Tunca Doğan, PhD
------
Faculty Member (Professor)
Department of Computer Science and Artificial Intelligence Engineering
Institute of Informatics, Health Informatics Department
Graduate School of Health Sciences, Bioinformatics Department
Hacettepe University, 06800 Ankara, Turkey
------
Collaborating Research Associate
Protein Function Development Team (UniProt database),
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
CB10 1SD Cambridge, UK
------
Email:
tuncadogan@gmail.com
tuncadogan@hacettepe.edu.tr
Phone:
Work (Turkey) +90(312)2977193/115
Researcher accounts:
ORCID: http://orcid.org/0000-0002-1298-9763
Google Scholar: https://scholar.google.com/citations?hl=en&user=tHnMNPEAAAAJ&view_op=list_works&sortby=pubdate
WOS/Publons: https://www.webofscience.com/wos/author/record/B-5274-2017
COURSES INSTRUCTED/ORGANIZED
|
Undergraduate:
- BBM101: Introduction to Programming I (Python)
(BSc in Computer Engineering, Department of Computer Engineering, Hacettepe University)
- BBM103: Introduction to Programming Laboratory I (Python)
(BSc in Computer Engineering, Department of Computer Engineering, Hacettepe University)
- BBM411: Fundamentals of Bioinformatics
(BSc in Computer Engineering, Department of Computer Engineering, Hacettepe University)
- AIN411: Introduction to Bioinformatics
(BSc in AI Engineering, Department of Computer Engineering, Hacettepe University)
- MUH103/104: Occupational Health and Safety I & II
(BSc in Computer Engineering, Department of Computer Engineering, Hacettepe University)
Graduate:
- CMP611: Advanced Bioinformatics and Computational Biology
(MSc/PhD in Computer Science and Engineering, Department of Computer Engineering, Hacettepe University)
- BIN781: Biological Databases and Data Analysis Tools
(MSc/PhD in Bioinformatics, Institute of Health Sciences, Hacettepe University)
- BSB651: Health Informatics
(MSc in Health Informatics, Institute of Informatics, Hacettepe University)
- BSB652: Electronic Health Records and Coding
(MSc in Health Informatics, Institute of Informatics, Hacettepe University)
- BIN503: Biological Databases & Data Analysis Tools
(MSc in Bioinformatics, Department of Health Informatics, Graduate School of Informatics, METU)
- Bioinformatics and Computational Biology: Biomedical data analysis, protein function prediction, biological databases and biological ontologies, systems biology, personalized medicine.
- Cheminformatics: Computational drug discovery, virtual screening, chemogenomics, drug-target interaction prediction, molecular property prediction.
- Data science: Artificial intelligence, machine/deep learning, data/text mining, data integration/ representation/visualization, language models, knowledge graphs, generative modelling, representation learning, network analysis and graph theory.
AWARDS & PRIZES (SELECTED)
|
- Izmir Biomedicine and Genome Center (IBG) – Science Medal 2022
- TUSEB Aziz Sancar Science & Incentive Awards 2022 – Research Incentive Award
- Bilim Akademisi (Science Academy) Young Scientist Awards Program (BAGEP) 2022
- METU Parlar Foundation Honor, Science & Incentive Awards 2021 – Research Incentive Award
- TÜBİTAK 2247-A National Leader Researchers Program 2020 winner
- Hacettepe Science and Incentive Awards 2019 – Research Incentive Award
- Marie Sklodowska-Curie Actions Seal of Excellence winner (MSCA proposal 753397 – CROssBAR) in 2017
- TUBITAK, H2020 Programs, "Over the threshold" award in 2016 for scoring 91.2/100 in H2020-MSCA-IF-2016 proposal ESR with "CROssBAR" project.
- TUBITAK, H2020 Programs, "Over the threshold" award in 2015 for scoring 91.4/100 in H2020-MSCA-IF-2015 proposal ESR with "PaRTICLe" project.
- Swiss Institute of Bioinformatics (SIB) and UNIL, OMA Database Research Visit Fellowship in 2016.
- EMBL-EBI External Seminars (location: Cambridge, UK, date: 27 September 2022)
Seminar title: “Deep Learning-based Generative and Discriminative Modeling for Systems Biology and Drug Discovery” (https://www.ebi.ac.uk/)
- Biorelate Conference Series: Knowledge Graph in Drug Discovery Part 3 (location: London, UK / virtual, date: 12 Jan. 2022)
Seminar title: “Construction of a Knowledge Graph-Based Computational System (CROssBAR) to Make Sense out of Heterogeneous Biomedical Data” (https://www.biorelate.com/)
- EMBL-EBI Industry Partnerships: Workshop on Machine Learning in Drug Discovery (location: Cambridge, UK, date: 20 Oct. 2018)
Seminar title: “DEEPScreen: Drug-Target Interaction Prediction with Deep Convolutional Neural Networks Using Compound Images” (https://www.ebi.ac.uk/)
- EMBO Practical Course 2023: Integrative Modelling of Protein Interactions (location: Izmir, date: 17–22 Sept 2023)
Seminar title: “Machine learning for interaction and functional prediction” (https://meetings.embo.org/event/23-biomolecular-interactions)
- HIBIT-2021: 14th International Symposium on Health Informatics & Bioinformatics (location: Bilkent University, Ankara, date: 10–11 Sept 2021)
Seminar title: “AI-centric approaches for integrating, associating, and analyzing large-scale and heterogeneous biomedical data” (http://hibit2021.bilkent.edu.tr/)
- TUPA2023: International Proteomics Congress // 5th National Proteomics Congress (location: Ankara, date: 13–14 Oct 2023)
Seminar title: “Artificial Intelligence Driven Approaches in Protein Data Science” (https://tupa2023.org)
- 9th Turkish Medical World Congress, Health Institutes of Türkiye (location: Istanbul, date: 19-22 Oct 2023)
Seminar title: “Artificial Intelligence Approaches in Target-Focused Drug Candidate Molecule Design” (https://ttdk.tuseb.gov.tr/)
- 9th International BAU Drug Design Congress (location: Istanbul, date: 29 Nov – 2 Dec 2023)
Seminar title: “AI-driven prediction of molecular and drug-related properties via chemical language models” (https://drugdesign.bau.edu.tr/)
- Around 50 seminars at university departments (in Turkey), international and national conferences and workshops (location: face to face / virtual)
GRANTS / SCIENTIFIC RESEARCH PROJECTS
|
- National scientific research project: TUBITAK-ARDEB 1001 Scientific and Technological Research Projects Support Program 2022
Project number: 122E148
Project title: "Molecular Function-Driven Automated Design of New Protein Sequences with Generative Deep Learning"
Project role: PI
Duration: 36 months (2022-2025)
- National scientific research project: TUBITAK 2247-A National Leader Researchers Program 2020
Project number: 120C123
Project title: "Disease Centric Large Scale De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks"
Project role: PI
Duration: 36 months (2021-2024)
- National scientific research project: TUBITAK 3501 Career Support Program 2021
Project number: 120E531
Project title: "Integrative Representation and Deep Graph Learning Based Prediction of Complex and Heterogeneous Relationships in Biomolecular and Biomedical Data"
Project role: PI
Duration: 30 months (2021-2024)
- National scientific research project: National Health Institutes of Turkey (TUSEB) – Systems Biology and Bioinformatics Project Call 2019
Project number: 3912
Project title: "Large Scale Prediction of Cancer Cell Line Drug Response with Deep Learning Based Pharmacogenomic Modelling".
Project role: PI
Project partners: Dr Deniz Cansen Kahraman, METU
- National scientific research project: TÜBİTAK 1001 The Scientific and Technological Research Projects Funding Program Call 2021
Project number: 121E208
Project title: "Deep Learning Models for Virtual Screening Against Proteins with Few Bioactive Compound Data (Azderin)"
Project role: co-PI
Duration: 36 months (2021-2024)
- National scientific research project: National Health Institutes of Turkey (TUSEB) – Systems Biology and Bioinformatics Project Call 2019
Project number: 4002
Project title: "Automated Antimicrobial Peptide Recognition using Deep Learning"
Project role: researcher/co-PI
Project partners: Dr Günseli Bayram Akçapınar, Acıbadem University
Duration: 24 months (2020-2022)
- International scientific research project: British Council & TUBITAK - Newton / Kâtip Çelebi Institutional Links Program Call 2016
Project number: 116E930
Project title: "Comprehensive Resource of Biomedical Relations with Network Representations and Deep Learning (CROssBAR)"
Project role: co-PI
Project partners: Dr Volkan Atalay, METU; Dr Rengül Çetin-Atalay, METU ve Dr Maria Martin, EMBL-EBI, Cambridge, UK
Duration: 24 months (2017-2020)
- National scientific research project: TUBITAK 1003 – Special Areas R&D Project Support Call 2018
Project number: 318S218
Project title: "Development of Gene Discovery and Drug Repositioning Platform Based on Machine Learning for Enhancing Immunotherapy Effectiveness in Cancer"
Project role: researcher/co-PI
Project partners: Dr Kemal Turhan, Dr Feriha Toksöz, Dr Emel Timuçin, Dr Zerrin Işık, Dr Burçin Kurt
Duration: 36 months (2019-2022)
- Scientific research fellowship (at United Kingdom): UniProt Database Development Grant
Project title: "Novel Computational Approaches for Artificial Learning Based Drug Discovery and Repositioning"
Project role: Post-doctoral fellow
Project leader: Dr Maria Martin, EMBL-EBI, Cambridge, UK
Duration: 24 months (2013-2015)
PUBLICATIONS IN PEER-REVIEWED JOURNALS (SCI/SCI-E INDEXED)
|
- Shojaei, M., Mohammadvand, N., Doğan, T., Alkan, C., Cetin-Atalay, R., & Acar, A.C. (2024). An integrative framework for clinical diagnosis and knowledge discovery from exome sequencing data. Computers in Biology and Medicine, 169, 107810.
- Cankara, F. & Doğan, T. (2023). ASCARIS: Positional Feature Annotation and Protein Structure-Based Representation of Single Amino Acid Variations. Computational and Structural Biotechnology Journal, 21, 4743-4758 [doi: 10.1016/j.csbj.2023.09.017].
- Yüksel, A., Ulusoy, E., Ünlü, A. & Doğan, T. (2023).SELFormer: Molecular Representation Learning via SELFIES Language Models. Machine Learning: Science and Technology, 4(2), 025035 [DOI: 10.1088/2632-2153/acdb30].
- Lobentanzer, S., Aloy, P., Baumbach, J., Bohar, B., Carey, V.J., Charoentong, P., Danhauser, K., Doğan, T., ... & Saez-Rodriguez, J. (2023). Democratizing knowledge representation with BioCypher. Nature Biotechnology, 1-4 [DOI:10.1038/s41587-023-01848-y].
- Atas Guvenilir, H., & Doğan, T. (2023). How to approach machine learning-based prediction of drug/compound–target interactions. Journal of Cheminformatics, 15(1), 1-36.
- Dalkıran, A., Atakan, A., Rifaioğlu, A. S., Martin, M. J., Atalay, R. C., Acar, A., Doğan, T. & Atalay, V. (2023) Transfer Learning for Drug-Target Interaction Prediction. Bioinformatics, 39(Supplement_1), i103-i110. [DOI: 10.1093/bioinformatics/btad234].
- Ozdilek, A.S., Atakan, A., Ozsari, G., Acar, A., Atalay, M.V., Doğan, T. & Rifaioglu, A.S. (2023). ProFAB–Open Protein Functional Annotation Benchmark. Briefings in Bioinformatics, 24(2), bbac627 [doi:10.1093/bib/bbac627].
- Ciray, F., & Doğan, T. (2022). Machine Learning-based Prediction of Drug Approvals Using Molecular, Physicochemical, Clinical Trial and Patent Related Features. Expert Opinion on Drug Discovery [doi:10.1080/17460441.2023.2153830].
- Unsal, S., Atas, H., Albayrak, M., Turhan, K., Acar, A. C., & Doğan, T. (2022). Learning Functional Properties of Proteins with Language Models. Nature Machine Intelligence, 4(3), 227-245 [Available online without restrictions here].
- Özsarı, G., Rifaioglu, A. S., Atakan, A., Doğan, T., Martin, M. J., Atalay, R. C., & Atalay, V. (2022). SLPred: A Multi-view Subcellular Localization Prediction Tool for Multi-location Human Proteins. Bioinformatics, 38(17), 4226–4229 [Available as PDF without restrictions here].
- UniProt Consortium (2022). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, gkac1052 [doi:10.1093/nar/gkac1052].
- Doğan, T., Güzelcan, E. A., Baumann, M., Koyas, A., Atas, H., Baxendale, I., Martin, M., & Cetin-Atalay, R. (2021). Protein Domain-Based Prediction of Compound–Target Interactions and Experimental Validation on LM Kinases. PLOS Computational Biology, 17(11), e1009171.
- Yakimovich, A., Özgür, A., Doğan, T., Ozkirimli, E. (2021). Machine Learning Methodologies to Study Molecular Interactions. Frontiers in Molecular Biosciences, 8, 1174.
- Cetin-Atalay, R., Kahraman, D. C., Nalbat, E., Rifaioglu, A. S., Atakan, A., Donmez, A., Atas, H., Atalay, M.V., Acar, A.C., Doğan, T., (2021). Data Centric Molecular Analysis and Evaluation of Hepatocellular Carcinoma Therapeutics Using Machine Intelligence-Based Tools. Journal of Gastrointestinal Cancer, 1-11.
- Doğan, T., Atas, H., Joshi, V., Atakan, A., Rifaioglu, A.S., Nalbat, E., Nightingale, A., Saidi, R., Volynkin, V., Zellner, H. Cetin-Atalay, R., Martin, M. J. & Atalay, V. (2021). CROssBAR: Comprehensive Resource of Biomedical Relations with Knowledge Graph Representations. Nucleic Acids Research, 49(16), e96-e96.
- UniProt Consortium. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480-D489.
- Wang, Y., Wang, Q., Huang, H., Huang, W., Chen, Y., McGarvey, P. B., ... & UniProt Consortium. (2021). A crowdsourcing open platform for literature curation in UniProt. PLoS biology, 19(12), e3001464.
- Cichońska, A., Ravikumar, B., Allaway, R.J., …, The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, et al. (2021). Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 12, 3307 [doi:10.1038/s41467-021-23165-1].
- Rifaioglu, A.S., Nalbat, E., Atalay, M.V., Martin, M.J., Cetin-Atalay, R. & Doğan, T. (2020). DEEPScreen: High Performance Drug-Target Interaction Prediction with Convolutional Neural Networks Using 2-D Structural Compound Representations. Chemical Science, 11(9), 2531-2557.
- Rifaioglu, A. S., Cetin Atalay, R., Cansen Kahraman, D., Doğan, T., Martin, M., & Atalay, V. (2020). MDeePred: Novel Multi-Channel protein featurization for deep learning based binding affinity prediction in drug discovery. Bioinformatics, 37(5), 693-704.
- Donmez, A., Rifaioglu, A. S., Acar, A., Doğan, T., Cetin-Atalay, R., & Atalay, V. (2020). iBioProVis: Interactive Visualization and Analysis of Compound Bioactivity Space. Bioinformatics, 36(14), 4227-4230.
- Rifaioglu, A.S., Atas, H., R., Martin, M.J., Cetin‐Atalay, R., Atalay, M.V. & Doğan, T. (2019). Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Briefings in Bioinformatics, 20(5), 1878-1912.
- Rifaioglu, A.S., Doğan, T., Martin, M.J., Cetin-Atalay, R. & Atalay, M.V. (2019). DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks. Scientific reports, 9(1), 7344.
- UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 47(D1), D506-D515.
- Zhou, N., Jiang, Y., Bergquist, T.R., Lee, A.J., Kacsoh, B.Z., Crocker, A.W., Lewis, K.A., Georghiou, G., Nguyen, H.N., Hamid, M.N., Davis, L., Doğan, T., et al. (2019). The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 20, 244 [doi:10.1186/s13059-019-1835-8].
- Garcia, L., Bolleman, J., Gehant, S., Redaschi, N., Martin, M. & UniProt Consortium (2019). FAIR adoption, assessment and challenges at UniProt. Scientific Data, 6(1), 1-4.
- Dalkiran, A., Rifaioglu, A.S., Atalay, M.V., Martin, M.J., Cetin‐Atalay, R. & Doğan, T. (2018). ECPred: A Tool for the Prediction of the Enzymatic Functions of Protein Sequences Based on the EC Nomenclature. BMC Bioinformatics, 19(1), 334.
- Demirel, H.C., Doğan, T. & Tuncbag, N. (2018). A Structural Perspective on Modulation of Protein-Protein Interactions with Small Molecules. Current Topics in Medicinal Chemistry, 18(8):700-713.
- Doğan, T. (2018). HPO2GO: Prediction of Human Phenotype Ontology Term Associations For Proteins Using Cross Ontology Annotation Co-occurrences. PeerJ 6:e5298.
- Rifaioglu, A.S., Doğan, T., Saraç, Ö.S., Ersahin, T., Saidi, R., Atalay, M.V., Martin, M.J. & Cetin‐Atalay, R. (2018). Large‐scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants. Proteins: Structure, Function, and Bioinformatics, 86(2), 135-151.
- Pichler, K., et al. & UniProt Consortium. (2018). SPIN: Submitting Sequences Determined at Protein Level to UniProt. Current protocols in bioinformatics, e52.
- Poux, S., et al. & UniProt Consortium. (2017). On expert curation and scalability: UniProtKB/Swiss-Prot as a case study. Bioinformatics, 33(21), 3454-3460.
- Zaru, R., et al. & UniProt Consortium. (2017). From the research laboratory to the database: the CaenorhUSAitis elegans kinome in UniProtKB. Biochemical Journal, 474(4), 493-515.
- UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. Nucleic acids research, 45(D1), D158-D169.
- Doğan, T., MacDougall, A., Saidi, R., Poggioli, D., Bateman, A., O’Donovan, C., & Martin, M. J. (2016). UniProt-DAAC: Domain Architecture Alignment and Classification, a New Method for Automatic Functional Annotation in UniProtKB. Bioinformatics, 32(15): 2264-2271.
- Jiang, Y., Oron, T. R., Clark, W. T., Bankapur, A. R., D'Andrea, D., Lepore, R., Funk, C.S. Kahanda, I., Verspoor, K.M., Ben-Hur, A., Koo, E., Penfold-Brown, D., Shasha, D., Youngs, N., Bonneau, R., Lin, A., Sahraeian, S.M, Martelli, P.L., Profiti, G., Casadio, R., Cao, R., Zhong, Z., Cheng, J., Altenhoff, A., Skunca, N., Dessimoz, C., Doğan, T., et al. (2016). An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 17:184 [doi:10.1186/s13059-016-1037-6].
- Breuza, L., et al. & UniProt Consortium. (2016). The UniProtKB guide to the human proteome. Database, bav120.
- UniProt Consortium. (2015). UniProt: a hub for protein information. Nucleic Acids Research, 43(D1): D204-D212.
- Ison, J., Rapacki, K., Ménager, H., Kalaš, M., Rydza, E., Chmura, P., Anthon, C., Beard, N., Berka, K., Bolser, D., Booth, T., Bretaudeau, A., Brezovsky, J., Casadio, R., Cesareni, G., Coppens, F., Cornell, M., Cuccuru, G., Davidsen, K., Della Vedova, G., Doğan, T., et al. (2015). Tools and data services registry: a community effort to document bioinformatics resources. Nucleic acids research, 44(D1), D38-D47.
- UniProt Consortium. (2014). Activities at the Universal Protein Resource (UniProt). Nucleic Acids Research, 42(D1), D191-D198 [Corrigendum: doi:10.1093/nar/gku469].
- Doğan, T. and Karaçalı, B. (2013). Automatic Identification of Highly Conserved Family Regions and Relationships in Genome Wide Datasets Including Remote Protein Sequences. PLoS ONE 8(9): e75458 [doi:10.1371/journal.pone.0075458].
BOOK CHAPTERS (INTERNATIONAL & REFEREED) & PRE-PRINTS
|
- Ünlü, A., Çevrim, E., Sarıgün, A., Yigit, M.G., Çelikbilek, H., Bayram, O., Güvenilir, H.A., Koyaş, A., Kahraman, D.C., Olğaç, A., Rifaioğlu, A., Banoglu, E., & Doğan, T. (2023). Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks. arXiv preprint arXiv:2302.07868 [currently under review in a peer-reviewed journal].
- Ulusoy, E. & Doğan, T. (2022). Mutual Annotation-Based Prediction of Protein Domain Functions with Domain2GO. bioRxiv, 2022.11.03.514980 [currently under review in a peer reviewed journal].
- Atas, H., Tuncbag, N. & Doğan, T. (2018). Phylogenetic and Other Conservation-Based Approaches to Predict Protein Functional Sites. In Mohini Gore and Umesh B. Jagtap (Eds.), Methods in Molecular Biology (Vol. 1762), Computational Drug Discovery and Design, 1762:51-69 [DOI:10.1007/978-1-4939-7756-7_4], ISBN: 978-1-4939-7755-0, Springer Nature.
SELECTED PUBLICATIONS IN PEER-REVIEWED CONFERENCES (ABSTRACT & FULL TEXT)
|
- Unsal, S., Ozdemir, S., Ozdinc, I., Bayrakli, A., Albayrak, M., Turhan, K., Doğan, T. & Acar, A.C. (2023). Holistic Protein Representation (HOPER): Few-Shot Protein Function Prediction with Multimodal Representation Learning. ISMB/ECCB 2023: 31st Annual International Conference on Intelligent Systems for Molecular Biology, 23-27 July 2023, Lyon, France.
- Doğan, T., Joshi, V., Rifaioglu, A.S., Ataş, H., Sinoplu, E., Nighingale, A., Volynkin, V., Zellner, H., Saidi, R., Cetin-Atalay, R., Martin, M.J., Atalay, M.V. (2018). CROssBAR: Comprehensive Resource of Biomedical Relations with Network Representations and Deep Learning. ISMB/ECCB 2019: 27th Annual International Conference on Intelligent Systems for Molecular Biology, 21-25 July 2019, Basel, Switzerland.
- Rifaioglu, A.S., Atalay, M.V., Martin, M.J., Cetin-Atalay, R. & Doğan, T. (2018). DEEPScreen: Drug-Target Interaction Prediction with Deep Convolutional Neural Networks Using Compound Images. ISMB 2018: 26th Annual International Conference on Intelligent Systems for Molecular Biology, 6-10 July 2018, Chicago, USA.
- Doğan, T. (2018). HPO2GO: Prediction of Human Phenotype Ontology Term Associations for Proteins Using Cross Ontology Annotation Co-occurrences. ISMB 2018: 26th Annual International Conference on Intelligent Systems for Molecular Biology, 6-10 July 2018, Chicago, USA.
- Doğan, T., Rifaioglu, A.S., Saidi, R., Martin, M., Atalay, M.V. & Cetin-Atalay, R. (2018). Automated Negative Gene Ontology Based Functional Predictions for Proteins with UniGOPred. ISMB 2018: 26th Annual International Conference on Intelligent Systems for Molecular Biology, 6-10 July 2018, Chicago, USA.
- Doğan, T., Akhan, E., Baumann, M., Nightingale, A., Baxendale, I.,Martin, M. & Cetin-Atalay, R. (2017). Computational Prediction of Novel Drug Candidate Compound – Target Protein Interactions and Their Verification on PI3K/AKT/mTOR Signalling Pathway. GLBIO 2017: Great Lakes Bioinformatics Conference, 15-17 May 2017, Chicago, USA.
- Rifaioğlu, A., Doğan, T., Saraç, Ö.S., Atalay, V., Martin, M. & Atalay, R. (2015). UniGOPred and ECPred: Automated Function Prediction Tools Based on A Combination of Different Classifiers. AFP-CAFA SIG, ISMB/ECCB 2015: 23th Annual International Conference on Intelligent Systems for Molecular Biology, 10-14 July 2015, Dublin, Republic of Ireland.
- Doğan, T., Nightingale, A., Poggioli, D. & Martin, M. (2014). Drug-Target Predictions with the Combination of Protein Domain Mapping and Ligand Similarity Detection.Drug Development Workshop, ECCB 2014: The 13th European Conference on Computational Biology, 7-10 September 2014, Strasbourg, France.
- Doğan, T. & Karaçalı, B. (2013). 2-D Thresholding of the Connectivity Map Following the Multiple Sequence Alignments of Diverse Datasets.The 10th IASTED International Conference on Biomedical Engineering, 13-15 February 2013, Innsbruck, Austria. [doi:10.2316/P.2013.791-092].
- Doğan, T. & Karaçalı, B. (2010). Evolutionary relationships between gene sequences via nonlinear embedding. 15. Ulusal Biyomedikal Mühendisliği Toplantısı (BIYOMUT), pp.1-4, 21-24 April 2010, Antalya, Turkey [doi:10.1109/BIYOMUT.2010.5479846].
- Atas Guvenilir, H., & Doğan, T. (2023). HetCPI: Knowledge Graph-Centric Drug Discovery via Heterogeneous Graph Transformers. ISMB/ECCB 2023: 31st Annual International Conference on Intelligent Systems for Molecular Biology 23-27 July 2023, Lyon, France.
- Doğan, T., Saidi, R., Rifaioglu, A., Atalay, M.V., Cetin-Atalay, R.& Martin, M. (2017). Human Phenotype Ontology Prediction with the Utilization of Co-occurrences Between HPO terms and GO terms.ISMB/ECCB 2017: 25th Annual International Conference on Intelligent Systems for Molecular Biology, 21-25 July 2017, Prague, Czechia.
- Rifaioğlu, A., Doğan, T., Sarac, Ö.S., Saidi, R., Atalay, V., Martin, M.J. & Atalay, R. (2017). UniGOPred: A Large Scale Automated GO Term Annotation System for UniProtKB.GLBIO 2017: Great Lakes Bioinformatics Conference, 15-17 May 2017, Chicago, USA.
- Doğan, T., Ersahin, T., Rifaioglu, A., Poggioli, D., Nightingale, A., Martin, M. & Cetin-Atalay, R. (2015). Computational drug target prediction and validation in PI3K/AKT pathway.ISMB/ECCB 2015: 23th Annual International Conference on Intelligent Systems for Molecular Biology, 10-14 July 2015, Dublin, Republic of Ireland.
- Rifaioglu, A. S., Doğan, T., & Can, T. (2015). Unsupervised identification of redundant domain entries in InterPro database using clustering techniques. In Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics (pp. 505-506), ACM, 9-12 September 2015, Atlanta, USA [doi.org/10.1145/2808719.2811430].
- Doğan, T., Bateman, A., & Martin, M. (2014). Weighted Pairwise Domain Architecture Alignment for Protein Homology Prediction.ECCB 2014: The 13th European Conference on Computational Biology, 7-10 September 2014, Strasbourg, France.
- Doğan, T. (2014). Multi-label Classification for Protein Function Prediction.Automated Function Prediction Meeting (AFP), ISMB 2014: 22nd Annual International Conference on Intelligent Systems for Molecular Biology, 11-15 July 2014, Boston, USA.
COMMISSIONS OF TRUST & ACADEMIC SERVICE
|
- Scientific conferences::
- Co-chair of "HIBIT-2017: 10th International Symposium on Health Informatics & Bioinformatics", June 28 – 30, 2017, METU NCC, Northern Cyprus (http://hibit2017.ii.metu.edu.tr).
- PC member of ""Function COSI at ISMB: Annual International Conference on Intelligent Systems for Molecular Biology" , 2017, 2018 & 2019 (http://biofunctionprediction.org/).
- PC member of ""Proceedings of ISMB2022: 30th Annual International Conference on Intelligent Systems for Molecular Biology", 10-14 July 2022, Madison, USA (https://www.iscb.org/ismb2022).
- PC member of ""MLCSB COSI at ISMB/ECCB 2023: 31st Annual International Conference on Intelligent Systems for Molecular Biology”, 23-27 July 2023, Lyon, France (https://www.iscb.org/ismbeccb2023).
- "HIBIT: International Symposium on Health Informatics and Bioinformatics", conferences, OC member on: 2022 & 2023, PC member on: 2018, 2019, 2020, 2021, 2022 & 2023.
- Journal editorship::
- Associate editor in the Frontiers in Bioinformatics journal, Drug Discovery in Bioinformatics section (https://www.frontiersin.org/journals/bioinformatics) 2021-.
- Guest editor in the Frontiers in Molecular Biosciences journal, research topic: Machine Learning Methodologies to Study Molecular Interactions (http://www.frontiersin.org/research-topics/14119/machine-learning-methodologies-to-study-molecular-interactions) 2020-2021.
- Reviewer for:
“Information Sciences”, “Science Bulletin”, "Briefings in Bioinformatics", "Bioinformatics", "Chemical Science", "PLOS Computational Biology", "PROTEINS: Structure, Function, and Bioinformatics", "BMC Bioinformatics", "Scientific Reports", "IEEE/ACM TCBB", "iScience", "Patterns", "Chemical Communications", "Genes", "PAJES", "PeerJ", "Plos ONE", "RSC Advances", "Molecular Biosystems", "Nature Machine Intelligence", "Nature Communications", "PAMI"" journals and more.