Preprints:

1.      Mehmet Emre Tasgin and Hyunchul Nha, Measurable entanglement criterion for extended Bose-Hubbard model, arXiv:2402.05477 (2024).

2.      Hira Asif, Alpan Bek, Mehmet Emre Tasgin and Ramazan Sahin, Voltage-tunable quantum control of extraordinary optical transmission in the visible regime, arXiv:2311.02949 (2024).

3.      Shakir Ullah, M. E. Tasgin, R. V. Ovali, Mehmet Gunay, Electrically-programmable frequency comb for compact quantum photonic circuitsarXiv:2308.00439

4.      M. E. Tasgin, Energy of the symmetrization entanglement, arXiv:2302.10191 (2023).

5.      R. V. Ovali, S. Ullah, M. Günay, M. E. Tasgin, Environmental-induced work extraction, arXiv:2310.17809 (2023).

6.      M. E. Tasgin, Flux quantization and electron-positron pair creation (GENERALIZED).

7.      M. E. Tasgin, Quantization of magnetic flux and electron-positron pair creation.

8.      M. Emre Tasgin, Entanglement & violation of Kramers-Kronig relations, presentation @ YouTube

9.      M. E. Tasgin, Anatomy of Entanglement and Nonclassicality criteria, arXiv:1901.04045

10.   You-Lin Chuang and M. E. Tasgin, Coherent control of optical bistability in Rydberg electromagnetically-induced transparency atomic system, arXiv:1811.04776

 

PUBLICATION LIST

 

Book Chapter:

  1. M. E. Taşgın*, A. Bek, S. Postacı, Fano resonances in the linear and nonlinear plasmonic response, Chapter 1 in, E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenko (Editors), Fano resonances in optics and microwaves: Physics and application (2018), Springer Publishing

(Chapter 1 available in Google Books)

 

Publications:

 

1.      Hira Asif, Mehmet Emre Tasgin and Ramazan Sahin, All-optical control of ultrafast plasmon resonances in the pulse-driven extraordinary optical transmission, Journal of Optics 25, 075501 (2023). [Editor’s top 10 pick in half 2023].

2.      Mehmet Günay, Priyam Das, Emre Yüce, Emre Ozan Polat, Alpan Bek and Mehmet Emre Tasgin, On-demand continuous-variable quantum entanglement source for integrated circuits, Nanophotonics 12, 229-237 (2023).

3.      Asli Gencaslan, Taner Tarik Aytas, Hira Asif, Mehmet Emre Tasgin, Ramazan Sahin, Silent-enhancement of multiple Raman modes via tuning optical properties of graphene nanostructures, The European Physical Journal Plus 137, 1330 (2022). arXiv:2206.05405

4.      Mehmet Günay, Ahmet Cicek, Nurettin Korozlu, Alpan Bek, Mehmet Emre Taşgın, Fano Control of Unlocalized Nonlinear Processes, Phys. Rev. B 104, 235407 (2021). arXiv:1905.01129

5.      Emre Yuce, Zafer Artvin, Ramazan Sahin, Alpan Bek, Mehmet Emre Tasgin, Ultra-large actively tunable photonic band gaps via plasmon-analog of index enhancement, Appl. Phys. Lett. 119, 211103 (2021).   arXiv:2006.07132

6.      Rasim Volga Ovali, Ramazan Sahin, Alpan Bek, Mehmet Emre Tasgin, Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension, Appl. Phys. Lett. 118, 241103 (2021).

7.      M. E. Tasgin, Negative superluminal velocity and violation of Kramers-Kronig relations in “causal” optical setups, Phys. Rev. A 103, 013504 (2021). arXiv:2009.13625

8.      Zafer Artvin, Mehmet Günay, Alpan Bek and Mehmet Emre Tasgin, Fano-control of down-conversion in a nonlinear crystal via plasmonic-quantum emitter hybrid structures, Journal of Optical Society of America B 37,3769 (2020).  arXiv:1805.01148

9.      M. E. Tasgin, Single-mode nonclassicality criteria via Holstein-Primakoff transformation, J. Phys. B: At. Mol. Opt. Phys. 53 245501 (2020). arXiv:1502.00988

10.   M. E. Tasgin, Measuring nonclassicality of single-mode states, J. Phys. B: At. Mol. Opt. Phys. 53, 175501 (2020).  arXiv:1502.00992.

11.   Mehmet Emre Tasgin, Mehmet Gunay and M. Suhail Zubairy, Nonclassicality and entanglement for wavepackets, Phys. Rev. A 101, 062316 (2020).  arXiv:1904.13149

12.   Mehmet Günay, You-Lin Chuang, M. Emre Tasgin, Continuously-tunable Cherenkov-radiation-based particle detectors via plasmon index control, Nanophotonics 9, 1479 (2020). arXiv:1911.08159

13.   Mehmet Günay, Vasilios Karanikolas, Ramazan Sahin, Rasim Volga Ovali, Alpan Bek, Mehmet Emre Tasgin, Quantum emitter interacting with graphene coating in the strong-coupling regime, Phys. Rev. B 101, 165412 (2020).  arXiv:1906.04434

14.   Bilge Can YildizAlpan Bek and Mehmet Emre Tasgin, Plasmon lifetime enhancement in a bright-dark mode coupled system, Phys. Rev. B 101, 035416 (2020).  arXiv:1905.07248

15.    Mehmet Emre Tasgin and M. Suhail Zubairy, Quantifications for multi-mode entanglement, Phys. Rev. A 101, 012324 (2020). arXiv:1905.01740 

16.   Mehmet Günay*, Zafer Artvin, Alpan Bek, Mehmet Emre Tasgin, Controlling steady-state second harmonic signal via linear and nonlinear Fano resonances, Journal of Modern Optics 67, 26-34 (2020).

17.   Mehmet Günay, Özgür Esat Müstecaplıoğlu and Mehmet Emre Tasgin, Entanglement of two interacting ensembles via a Dicke-like quantum phase transition, Phys. Rev. A 100, 063838 (2019).  arXiv:1904.12668 

18.   Selen Postaci, Bilge Can Yildiz, Alpan Bek, Mehmet Emre Tasgin, Silent enhancement of SERS signal without increasing the hot spot intensity, Nanophotonics 7, 1687–1695  2018.

19.   Mehmet Emre Tasgin, Many-particle entanglement criterion for superradiant-like states, Phys. Rev. Lett. 119, 033601 (2017). arXiv:1610.06883

20.   Priyam Das, Mehmet Emre Tasgin*, Ozgur E. Mustecaplioglu, Collectively induced many-vortices topology via rotatory Dicke quantum phase transition, New J. Phys. 18, 093022 (2016). arXiv:1601.06413  

21.   M. E. Tasgin*, I. Salakhutdinov, D. Kendziora, M. K. Abak, D. Turkpence, L. Piantanida, L. Fruk, M. Lazzarino, Alpan Bek, Fluorescence Excitation by Enhanced Plasmon Upconversion under Continuous Wave Illumination, Photonics and Nanostructures - Fundamentals and Applications 21, 32 (2016). 

22.    Shailendra K. Singh, M. Kurtulus Abak, and Mehmet Emre Tasgin* , Enhancement of Four-Wave Mixing via interference of multiple plasmonic conversion paths, Phys. Rev. B 93, 035410 (2016).    arXiv:1507.07734

23.   Wenchao Ge, Mehmet Emre Tasgin*, M. Suhail Zubairy, Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter, Phys. Rev. A 92, 052328 (2015).  arXiv:1506.04937

24.   Bilge Can Yildiz*, Mehmet Emre Tasgin, Musa Kurtulus Abak, Sahin Coskun, Husnu Emrah Unalan, Alpan Bek, Enhanced Second Harmonic Generation from Coupled Asymmetric Plasmonic Metal Nanostructures, J. Opt. 17, 125005 (2015). arXiv:1412.0238 (invited to Journal of Optics from arXiv)

25.   D. Turkpence, Gursoy B. Akguc, Alpan Bek, M. E. Tasgin* , Engineering nonlinear response of nanomaterials using Fano resonances, J. Opt. 16, 105009 (2014).

26.   M.E. Tasgin, Metal nanoparticle plasmons operating within quantum lifetime, Nanoscale 5, 8616  (2013).

27.   M. E. Tasgin, Testing the reliability of a velocity definition in dispersive medium, Physical Review A 86, 033833 (2012).

 

Can propagation speed of light really be superluminal (v>c) in dispersive medium?

      The famous experiment [1], where a Gaussian light pulse passes through a dye solution with a speed which is larger than the one in vacuum (c), aroused great interest in the scientific community.  Moreover, the theoretical simulations ─regarding velocities deduced by tracking the peak of the pulse [2] or the averaged center of the pulse [3] ─ were in good agreement with the experiment. It is also argued that the superluminal-like propagation could be originated from the reshaping of the pulse due to absorption or gain present in the medium. The detectors used in the experiments were already measuring the mean position of the pulse [4]. Superluminal propagation could not be disproved, because one cannot decide on the reference point which corresponds to the displacement of the wave packet.

      In the presented work [5], we adopt a method to check if pulse propagation is indeed superluminal. We test if a velocity definition and the calculated speed values are reliable in the superluminal propagation regime. We treat the same problem in two different mathematical approaches; real-frequency (reel-ω) and real-wavevector (real-k) Fourier expansions.  If a given velocity definition (e.g. the one which refers to the mean pulse center) is reliable, then it must result in similar values for the velocity in the two approaches. However, we observe that the velocities calculated in the two approaches differ significantly in the superluminal regime. Therefore, one cannot claim the existence of superluminal propagation.

 [1] L. J.Wang, A. Kuzmich, and A. Dogariu, Nature (London) 406, 277 (2000). [2] M. Tanaka,M. Fujiwara, and H. Ikegami, Phys. Rev. A 34, 4851 (1986). [3] J. Peatross, S. A. Glasgow, and M. Ware, Phys. Rev. Lett. 84, 2370 (2000). [4] Lipsa Nanda, Aakash Basu, and S. A. Ramakrishna, Phys. Rev. E 74, 036601 (2006). [5] M. E. Taşgın, Phys. Rev. A 86, 033833 (2012).

 

28.    M.E. Taşgın, Ö.E. Müstecaplıoğlu and L. You, Creation of a vortex in a Bose-Einstein condensate by superradiant scattering, Physical Review A 84, 063628 (2011). (selected as the section cover in Optics and Photonics News, OSA, in May 2013.)

29.   M.E. Taşgın* and P. Meystre, Spin squeezing with coherent light via entanglement swapping, Physical Review A 83, 053848 (2011).

30.   S.K. Steinke, S. Singh, M.E. Taşgın, P. Meystre, K.C. Schwab, M. Vengalattore, Quantum measurement backaction from a BEC coupled to a mechanical oscillator, Physical Review A 84, 023841 (2011). 

31.   M.E. Taşgın, M.Ö. Oktel, L. You, and Ö.E. Müstecaplıoğlu, Quantum correlated light pulses from sequential superradiance of a condensate, Physical Review A, 79, 053603 (2009).
Selected for the May 2009 issue of Virtual Journal of Quantum Information.

32.   M.E. Taşgın, Ö.E. Müstecaplıoğlu, and M.Ö. Oktel, Photonic band gap in the triangular lattice of Bose-Einstein-condensate vortices, Physical Review A, 75, 063627 (2007).

33.   M.E. Taşgın, M.Ö. Oktel, L. You, and Ö.E. Müstecaplıoğlu, Quantum Entanglement via Superradiance of a Bose–Einstein Condensate, Laser Physics, 20, 700 (2010).

34.   M.E. Taşgın, B. Öztop, M.Ö. Oktel, and Ö.E. Müstecaplıoğlu, Quantum correlations among superradiant Bose-Einstein condensate atoms, Optics and Spectroscopy, 108, 433 (2010).

35.   M.E. Taşgın, Ö.E. Müstecaplıoğlu, and M.Ö. Oktel, Vortex Lattice of a Bose-Einstein Condensate as a Photonic Band Gap Material,  Laser Physics, 19, 647 (2009).

36.   M.E. Taşgın, A. L. Subaşı, M.Ö. Oktel, and B. Tanatar, Vortices in trapped boson-fermion mixtures, Journal of Low Temperature Physics, 138, 611 (2005).

* Corresponding author.

 

Conference proceedings:

M.E. Taşgın and M.Ö. Oktel, Dynamical instability of a two component Bose-Einstein Condensate in an optical lattice, Journal of Physics: Conference Series, 36, 200 (2006).

 

Other publications:

1.      M. E. Tasgin, The Connection between real-ω and real-k approaches in an absorbing medium, Balkan Journal of Electrical & Computer Engineering 1, 32 (2013).

 

Dissertation Thesis

Quantum Entanglement and Light Propagation

Through

Bose-Einstein Condensate (BEC)

(presentation.pdf)

 

 

 

 

SOME POSTERS

 

1. Quantum correlated light pulses from sequential superradiance of a condensate,

M.E. Taşgın, M.Ö. Oktel, Li You, and Ö.E. Müstecaplıoğlu

APS (American Physical Society) March Meeting,

14-20 March 2009, Pittsburgh, PA, USA.    .pdf

 

2. Quantum Entanglement in quantum collective phenomena

        and Photonic Band Gaps in BEC vortex lattices,

M.E. Taşgın, M.Ö. Oktel, and Ö.E. Müstecaplıoğlu

ICQO (XII International Conference on Quantum Optics and Quantum Information), September 20-23, 2008, Vilnius, Lithuania.

 

3. Continuous variable atom-atom entanglement

in the sequential superradiance of a Bose-Eintein condensate

M.E. Taşgın, M.Ö. Oktel, Li You, and Ö.E. Müstecaplıoğlu

YMF (XV. Conference on Condensed Matter Physics)

7 November 2008, Bilkent, Ankara, Turkey.    .pdf

                (Best poster award.)