depending upon sweep

speed

Trigger section
• determines when beam starts its sweep across CRT or LCD.

• Source may be from an input of the vertical section, internal triggering, external triggering

or line frequency.

7

Oscillography

Coupling

Ground:

• shorts input (0 volts) to enable vertical positioning of beam

AC
• removes DC component of waveform. Useful for EMG waveforms because it keeps

waveform centered around 0 volts, like a high-pass filter.

DC
• on some scopes labelled AC/DC. Waveform unaffected before amplification. Must be

used for force and displacement waveforms.

Try: Use a signal generator to show how AC-coupling influences a sine wave that has a
variable DC offset (or bias).

8

9

Raspberry Pi Pico – PWM Channels
The Raspberry Pi Pico has 8 independent PWM generators called slices. Each slice has
two channels, which makes a total of 16 PWM channels.

The frequency of the PWM signal can range between 8Hz and 62.5MHz, while the
microcontroller is running at a frequency of 125MHz.

from machine import PWM

pwm = PWM(pin, freq=50, duty_u16=8192) # create a PWM object on a pin
 # and set freq 50 Hz and duty 12.5%
pwm.duty_u16(32768) # set duty to 50%

reinitialise with a period of 200us, duty of 5us
pwm.init(freq=5000, duty_ns=5000)

pwm.duty_ns(3000) # set pulse width to 3us

pwm.deinit()

10

The frequency of PWM determines how fast a PWM completes a period. The frequency of a pulse is
shown in the figure above.

The frequency of PWM can be calculated as follows:

Frequency = 1/Time Period

Time Period = On Time + OFF time

11

12

13

To handle PWM signals with the Raspberry Pi Pico using MicroPython, use the
machine.PWM class. After creating a PWM object, called out_pwm for example:
out_pwm = PWM(Pin(20))

You can use the following methods:

led_pwm.freq(FREQUENCY) to set the frequency of the PWM signal.

led_pwm.duty_u16(DUTY_CYCLE) to set the duty cycle. It should be a value between
0 and 65535 (16-bit)

led_pwm.deinit() to turn off PWM on the PWM slice used by the OUT (in this
example, it’s GPIO 20, so it will also stop PWM on GPIO 21 because they belong to the
same PWM slice).

14

15

from machine import Pin, PWM
from time import sleep

Set up PWM Pin
led = machine.Pin(20)
led_pwm = PWM(led)
duty_step = 129 # Step size for changing the duty cycle

#Set PWM frequency
frequency = 5000
led_pwm.freq (frequency)

try:
 while True:
 # Increase the duty cycle gradually
 for duty_cycle in range(0, 65536, duty_step):
 led_pwm.duty_u16(duty_cycle)
 sleep(0.005)

 # Decrease the duty cycle gradually
 for duty_cycle in range(65536, 0, -duty_step):
 led_pwm.duty_u16(duty_cycle)
 sleep(0.005)

except KeyboardInterrupt:
 print("Keyboard interrupt")
 led_pwm.duty_u16(0)
 print(led_pwm)
 led_pwm.deinit()

